
Ace: An Efficient Key-Exchange Protocol
for Onion Routing

Michael Backes
Saarland University and MPI-SWS

Saarbrücken, Germany
backes@cs.uni-saarland.de

Aniket Kate
MMCI, Saarland University

Saarbrücken, Germany
aniket@mmci.uni-saarland.de

Esfandiar Mohammadi
Saarland University

Saarbrücken, Germany
mohammadi@cs.uni-saarland.de

ABSTRACT
The onion routing (OR) network Tor provides privacy to
Internet users by facilitating anonymous web browsing. It
achieves anonymity by routing encrypted traffic across a few
routers, where the required encryption keys are established
using a key exchange protocol. Goldberg, Stebila and Us-
taoglu recently characterized the security and privacy prop-
erties required by the key exchange protocol used in the OR
network. They defined the concept of one-way authenticated
key exchange (1W-AKE) and presented a provably secure
1W-AKE protocol called ntor, which is under consideration
for deployment in Tor.

In this paper, we present a novel 1W-AKE protocol Ace
that improves on the computation costs of ntor: in num-
bers, the client has an efficiency improvement of 46% and
the server of nearly 19%. As far as communication costs
are concerned, our protocol requires a client to send one
additional group element to a server, compared to the ntor
protocol. However, an additional group element easily fits
into the 512 bytes fix-sized Tor packets (or cell) in the el-
liptic curve cryptography (ECC) setting. Consequently, our
protocol does not produce a communication overhead in the
Tor protocol. Moreover, we prove that our protocol Ace
constitutes a 1W-AKE. Given that the ECC setting is un-
der consideration for the Tor system, the improved compu-
tational efficiency, and the proven security properties make
our 1W-AKE an ideal candidate for use in the Tor protocol.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing protocols; D.2.8 [Software]: Security
and Protection—Cryptographic controls; E.3 [Data]: Data
Encryption—Public key cryptosystems

Keywords
Tor, Onion Routing, Circuit Construction, Authenticated
Key Agreement, One-way Anonymity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’12, October 15, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1663-7/12/10 ...$15.00.

1. INTRODUCTION
The onion routing (OR) network Tor [18] has been im-

mensely successful as a privacy enhancing technology. It
currently employs nearly three thousand dedicated routers
(or OR nodes) and serves hundreds of thousands of users
all over the world. With its recently observed utility as a
censorship-resistant tool these numbers are bound to grow
swiftly.

While utilizing the Tor network to access the Internet
anonymously, a user constructs a circuit choosing a small
ordered subset of (usually three) OR nodes, such that the
chosen nodes route the user’s traffic over the path formed.
For the anonymity in onion routing, it is important that an
OR node should not be able to determine the circuit nodes
other than its predecessor and successor, while routing the
user’s messages. In the OR protocol, the user achieves this
property by sending her every message in the form of an
onion—a message wrapped in multiple layers of symmetric-
key encryption (one layer per selected node). The symmetric
keys are agreed upon during an initial circuit construction
phase using a public-key infrastructure (PKI) implemented
using a small set of directory servers that also provide rout-
ing information for the OR nodes to the users. The key
cryptographic challenges in the OR protocol are to securely
agree upon the symmetric keys, and then to use those to
achieve confidentiality and integrity [2]. In this work, we
concentrate on the first challenge.

Tor currently uses an interactive forward-secret key-exchange
protocol called the Tor authentication protocol (TAP) in
a telescoping (or multi-pass) fashion to agree upon the re-
quired symmetric keys [6]. However, with its atypical use of
an RSA encrypted group element (or pseudonym), TAP is
considered to be inefficient. Øverlier and Syverson [15] sug-
gested an efficient replacement for TAP (their fourth pro-
tocol) using a half-certified Diffie-Hellman (DH) key agree-
ment [12, §12.6]. Recently Goldberg, Stebila and Ustaoglu
showed an attack on the fourth protocol in [15] that allows
an adversary to impersonate an honest server (a router in
Tor) to an honest client (a user in Tor) [7]. They also defined
the concept of one-way authenticated key exchange (1W-
AKE), fixed the fourth protocol [15] to obtain a provably
secure construction called the ntor protocol, and described
its utility towards onion routing. However, while obtaining a
provably secure construction, they sacrificed computational
efficiency to a certain extend. In particular, every ntor in-
stance requires two online discrete logarithmic (DLog) ex-
ponentiations on the client side and 1.33 exponentiations on
the server side in ntor, where only one online exponentiation

each was required on the both sides in the original fourth
protocol in [15]. In this paper, we work towards a compu-
tationally more efficient 1W-AKE protocol using a practical
concession provided by the Tor protocol.

Contributions.
We present a novel 1W-AKE protocol Ace (a nonymous

circuit establishment) that achieves an efficiency improve-
ment of 46% at the client-side and of nearly 19% at the
server-side, compared to the ntor protocol. The crux is to
use as a pseudonym two randomly chosen group elements on
the client side instead of one. In this way, we are able to use
Shamir’s multi-exponentiation trick on both the server and
the client side, requiring only 1.17 online exponentiations
for the key-exchange. These requirements can be further
dropped to 1.08 exponentiations in the elliptic curve cryp-
tographic (ECC) setting as it provides DLog group inverses
for free.

Our requirement of sending two group elements from the
client to the server may look an impeding factor in terms of
communication. However, thanks to the fixed sized packets
(or cells) of size 512 bytes in Tor, two group elements of size
32 bytes each in the ECC setting can easily be accommo-
dated in a single cell. Given that the ECC setting is under
consideration for the Tor protocol [11], our protocol does
not affect the practical communication time of Tor circuit
construction at all. We also prove Ace secure using the def-
inition for 1W-AKE that has been introduced by Goldberg,
Stebila, and Ustaoglu [7].

Outline.
Section 2 discusses the previous work on 1W-AKE. Sec-

tion 3 introduces the Ace protocol. Section 4 compares the
computational efficiency and the message sizes of the Ace
protocol with the previous protocols. Section 5 reviews the
security requirements for a 1W-AKE protocol, and shows
that Ace indeed constitutes a 1W-AKE protocol. Section 6
concludes and discusses some topics for the future work.

2. BACKGROUND
This section discusses previous work on 1W-AKE proto-

cols. Section 2.1 present the current Tor Authentication
protocol (TAP). Section 2.2 discusses a one-way authentica-
tion protocol by Shoup that enriches the DH key exchange
with a public-key signature. Section 2.3 illustrates the ØS
protocol by Øverlier and Syverson, which is efficient but in-
secure. Section 2.4 presents the ntor protocol, which fixes
the issues of the ØS protocol but is less efficient. In the
end, Section 2.5 briefly discusses why we do not consider
non-interactive key exchange methods.

A comparative overview of these four key exchange pro-
tocols and our protocol Ace is presented in Figure 5.

2.1 The current Tor Authentication Protocol
The current Tor authentication protocol (TAP) basically

performs a DH key-exchange where the authentication of
the server is ensured by encrypting the first DH message gx

under the public key of the server, for a generator g. Using
public-key encryption, however, it is inefficient; therefore, a
more efficient key exchange is desirable.

2.2 The A-DHKE Protocol
Shoup presented a 1W-AKE protocol A-DHKE that relies

on public-key signatures [16] and proved A-DHKE secure1.
In A-DHKE basically, the DH key exchange is enriched in
the second message with a signature of the server on the
ephemeral key gx of the client and the ephemeral gy of the
server. The key derivation function is computed as in a DH
key exchange. This protocol only needs 1 online exponenti-
ation as in the usual DH key exchange, but it additionally
requires the protocol to compute 1 online signature. There-
fore, the efficiency of A-DHKE depends upon the efficiency
of the signature scheme.

2.3 The ØS Protocol
Øverlier and Syverson proposed a series of more efficient

key-exchange protocols for future deployment in Tor, cul-
minating in their fourth protocol [15]. This fourth protocol
basically enhances the DH protocol with a long-term key
gb of the server. Neglecting the session id and the key-
confirmation message, the protocol works as follows. The
client sends a fresh ephemeral key gx to the server. The
server draws a fresh ephemeral key gy, computes the ses-
sion key (gx)b+y = gx(b+y), and sends gy back to the client,

which compute (gbgy)x = g(b+y)x.

An Attack on the ØS Protocol.
Unfortunately, there is a man-in-the-middle attack against

this protocol [7]. The attacker intercepts the initial message
gx, draws a fresh gy, and responds with gy/gb = gy−b, where
gb is the public key of the server. Then, the client computes
the session key (gbgy−b)x = gyx and the attacker computes
(gx)y. Figure 5 in the appendix illustrates this attack.

2.4 The ntor Protocol
Goldberg, Stebila, and Ustaoglu [7] present a fixed version

of the ØS protocol, the ntor protocol. Moreover, the authors
proved that ntor is 1W-AKE secure (see Section 5.1).

A closer look at the session key gxy+xb in the ØS protocol
reveals that for fixing the protocol it suffices to separate the
term xy from the term xb. In ntor, this separation is achieved
by applying a hash function H to these terms: H(gxy, gxb).2

Neglecting the session keys and the key confirmation mes-
sage, in ntor the client sends a fresh ephemeral key gx to the
server, The server draws a fresh ephemeral key gy, computes
the session key as H((gx)y, (gx)b), and responds with gy to
the client.

The security of ntor is bought at a price of efficiency:
the client has to compute 2 full exponentiations, and the
server has to compute 1.33 exponentiations, using square-
and-multiply optimizations since the base of (gx)y and (gx)b

is the same.

2.5 A Note on Non-Interactive KE
In contrast to the presented interactive key-exchange a

single-pass construction using a non-interactive key exchange
is possible as well. However, achieving forward secrecy of the
user’s circuits without regularly rotating the PKI keys for
all Tor nodes is not possible [9], and the periodic public key

1Technically, Shoup proved A-DHKE secure in another
model, but it is easy to see that A-DHKE also satisfies the
1W-AKE definition.
2gxy, gxb denotes the concatenation of gxy and gxb.

(no public key) Client Server (public key gb)

x1, x2 ←R G
gx1 ,gx2

−−−−−−−−−−−−−−−−→ y ←R G
gy

←−−−−−−−−−−−−−−−−
= (gb)x1(gy)x2 (gx1)b(gx2)y =

gx1b+x2y gx1b+x2y (established shared secret gx1b+x2y)

Figure 1: An overview of Ace: G is the exponent group.

rotation should be avoided for scalability reasons. There has
also been attempts to solve this problem by introducing the
identity-based setting [8, 9] or the certificate-less cryptog-
raphy setting [5]. However, the key authorities required in
these constructions can be difficult to implement in practice.
(For a detailed discussion, we refer to [2, Sec. 2.1].)

3. THE Ace PROCOTOL
Along the lines of the ØS protocol and the ntor proto-

col, the Ace protocol constitutes a one-way authenticated
variant of the DH key exchange. The crux of Ace is that
it trades computational efficiency with communication effi-
ciency. However, we aim at improving the key-exchange in
the Tor protocol, and it turns out that in the ECC setting a
large fragment of the Tor packets are actually unused dur-
ing the key exchange. As the ECC setting is currently under
consideration for deployment in Tor, using Ace will not pro-
duce a communication overhead for the Tor protocol’s key-
exchange yet gaining efficiency in terms of computation.

Notation.
We often denote the long-term secret key of a party A as

a and correspondingly ga as the public key, for a given gen-
erator g. In the security analysis and the detailed presented
of Ace, we also talk about A as an identifier. At these place,
we denote the long-term public key of a party A as pkA and
the corresponding secret key as skA.

For assigning the result of a (possibly randomized) com-
putation A to a variable v, we write v ← A. Similarly, we
write v ← V to denote the assignation of a value V to the
variable v. Moreover, we write v ←R S for denoting that
a uniformly chosen element from a set S is assigned to the
variable v. For the security parameter we use the letter η.
In this work, we only consider probabilistic polynomial-time
bounded machines, denoted as ppt machines. In abuse of
notation, we also call a randomized algorithm that is polyno-
mially bounded a ppt algorithm. We denote the hash of the
concatenation of several values v1, . . . , v2 as H(v1, . . . , v2).

3.1 The Construction
Recall that in the ØS protocol the client sends an ephemeral

key gx and the server responds with an ephemeral key gy,
resulting in a session key gxb+xy (gb being the server’s certi-
fied long-term key). The main problem in ØS is that the two
terms xy and xb are not separated, allowing the attacker to

choose y := y′ − b, by computing gy := gy
′
/gb, and imper-

sonating any server. In the ntor protocol this separation is
achieved by letting the session key be the hash of gxb and
gxy. This remedy comes at the price of a loss in efficiency.
In Ace we achieve this separation by letting the ephemeral
key be a pair (gx1 , gx2): the session key is then gx1b+x2y.

In Ace the client sends an ephemeral pair (gx1 , gx2) and
the server responds an ephemeral key gy. Then, the client
computes the session key as (gb)x1(gy)x2 = gbx1+yx2 and
the server as (gx1)b(gx2)y = gx1b+x2y. Figure 1 gives an
overview of the Ace protocol.

The Protocol in Detail.
Figure 2 presents the Ace protocol in detail by showing the

pseudo code for the initialization algorithm Init, the response
algorithm Resp, and the final key computation algorithm
CompKey. Let (pkQ, skQ) be the static key pair for Q. We
assume that P holds Q’s certificate (Q, pkQ). Recall that cs
is the queue of already chosen ephemeral key pairs (x, gx) of
which gx is already leaked to the attacker.

The algorithm Init is called for initiating a new session. It
expects as input the server’s identity, two strings new session,
Ace, and the queue cs. Then, either a fresh ephemeral keys
is chosen or an already chosen key is popped from the queue
cs. Thereafter, the local session identifier is set by apply-
ing the ephemeral pair (x1, x2) to a collision resistant hash
function Hst .

3 Then, the session information of the client
is stored in the variable st(Ψ), and the client’s ephemeral
keys (gx1 , gx2) together with the server identity Q and a
string Ace is output as a network message m along with the
session’s state st(Ψ) and the session identifier Ψ.

The algorithm Resp is called by the server Q for respond-
ing to a session initialization. Resp expects as input the
secret key skQ of Q, Q’s identity, the network message (Ace,
X1, X2) from the initialization, and the queue cs. First,
again a ephemeral key (y, gy) is chosen, either freshly or
from cs. Then, it is verified that X1, X2 are in the pub-
lic key group G∗η. Thereafter, the local session identifier
ΨQ is computed by applying the hash function Hst to the
ephemeral key gy. Thereafter, the two keys km, ks are de-
rived from gx1skQ+x2y by applying the hash function H to
gx1skQ+x2y, the session information X1, X2, Y, pkQ, and the
protocol name Ace. Since we need km and ks for the proof
to be independent, we consider H is a random oracle in the
proof. km is used for the key-confirmation message, and ks
is the resulting session key. Then, the key confirmation mes-
sage is computed by basically applying a Mac to all public
information using the key km. Thereafter, we output the
session identifier, the session information, and as a network
message the Mac tag, the ephemeral key gy and a string Ace.

The algorithm CompKey is called by the client for complet-
ing the key-exchange. CompKey expects the public key of
the server Q, the network message (Ace, Y, tQ) from Q, and
the temporary session state (Q, (x1, x2), (gx1 , gx2)). First,

3The purpose of this hash function is merely to reduce the
space of the session key; therefore, we only need to require
collision resistance.

Init(Q, (η, new session,Ace), cs):

if cs = ∅ then
x1, x2 ←R Gη
compute gx1 ,gx2

else
(x1, g

x1), (x2, g
x2)← pop(cs)

set session id Ψ← Hst(g
x1 , gx2)

set st(Ψ)← (Q, (x1, x2), (gx1 , gx2))
set m← (Ace, Q, (gx1 , gx2))
output (m, st(Ψ),Ψ)

Resp(skQ, Q, (η,Ace, X1, X2), cs):

if cs = ∅ then y ←R Gη else y ← pop(cs)
verify that X1, X2 ∈ G∗η
set session id ΨQ ← Hst(g

y)

compute (km, ks)← H(X
skQ

1 ·Xy
2 , g

x1 , gx2 , gy, gb,Ace)
compute tQ ← Mac(km, (Q, g

y, X1, X2,Ace, server))
set mQ ← (Ace, gy, tQ)
out ← (ks, ?, (X1, X2), (gy, gskQ))
output (mQ, out ,ΨQ)

CompKey(pkQ, (η,Ace, Y, tQ),Ψ, (Q, (x1, x2), (gx1 , gx2))):

verify that Y ∈ G∗η
compute (km, ks)← H(pkx1Q ·Y

x2 , gx1 , gx2 , gy, gb,Ace)
if Mac(km, (Q,Y, g

x1 , gx2 ,Ace, server)) = tQ then
out ← (ks, Q, (g

x1 , gx2), (Y, pkQ))
output out

If any verification fails, the party erases all session-
specific information and aborts the session.

Figure 2: The Ace protocol: Gη is the group of the se-
cret keys, G∗η is the group of the public keys. Gen(1η)
outputs a pair (x, gx) for a random element x of Gη.

we verify that Y is indeed a group element of G∗η. Then,
we compute the key confirmation key km and the session
key ks similar as in Resp, and verify the key confirmation
message tQ from the server with km. Thereafter, we output
the session information (ks, Q, (X1, X2), (Y, pkQ)).

4. PERFORMANCE COMPARISON
In this section, we compare the performance of the Ace

protocol with the relevant key agreement protocols.
We consider η = 128-bit security and use the elliptic curve

cryptographic (ECC) setting with points (compressed form)
of size p = 256 bits, such as provided by Dan Bernstein’s
Curve25519 [3]. For the finite field setting (F), we consider
a DH modulus of size just p = 2048 bits to model 128-
bit security. In these setting, we compare computational
efficiency and message sizes of our protocol with the TAP
protocol, the A-DKHE protocol [16], the fourth protocol by
Øverlier and Syverson, the multi-pass pairing-based onion
routing (PB-OR) protocol [9] and the ntor protocol.

4.1 Computational Efficiency
Table 1 compares computational efficiency and security

of the above mentioned relevant key exchange schemes. We

also include the unauthenticated and insecure Diffie-Hellman
(DH) key exchange protocol to set the baseline for the re-
quired computation, where one (online) exponentiation is
enough on both client and server sides. The TAP proto-
col also requires one exponentiation on both sides; however,
it requires one RSA encryption on the client side and one
RSA decryption on the server side, and the latter operation
increases the server-side computational cost significantly.

The fourth protocol by Øverlier and Syverson is although
as efficient as the unauthenticated DH key exchange, it is
insecure. The ntor protocol requires two exponentiations
on both client and server sides; however, the two expo-
nentiations on the server side use the same base, and they
can be parallelized [13] to reduce the computational cost to
1.33 exponentiations for η = 128. Although our Ace proto-
col näıvely also requires two exponentiations on both client
and server sides, exponentiations on both sides are actually
multi-exponentiations and using Shamir’s trick [12, Algo.
14.88] can be reduced to only 1.17 exponentiations on both
sides for η = 128. In the ECC setting, where group in-
verses come for free, the number of exponentiations can be
further reduced to 1.08 exponentiations using Avanzi’s algo-
rithm [1] based on a sliding windows method for the joint
sparse form [17].

The A-DHKE protocol uses one signature generation on
the server side and one signature verification on the client
side alone with one exponentiation on each side for the
session-key computation, and its efficiency depends upon
the efficiency of the signature scheme used. In our ECC
Curve25519 setting, the signature generation is expensive
and A-DHKE is significantly inefficient than the Ace pro-
tocol. However, Bernstein et al. find that high-speed sig-
natures are possible using table lookups and a twisted Ed-
wards curve [4]. Using this signature scheme, server-side
computation for A-DHKE may become nearly equal to a
single exponentiation. (See the discussion on the tor-dev
mailing list [10].) Nevertheless, we observe that the multi-
exponentiation techniques used in the Ace protocol can also
benefit from table lookups; hence, the performance of Ace
protocol will remain comparable to A-DHKE over the twisted
Edwards curve.

We also include the multi-pass PB-OR protocol in our
comparison for completeness. It asks for a bilinear pairing
along with an exponentiation on both sides. However, the
protocol belongs to the identity-based setting and the capa-
bility of the Tor network to implement the required setup
assumptions is not clear.

4.2 Message Sizes
All of the above discussed relevant key exchange protocols

except our Ace protocol require one group element to be
communicated from the client to the server.4 For η = 128,
this asks for 256 bytes in the finite field setting, and 32
bytes in the ECC setting. In our Ace protocol, the client
communicates two group elements to the server. In the finite
field setting, this asks for 512 bytes in the finite field setting,
and 64 bytes in the ECC setting.

However, the Tor uses cells of size 512 bytes, and in the
ECC setting, sending 64 bytes instead of 32 bytes does not
affect the Tor protocol. As the ECC setting is under con-

4Note that the client communicates an RSA-encrypted
group element in TAP.

Table 1: Comparison between computational cost of relevant key exchange schemes for 128-bit security
Protocol Exponentiations (client) Exponentiations (server) Security

Off-line On-line Off-line On-line
DH 1 1 1 1 insecure
A-DHKE [16] 1 1 + 1∗ 1 1 + 1∗ secure

TAP [6] 1 1 + 1† 1 1 + 1† secure
ØS [15] 1 1 1 1 insecure

Multi-pass PB-OR [9] 1 1 + 1‡ 1 1 + 1‡ secure
ntor [7] 1 2 1 1.33 tight
Ace (this paper) 2 1.08(1.17) 1 1.08(1.17) tight

∗ A-DHKE requires a signature generation on the server side and a signature verification on the client side.
† TAP requires an RSA encryption on the client side and an RSA decryption on the server side.
‡ Multi-pass PB-OR requires a bilinear pairing on both client and server sides.

upon sendP (params, Q):

(m, st ,Ψ)← Init(Q, params, cs)
akestP (Ψ)← (Q, st); send (m,Ψ)

upon sendP (Ψ,m) and akestP (Ψ) = ⊥:

(m ′, (k, ?, st),Ψ)← Resp(skP , P,m, cs)
resustP (Ψ)← (k, ?, st); send m ′

upon sendP (Ψ,m) and akestP (Ψ) 6= ⊥:

(Q, st)← akestP (Ψ); check for a valid pkQ
(k,Q, st)← CompKey(pkQ,m,Ψ, (Q, st))

erase akestP (Ψ); resustP (Ψ)← (k,Q, st)

upon reveal nextP :

(x,X)← Gen(1η); append (x,X) to cs; send X

upon partnerP (X):

if a key pair (x,X) is in the memory then send x

upon sk revealP (Ψ):

if resustP (Ψ) = (k,Q, st) then send k

upon establish certificate(Q, pkQ):

register the public key pkQ for the party Q

upon testP (Ψ): (one time query)

(k,Q, st)← resustP (Ψ)
if k 6= ⊥ and Q 6= ? and Ψ is 1W-AKE fresh then

if b = 1 then send k else send k′ ←R {0, 1}|k|

for every query (consistency check)

if in a client session only one key Xi is partnered then
send X3−i

Figure 3: 1W-AKE Security Challenger: Chke
b (1η). If any invocation outputs ⊥, the challenger erases all

session-specific information for that session and aborts that session.

sideration for the Tor protocol [11], we find our protocol to
be more aptly suited to replace TAP instead of ntor.

5. SECURITY ANALYSIS
This sections presents a security analysis of Ace. First,

Section 5.1 reviews the security requirements for 1W-AKE
protocol. Second, Section 5.2 discusses the security of Ace.

5.1 Security Definition of Anonymous 1W-AKE
Goldberg, Stebila, and Ustaoglu [7] formalize the security

of a 1W-AKE protocol between an anonymous client and an
authenticated server by requiring the following three prop-
erties. First, the protocol should produce correct results if
both parties are honest (correctness). Second, even a mali-
cious attacker that can compromise single sessions and in-
troduce fake identities cannot learn anything about the ses-
sion key of uncompromised sessions (1W-AKE security). In
particular, 1W-AKE security implies that the attacker can-
not impersonate a server. Third, a server should not be able
to see any difference while communicating with two different
clients (1W-anonymity). In this section, we review the three
notions Correctness, 1W-AKE security, and 1W-anonymity.

A 1W-AKE protocol is a tuple of ppt algorithms AKE =
(Gen, Init,Resp,CompKey). Gen is called for generating tem-

porary asymmetric keys, Init is called at the client for start-
ing a 1W-AKE, Resp is called at the server for responding to
a 1W-AKE initialization, and CompKey is again called at the
client for verifying the key confirmation message and com-
puting the key. We assume that every party P ∈ {P1, . . . , Pn}
can register public keys, and every party can obtain certifi-
cates for other parties’ public keys and verify them.

Correctness of 1W-AKE.
Correctness states that if all parties behave honestly, the

protocol succeeds. Also, the correctness property requires

the 1W-AKE algorithms to finally output a vector
→
v= (v1, v2)

that contains all ephemeral information and the long-term

public key. For Ace,
→
v = ((gx1 , gx2), (gy, gskP)), where

x1, x2 are the ephemeral secret keys of the client for that
session, y is the ephemeral secret key of the server P ∈
{P1, . . . , Pn} for that session, and skP is the secret long-
term key of the server. Moreover, the 1W-AKE algorithms
output the session key ks, and the ID of the peer party,
where the client outputs the actual ID of the server, and the
server only outputs ?, since the client is anonymous.

Definition 1 (Correctness of 1W-AKE). Let a PKI
be given, i.e., for every party P ∈ {P1, . . . , Pn} every party
knows a (certified) public key pkP and P itself also knows

the corresponding secret key skP . Let AKE := (Gen, Init,
Resp, CompKey) be a tuple of polynomial-time bounded ran-
domized algorithms. We say that AKE is a correct one-way
authenticated key exchange protocol if the following holds
for all parties A,B:

Pr
[
(m, st ,Ψ)← Init(Q,m, cs),

(m ′, (k, ?,
→
v),ΨQ)← Resp(skQ, Q,m, cs),

(k′, Q,
→
v
′
)← CompKey(pkQ,m

′,Ψ, st)

: k = k′ and
→
v=
→
v
′]

= 1.

1W-AKE Security.
We require that the attacker does not learn anything about

the key and is not able to impersonate honest parties. This
notion is formalized by requiring that even in the presence
of an attacker that can send commands to each party, es-
tablish several concurrent sessions, compromise servers and
issue fake identities servers, cannot learn a single bit of each
party’s session key once the key exchange is successfully
completed.

More precisely, we construct a ppt machine Chke, called
the challenger, that represents honest parties (P1, . . . , Pn)
and allows the attacker a fixed set of queries (see Figure 3).
This challenger internally runs the 1W-AKE algorithms AKE.
The definition basically states that an attacker breaks the
1W-AKE security if in the end it successfully distinguishes
a randomly chosen session key from the actually established
session key for an uncompromised session Ψ. For this chal-
lenge, the attacker sends a query testP (Ψ) to Chke. For
triggering the initiation of a session, triggering the response
to a key exchange, and for completing a key exchange, Chke

allows the attacker to send a query sendP (m). For com-
promising parties, the attacker can query three different
types of messages. First, the attacker can ask party P
to reveal the next public key that will be chosen with the
query reveal nextP . Second, the attacker can ask for a se-
cret key for a corresponding public key X using the query
partnerP (X). Third, the attacker can ask for the session key
of a session Ψ with the query sk revealP (Ψ). Finally, the
attacker can also register new long-term public keys pkQ for
unused identitiesQ with the query establish certificate(Q, pkQ).

The challenger Chke maintains several variables for every
party P . A variable v for a party P is denoted as vP . First,
the challenger maintains the key exchange state akestP (Ψ)
for a party P and a session Ψ. This key exchange state stores
the ephemeral secret keys that will be erased after the key
exchange is completed. Then, Chke gets as input the public
parameters params, typically containing the security param-
eter η and the name of the protocol. The challenger further-
more maintains for every party P the result state resustP (Ψ)
of a completed session Ψ. This result state contains the es-
tablished key, the peer party, which is ? for the server P
since the client is anonymous, and a state st that typically
contains two vectors v1, v2 that contain the ephemeral pub-
lic keys and the long-term keys used for establishing the
session key of Ψ. In the case of ntor, v1 contains the client’s
ephemeral key X = v1 and v2 contains the server’s long-
term key B and ephemeral key Y , i.e., (Y,B) = v2. Recall
that in the case of Ace v1 contains the two ephemeral keys
(X1, X2) = v1 and v2 is the same as in ntor, i.e., (Y,B) = v2.

For characterizing those secret keys that are used in a key

exchange and have not been leaked to the attacker yet, we
introduce the notion of the attacker not being a partner to a
ephemeral public key X. Formally, the attacker is a partner
for a public value X if one of the following conditions hold
true.

• X was not used yet.

• X is public key that the attacker registered using the
query establish certificate(Q,X).

• X was the response of a query sendP or reveal nextP

and there is a successive query partnerP (X).

We stress that unused values also include all values that
are only chosen by the attacker; hence the attacker is with
overwhelming probability a partner to all self-chosen values.

Moreover, we assume that if an attacker learns from a
client one ephemeral key Xi of a session Ψ, then the attacker
also learns the other ephemeral key X3−i of that session. We
ensure this by making a consistency check for all partnered
values for every query. Even though this modification is
particular to key exchange protocol in which the client sends
two ephemeral keys, this modification looks natural to us.

Goldberg, Stebila, and Ustaoglu proposed a freshness no-
tion for the challenge session, in order to prevent the attacker
from trivially winning the game. We call their freshness con-
dition single value 1W-AKE freshness. We say that a session
Ψ at a party P is single value 1W-AKE fresh if the following
two conditions hold:

1. Let (k,Q, st) ← resustP (Ψ) (see Figure 3). For every
vector vj in st there is at least one element X in vj
such that the attacker M is not a partner to X.

2. For the session Ψ such that akestP (Ψ) = (v,Q), the
adversary did not issue sk revealQ(Ψ′) for any Ψ′ such
that akestQ(Ψ′) = (v, ?).

The protocol Ace presented in this work, uses two ephemeral
keys for the client, i.e., v1 = (gx1 , gx2) and as ntor one
ephemeral key gy for the server and the long-term key gb

of the server, i.e., v2 = (gy, gb). The key is then determinis-
tically derived from gbx1+yx2 . Since gbx1+yx2 is computable
for any attacker that is a partner to the pair (x2, b) or the
pair (x1, y), we need to exclude these cases in order to pre-
vent the attacker from trivially winning. We say that a
session is double value 1W-AKE fresh if it is single value
1W-AKE fresh and the following condition holds:

3. Let (k,Q, ((X1, X2), (Y,B))) ← resustP (Ψ). The at-
tacker is not a partner of the pair (X1, Y) or (X2, B).

We call a double value 1W-AKE fresh session a fresh 1W-
AKE session.

As depicted in Figure 3, we consider two challengers Chke
0

and Chke
1 . Chke

0 sends a randomly chosen key as a response,
and Chke

1 sends the actually established key as a response.
Upon successful key exchange with a server Q, a key k, and
the transcript v1, v2, a client outputs a tuple (k,Q, (v1, v2)).
A server outputs (k, ?, (v1, v2)) for denoting that the peer
party is anonymous.

Definition 2 (1W-AKE-security). Let η be the se-
curity parameter. A protocol π is said to be 1W-AKE-secure

if, for all ppt adversaries M, the following difference is neg-
ligible in η:

|Pr[b∗ ← 〈A(1η),Chke
0 (1η)〉 : b∗ = 1]

− Pr[b∗ ← 〈A(1η),Chke
1 (1η)〉 : b∗ = 1]|

1W-Anonymity.
A one-way authenticated key exchange is able to pro-

vide anonymity for the unauthorized client; this client-side
anonymity is called 1W-anonymity. Formally, 1W-anonymity
means that the attacker cannot link a key exchange through
an anonymized channel (e.g., Tor) with a key exchange through
a direct connection. More formally, we consider the follow-
ing scenario.

The attacker can communicate with all parties directly,
which is modeled by the 1W-AKE challenger Chke

1 (see Fig-
ure 3). In addition, the attacker chooses two candidate par-
ties for a key exchange challenge session Ψ∗ over an anony-
mous channel. This anonymous channel is modeled by the
ppt machine Chan (presented in Figure 4). Chan selects one
of the two candidate parties. Finally, the attacker has to
guess which of the two parties has been selected in the chal-
lenge session.

In order to prevent the attacker from trivially learning
the identity of the correct candidate, we have to exclude
the cases in which the attacker peaks into the state of the
candidate parties. Formally, we require that Chan internally
runs a copy of the 1W-AKE challenger Chke. We denote the
internal copy of Chke as IChke (see Figure 4).

Definition 3 (1W-anonymity). Let η be the security
parameter. Let M,N be ppt interactive turing machines. Let
v ← 〈A(1η),M(1η), N(1η)〉 denote the interaction between
A and M and A and N and v be the output of A. A protocol
AKE is said to be 1W-anonymous if, for all PPT adversaries
M, the following difference is negligible in η

|Pr[b∗ ← 〈A(1η),Chan
0 (1η),Chke

1 (1η)〉 : b∗ = 1]

− Pr[b∗ ← 〈A(1η),Chan
1 (1η),Chke

1 (1η)〉 : b∗ = 1]|

5.2 The Security of Ace
At this point, we are able to analyze the security of Ace.

We first show that no information about the session key is
leaked by proving 1W-AKE security for Ace. Then, we show
that a Ace session cannot be linked to another Ace session
by proving 1W-anonymity for Ace.

Lemma 1 (Ace is 1W-AKE secure). If Hst is a colli-
sion resistant hash function, Mac is universally unforgeable
against chosen message attacks (CMA-UF), and H is a ran-
dom oracle, the protocol Ace is 1W-AKE-secure in the sense
of Definition 2 under the GDH assumption.5

More precisely, for every machine M that breaks the 1W-
AKE security of Ace with probability µ and runs in time
t, there exists a bound q ≥ 1 on the number of sessions
and a machine Sq that breaks the GDH assumption with a
probability of more than

(
2
|P |

)
µ/(q|P |) and runs in time O(t),

where |P | is the number of honest servers.

5The GDH assumption states that the computational DH
assumption holds even against an attacker that has access
to a decisional DH oracle [14].

Proof. Let Game1 be the original setup with the Chke
1

challenger against the attacker M.
Game2 is the faking game with the Chke

0 challenger: upon
a testP (Ψ)-query Chke

0 sends a randomly chosen key k in-
stead of the real key ks for (km, ks)← H(gbx1+yx2 , gx1 , gx2 ,
gy, gb, Ace). Since H is a random oracle km is completely in-
dependent of ks; hence, no information about the challenge
key ks is leaked by using km for the Mac. Moreover, we show
below that by the gap DH assumption gbx1+yx2 cannot be
computed from gx1 , gx2 , gy, and gb.

We construct a ppt reduction Sq against the GDH chal-
lenger for an attacker M that distinguishes Game1 from
Game2 but only allows q session-queries. Moreover, this
reduction Sq also simulates the random oracle. Let P =
{P1, . . . , Pn} be the set of parties. We show that there is a q
such that Sq that solves the GDH problem with probability(

2
|P |

)
µ/(q|P |) ifM breaks the 1W-AKE security with prob-

ability µ, where q ≤ p(η) and p is the runtime polynomial
of the attacker M. Let (g, gu, gv) be the GDH challenge.
Moreover, the runtime of Sq is asymptotically the same as
the runtime of M.

The reduction Sq answers all queries honestly, except for
partner(gu) or partner(gv) queries. In these cases Sq aborts
the simulation. If the attacker stops, Sq draws a random
group element and sends it as a blind guess to the GDH
challenger. The simulator Sq cannot compute gbx1+yx2 if
the GDH challenge exponent v equals b. Since, however,
gbx1+yx2 is never sent in plain but always hashed and Sq
also simulates the random oracle, these hashes can be faked
without knowing the input.

Besides, the simulator does the following:

Sq: upon initialization

ask the GDH challenger for a DH tuple (g, gu, gv)
draw b←R {0, 1}
if b = 1 then

draw i←R {1, . . . , q}
else

draw i←R {1, . . . , |P |}
replace pkPi

= gb of party Pi with gv

draw j ←R {1, . . . q}

Sq: upon sendP (params, Q):

/* if the client is called for the first protocol message */
if b = 1 and it is the ith session then

replace gx2 with gu

honestly choose gx1

if b = 0 ∧Q = Pi and it is the jth session then
replace gx1 with gu

honestly choose gx2

proceed as in (m, st ,Ψ)← Init(Q, (η, new session,Ace), cs)
/* recall that cs is maintained by the challenger */
akestP (Ψ)← (Q, st); send (m,Ψ)

Sq: upon sendP (Ψ, (η,Ace, gx1 , gx2)) and akestP (Ψ) = ⊥
/* if the server is called */
if b = 1 and Ψ is the ith session then

replace gy with gv

honestly choose gb

draw r = (km, ks) at random from the range of RO
store faked(gx1 , gx2 , gv, gb,Ace)← r

else
replace pkPi

= gb of party Pi with gv

honestly choose gy

upon start(i, j, params,Q): (one time query)

if i 6= j then
if b = 1 then i∗ ← i else i∗ ← j
send sendPi∗ (params, Q) to IChke

1 (1η)
wait for the response (Ψ∗,m ′); send m ′ to M

upon send(m):

forward sendPi∗ to IChke
1 (1η)

upon reveal next:

forward reveal nextPi∗ to IChke
1 (1η)

upon sk reveal:

forward sk revealPi∗ (Ψ∗) to IChke
1 (1η)

upon partner(X):

forward partnerPi∗ (X) to IChke
1 (1η)

Figure 4: The anonymizing machine Chan
b (1η): IChke

1 (1η) is an internally emulated copy of Chke
1 (1η)

draw r = (km, ks) at random from the range of RO
store faked(gx1 , gx2 , gy, gv,Ace)← r

proceed as in (m ′, (k, ?, st),Ψ)← Resp(skP , P,m, cs)
resustP (Ψ)← (k, ?, st); send m ′

Sq upon sendP (Ψ, (η,Ace, Y, tQ)) and akestP (Ψ) 6= ⊥
/* if the client is called with the response of the server */
lookup (Q, (x1, x2), (gx1 , gx2))← akestP (Ψ)
check for a valid pkQ
if faked(gx1 , gx2 , gy, gb,Ace) is defined then

lookup (km, ks) = r ← faked(gx1 , gx2 , gy, gb,Ace)
if gv = gb (pkQ = gb) then

query (g, gb, gx1 , Z/gyx2) to the DDH oracle
else if gv = Y = gy then

query (g, gy, gx2 , Z/gbx1) to the DDH oracle
if the DDH oracle confirms then

program RO(Z, gx1 , gx2 , gy, gb,Ace) := r
proceed as in (k,Q, st)← CompKey(pkQ,m,Ψ, (Q, st))

erase akestP (Ψ); resustP (Ψ)← (k,Q, st)

Sq simulating the RO: upon (Z, gx1 , gx2 , gy, gb,Ace)

if (gu, gv) = (gx1 , gb) then
query (g, gu, gv, Z/gyx2) to the DDH oracle
if the DDH oracle confirms then

send Z/gyx2 as a guess and stop
else if (gu, gv) = (gx2 , gy) then

query (g, gu, gv, Z/gbx1) to the DDH oracle
if the DDH oracle confirms then

send Z/gbx1 as a guess and stop
if RO(Z, gx1 , gx2 , gy, gb,Ace) = r is defined then

respond with r
else

draw r = (km, ks) at random from the range of RO
program RO(Z, gx1 , gx2 , gy, gb,Ace) := r

Recall that we required the challenge session to be fresh.
Let (gx1 , gx2) be the ephemeral keys of the client, gy be the
ephemeral key of the server, and gb be the long-term key
of the server. By the freshness of the challenge session, we
conclude that with overwhelming probability the attacker
at most a partner to (x2, y) or to (x1, b). Hence, it suffices
to consider these two cases in which the attacker is not a
partner to (x2, y) or not to (x1, b).

IfM is not a partner to (x1, b), then Sq either knows x2 or
y and can hence compute gyx2 . Moreover, with probability
1/(q|P |) we have b = v and x1 = u. Then, the simulator
guesses guv correctly if Z is the shared secret, i.e., if Z =

gbx1+yx2 , since

Z/gyx2 = gbx1+yx2−yx2 = guv+yx2−yx2 = guv.

If M is not a partner to (x2, y), then Sq knows x1 or b
and can hence compute gbx1 . We stress that the attacker
cannot send a maliciously chosen y′ (such as y′ = 0) be-
cause a successful forgery of the MAC tag would lead to an
attack against the CMA-UF property of Mac. Then, with
probability 1/q we have x2 = u and y = v. Then, again the
simulator guesses guv correctly if Z is the shared secret, i.e.,
if Z = gbx1+yx2 , since

Z/gbx1 = gbx1+yx2−bx1 = gbx1+uv−bx1 = guv.

Note that for z = uv, Sq is indistinguishable from Game1
as long as partner(gu) and partner(gv) is not queried. Simi-
larly for a randomly chosen z, Sq is indistinguishable from
Game2 as long as partner(gu) and partner(gv) is not queried.
Below, we denote this event that partner(gu) and partner(gv)
is not queried as T . The probability that T occurs is more
than

(
2
|P |

)
= 2
|P |(|P |−1)

, where P is the set of parties.

We conclude that if the attacker can distinguish Game1
from Game2 with more than negligible probability, then the
attacker queried the random oracle with

(gbx1+yx2 , gx1 , gx2 , gy, gb,Ace).

The overall winning probability of the simulator Sq can,
hence, be computed as follows. Let E1 be the event that the
attacker is not a partner to (x2, y) and E2 the event that the
attacker is not a partner to (x1, b). Recall T is the event that
partner(gu) and partner(gv) has not been queried. Moreover,
let W be the event that the simulator Sq wins against the
GDH challenger, and µ be the probability that the attacker
distinguishes Game1 from Game2. Then, we get

Pr[W] = Pr[E1] · Pr[W | E1] + Pr[E2] · Pr[W | E2]

= Pr[E1] · µ

q|P | · Pr[T] + Pr[E2] · µ
q
· Pr[T]

≥ Pr[E1] · µ

q|P | ·

(
2

|P |

)
+ Pr[E2] · µ

q
·

(
2

|P |

)
(1)

≥

(
2

|P |

)
µ

(q|P |) =
2µ

q|P |2(|P | − 1)

where (1) holds since Pr[E1] + Pr[E2] = 1.
Hence, Sq breaks the GDH game with probability more

than
(

2
|P |

)
µ/(q|P |) if the attacker distinguishes Game1 from

Game2 with probability µ. In particular, if the GDH assump-
tion holds Game2 is indistinguishable from the real setting
Game1, and the 1W-AKE security holds.

The proof for the 1W-anonymity of Ace is almost ex-
actly the same as the proof of the 1W-anonymity of ntor [7].
Therefore, we refer for the proof to their work and only state
the result.

Lemma 2 (Ace is 1W-anonymous). The Ace protocol
is 1W-anonymous in the sense of Definition 3.

6. CONCLUSION AND FUTURE WORK
The Tor project is currently considering to revise the key-

exchange protocol used for establishing the circuits. Ace
is a novel and provably secure 1W-AKE protocol, and we
propose it for use in the Tor’s circuit establishment pro-
tocol. Compared to the current candidate for Tor’s new
key-exchange protocol, Ace offers a client-side efficiency im-
provement of 46% and a server-side efficiency improvement
of nearly 19%. Even though Ace requires the client to send
one additional group element, it does not produce any com-
munication overhead in Tor as Ace only occupies some of the
unused space in a Tor packet, in the ECC setting. Given that
the ECC setting is under consideration for the Tor system,
the improved computational efficiency, and the proven se-
curity properties make our 1W-AKE an ideal candidate for
use in the Tor protocol.

Acknowledgments
We thank Roger Dingledine and Nick Mathewson for moti-
vating preliminary discussions, and Berkant Ustaoglu, Robert
Ransom, and the anonymous reviewers for their valuable
comments on an earlier draft of the paper.

7. REFERENCES
[1] R. M. Avanzi. The Complexity of Certain

Multi-Exponentiation Techniques in Cryptography. J.
Cryptology, 18(4):357–373, 2005.

[2] M. Backes, I. Goldberg, A. Kate, and E. Mohammadi.
Provably secure and practical onion routing. In Proc.
25th IEEE Computer Security Foundations
Symposium (CSF), 2012.

[3] D. J. Bernstein. Curve25519: New Diffie-Hellman
Speed Records. In Proc. 9th Conference on Theory
and Practice of Public-Key Cryptography (PKC),
pages 207–228, 2006.

[4] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and
B.-Y. Yang. High-Speed High-Security Signatures. In
CHES’ 11, pages 124–142, 2011.
http://ed25519.cr.yp.to/.

[5] D. Catalano, D Fiore, and R. Gennaro. Certificateless
onion routing. In Proc. 16th ACM Conference on
Computer and Communication Security (CCS), pages
151–160, 2009.

[6] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The Second-Generation Onion Router. In Proc. 13th
USENIX Security Symposium (USENIX), pages
303–320, 2004.

[7] I. Goldberg, D. Stebila, and B. Ustaoglu. Anonymity
and one-way authentication in key exchange protocols.
Designs, Codes and Cryptography, pages 1–25, 2012.
Proposal for Tor: https:

//gitweb.torproject.org/torspec.git/blob/HEAD:

/proposals/ideas/xxx-ntor-handshake.txt.

[8] A. Kate, G. M. Zaverucha, and I. Goldberg.
Pairing-Based Onion Routing. In Proc. 7th Privacy
Enhancing Technologies Symposium (PETS), pages
95–112, 2007.

[9] A. Kate, G. M. Zaverucha, and I. Goldberg.
Pairing-Based Onion Routing with Improved Forward
Secrecy. ACM Trans. Inf. Syst. Secur., 13(4):29, 2010.

[10] N. Mathewson. Another key exchange algorithm for
extending circuits: alternative to ntor? The tor-dev
mailing list, 2012. https://lists.torproject.org/
pipermail/tor-dev/2012-August/003901.html.

[11] N. Mathewson. Rump Session Talk on Tor. 12th
Privacy Enhancing Technologies Symposium (PETS),
2012.

[12] A. Menezes, P. Van Oorschot, and S. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1st
edition, 1997.

[13] D. M’Räıhi and D. Naccache. Batch Exponentiation:
A Fast DLP-Based Signature Generation Strategy. In
ACM Conference on Computer and Communications
Security (CCS ’96), pages 58–61, 1996.

[14] T. Okamoto and D. Pointcheval. The Gap-Problems:
A New Class of Problems for the Security of
Cryptographic Schemes. In PKC’ 01, pages 104–118,
2001.

[15] L. Øverlier and P. Syverson. Improving Efficiency and
Simplicity of Tor Circuit Establishment and Hidden
Services. In Proc. 7th Privacy Enhancing Technologies
Symposium (PETS), pages 134–152, 2007.

[16] V. Shoup. On Formal Models for Secure Key
Exchange. Cryptology ePrint Archive, Report
1999/012, 1999. Available as Cryptology ePrint
Archive, Report 1999/012
http://eprint.iacr.org/1999/012.

[17] J. Solinas. Low-weight binary representations for pairs
of integers. Technical Report CORR 2001-41, 2001.
Available at http://cacr.uwaterloo.ca/

techreports/2001/corr2001-41.ps.

[18] The Tor Project. https://www.torproject.org/,
2003. Accessed Nov 2011.

APPENDIX
In Figure 5, we illustrate the important protocols that we
discussed in the paper.

The Tor Authentication Protocol (TAP)

(no long-term key) Client Server (long-term keys (skB , pkB))

x←R G
Enc(pkB ,g

x)

−−−−−−−−−−−−−−−−→ y ←R G
gy

←−−−−−−−−−−−−−−−−
(gy)x = gyx gxy = (gx)y (established shared secret gxy)

The A-DHKE Protocol

(no long-term key) Client Server (long-term keys (skB , pkB))

x←R G
gx

−−−−−−−−−−−−−−−−→ y ←R G
gy,Sig(skB ,g

x,gy)

←−−−−−−−−−−−−−−−−
(gy)x = gyx gxy = (gx)y (established shared secret gxy)

The ØS Protocol

(no long-term key) Client Server (long-term keys (b, gb))

x←R G
gx

−−−−−−−−−−−−−−−−→ y ←R G
gy

←−−−−−−−−−−−−−−−−
(gygb)x = g(b+y)x gx(b+y) = (gx)y+b (established shared secret gx(b+y))

An Attack on the ØS Protocol

(no long-term key) Client M (long-term keys (b, gb))

x←R G
gx

−−−−−−−−−−−−−−−−→ y ←R G
gy/gb=gy−b

←−−−−−−−−−−−−−−−−
(gy−bgb)x = gyx gxy = (gx)y (established shared secret gxy)

The ntor Protocol

(no long-term key) Client Server (long-term keys (b, gb))

x←R G
gx

−−−−−−−−−−−−−−−−→ y ←R G
gy

←−−−−−−−−−−−−−−−−
H((gy)x, (gb)x) H((gx)y, (gx)b) =

= H(gyx, gbx) H(gxy, gxb) (established session key H(gxy, gxb))

The Ace Protocol

(no long-term key) Client Server (long-term keys (b, gb))

x1, x2 ←R G
gx1 ,gx2

−−−−−−−−−−−−−−−−→ y ←R G
gy

←−−−−−−−−−−−−−−−−
(gb)x1(gy)x2 (gx1)b(gx2)y =

= gx1b+x2y gx1b+x2y (established shared secret gx1b+x2y)

Figure 5: A comparative overview over all discussed protocols: G is the exponent group. For the sake
of readability, we neglected the session information used for the key derivation and the key confirmation
message.

