
Enlisting ISPs to Improve Online Privacy:

IP Address Mixing by Default

Barath Raghavan, Tadayoshi Kohno, Alex C. Snoeren, and David Wetherall

University of California, San Diego and University of Washington

Abstract. Today’s Internet architecture makes no deliberate attempt
to provide identity privacy—IP addresses are, for example, often static
and the consistent use of a single IP address can leak private information
to a remote party. Existing approaches for rectifying this situation and
improving identity privacy fall into one of two broad classes: (1) building
a privacy-enhancing overlay layer (like Tor) that can run on top of the
existing Internet or (2) research into principled but often fundamentally
different new architectures. We suggest a middle-ground: enlisting ISPs
to assist in improving the identity privacy of users in a manner com-
patible with the existing Internet architecture, ISP best practices, and
potential legal requirements1.

1 Introduction

Today’s Internet service providers (ISPs) log user behavior for security purposes
as a matter of best common practice. Legislators have also ceased to rest on this
matter. In February 2009, U.S. House Resolution 1076 was introduced. Though
its purported aim is not to monitor users’ online behavior, it requires that “A
provider of an electronic communication service or remote computing service
shall retain for a period of at least two years all records or other information
pertaining to the identity of a user of a temporarily assigned network address
the service assigns to that user.” Combined, these trends—administrative and
legislative—indicate that many or most Internet users will soon be indelibly
associated with an Internet address. Equally as important are the privacy effects
of ordinary Internet use. It is well-known that Internet services provide poor
privacy for users. Every time users visit websites or use networked applications,
they leave a trail of bread crumbs sprinkled around the Internet. These crumbs
can manifest themselves in many ways, such as the IP addresses stored in the
logs of a remote web server.

To improve their online privacy, some sophisticated users either choose to
avoid certain activities online or choose to use special applications designed to
help scramble the remote logs of their activities. As a flagship example of the
latter, Tor [7] is a peer-to-peer overlay system that operates on top of the existing
Internet and that is very effective at destroying these bread crumbs. Taking an
1 This work was supported in part by NSF awards CNS-0722000, CNS-0722004, CNS-

0722031 and the Alfred P. Sloan Foundation.

I. Goldberg and M. Atallah (Eds.): PETS 2009, LNCS 5672, pp. 143–163, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

144 B. Raghavan et al.

egalitarian view of the Internet, however, the principal disadvantage of Tor is
that it only benefits those knowledgeable enough to know to download and run
it. (There are additional barriers to the use of overlay systems like Tor, including
usability and performance. For our purposes, however, these issues are important
but of secondary concern.)

We propose a new perspective to improving the privacy of Internet users.
Extending an observation from Dingledine and Mathewson [6] about usability,
security, and privacy, we argue that users would benefit greatly if their ISPs
chose to proactively assist in improving users’ privacy. ISPs should be able to
do this seamlessly and by default for all their users. Moreover, we wish for a
privacy-enhancing approach that ISPs can deploy today, not one that must wait
for some future “redesign” of the Internet.

We overcome these challenges in this paper. We show not only that it is pos-
sible to enlist ISPs to improve the base privacy of Internet users, but also that it
is possible to do so efficiently and cheaply, and in a way that ISPs would actually
want to deploy. The best analogy to our high-level goals (though not our design)
is “caller-ID blocking” in traditional telephone networks. Telephone companies
provide caller-ID blocking because of the value-add to consumers. Using a com-
bination of cryptographic and systems-oriented techniques, our solution—the
Address Hiding Protocol (AHP)—provides an equivalent “IP address blocking”
for the Internet. Informally, the effect of IP Address Hiding is that—from the
perspective of a third-party service—every flow that a client node initiates will
appear to come from a different (random) IP address within the ISP’s address
block. One might be tempted to refer to our approach as creating a “super
NAT” capable of mixing and scrambling all the IP addresses within an ISP so
that they are “anonymized” from the perspective of parties within other ISPs.
Such terminology, while somewhat accurate from a functionality perspective,
ignores architectural complexities and design constraints that we discuss below.

Returning to our goals in the broader context of encouraging deployment, we
observe that ISPs can advertise the value-add of Address Hiding for Internet
users just as telephone companies advertise the value add of caller-ID blocking.
However, we must overcome other challenges associated with the constraints im-
posed on ISPs. The first—just as for telephone networks—is that even if an ISP
provides Address Hiding to external parties, the ISP must be able to associate
a given network flow with a network end-point upon legal intervention (such as
when presented with a warrant). As noted above, today many ISPs retain DHCP
logs, and it is possible that in the near future all ISPs will be compelled to do so
by law. As we shall see, this need, coupled with other architectural complexities
like support for multiple ingress and egress points for a single flow and minimal
space consumption, imposes challenges on our design space and is what makes
our technical solutions more complex than simply deploying a large-scale NAT.

Our approach (AHP), Tor, and applications. We do not aim to compete
with stronger, pure Internet anonymity overlay systems like Tor, but rather aim
to improve the base privacy of all Internet users in a way that is compatible with
the existing Internet architecture and the incentive structure for ISPs. We believe

Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default 145

that our system thus provides the best of both worlds—if an ISP deploys our
Address Hiding protocol, then the IP addresses of its users would be meaningless
to third-party remote services. Thus, such an ISP will have successfully increased
the privacy of all of its users from the vantage of external hosts and services.
At the same time, we experimentally show that it is straightforward for Internet
users to layer Tor on top of our system. We do, however, share one property
with Tor and other anonymity systems: the applications (like an email or IM
client) running on top of these systems can still compromise a user’s privacy
(for example, if the application uses cookies or sends users’ login names and
passwords in the clear). Providing privacy at the lowest network layer is still
fundamentally valuable because it can serve as an enabling technology and is
immediately useful if a user’s application is also privacy preserving, such as if
the user configures his or her browser to not store cookies, as offered by Safari
and Firefox with “Private Browsing” mode and Explorer with “InPrivate” mode.

2 Address Hiding Goals

Consider a scenario in which a user, Alice, installs one of the latest versions of a
popular browser such as Safari, Explorer, or Firefox. She reads the “new features”
list and has learned of the “private browsing modes” for these browsers—modes
that will (among other things) not allow cookies to be stored or will always
scrub cookies upon exit. While such application-level control will improve Alice’s
privacy, it is fundamentally limited since the websites Alice visits will still be
able to record, recognize, and profile Alice’s originating IP address. Anonymity
solutions, like Tor [7], can help improve Alice’s anonymity but will require Alice
to install a separate application package, are less usable than simply clicking a
control within the browser like “Private Browsing” or “Reset Safari,” may be
too heavyweight for all applications, and may bring with them their own risks
of surveillance by P2P exit nodes [18].

In contrast, AHP enlists ISPs to assist in improving the privacy of users like
Alice by scrubbing their outgoing IP addresses. In order for AHP to have any
hope of being deployed in practice, AHP must respect the forensic requirements
and existing practices of ISPs—including the need to maintain identity infor-
mation in compliance with legislative requirements or corporate policies. Thus,
AHP strikes a balance: increased privacy in the common case when the average
Internet user is interacting with webservers, but not so much privacy as to force
ISPs into an awkward state of non-compliance. As we show later, users can still
easily layer Tor (and other applications) on top of AHP. We elaborate on these
specific goals, requirements, and assumptions below.

System requirements and goals. Informally, we have five requirements and
goals: (1) hide the network-layer identity (IP address) of the two parties involved
in a network flow from an outsider; (2) prevent the correlation of any two net-
work flows between the same two parties by an outsider through network or
transport-layer information; (3) for legal compliance and compatibility with ex-
isting practices, enable high-speed, long-term forensic attributability of packets

146 B. Raghavan et al.

without onerous storage or bandwidth requirements on the part of the ISP; (4)
ensure that AHP is compatible with popular network applications and that it
composes well with existing anonymity systems (such as Tor); (5) require no
modifications to the client applications participating in traditional client-server
communications.

Trust. We begin with the assumption that we trust the ISP, as users already
do today; i.e., we do not introduce new trust assumptions so users are no worse
off than they are today2. AHP is a protocol implemented in the network by a
trusted provider. The network provider can log all network traffic, and moreover,
all address mappings, thereby enabling it to revoke client-side address privacy
for network administration. Indeed, once we place trust in the ISP to perform
address hiding, there is little incentive for it to not hide its customers’ addresses
to outsiders. Any system that does not concede this ability to network providers
is unlikely to be deployed.

Types of attackers. Beyond the trust relationship required with the service
provider, our threat model is straightforward. We divide the path a flow traverses
into three components, with the end two pieces of the path within the client’s
and the server’s network provider domains respectively. We consider two types of
attacker: the insider and the outsider. The insider is an attacker within a trusted
network provider’s domain that is capable of sniffing and/or injecting packets;
for example, an insider (from the perspective of a client) might be a server with
which it is communicating or a neighboring host that can sniff packets, provided
that the server or host are within the same ISP’s network. An outsider is a
transit provider between the client and server networks.

Space- and time-efficient forensic support. To comply with deployment
constraints, we wish to enable an ISP to recover the true source of any packet
that was hidden by one of its AHP gateways, thereby ensuring that all pack-
ets are attributable to their sender. A naive solution for attributable address
hiding would require the storage of an ever-growing table of source-to-public-
flow-identifier mappings on the order of several gigabytes per day per router for
a large ISP. Our aim is to support attribution regardless of how far in the past
the packet was sent with minimal state stored at the ISP.

Compatibility and composability. ISPs are unlikely to deploy any system
that breaks popular network applications in the process; backward-compatibility
is crucial. In Appendix A we present a case study of several common user
applications—including Firefox, Tor, and BitTorrent—while using our proto-
type of AHP. AHP provides network-layer IP address privacy. However, some
users will wish to use anonymity systems, which are more heavyweight but also
have broader aims and stronger guarantees. We believe it is essential that AHP
not decrease the options a user has to protect her privacy, and thus, we design
AHP to be composable with existing systems such as Tor.

2 Those users who do not trust their ISP can and do use anonymity systems such as
Tor; we aim for defense in depth, so such users can continue using Tor.

Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default 147

Non-goals. While AHP is designed to improve users’ privacy, we do not aim to
provide “anonymity” in the usual sense. More generally, we enumerate several
non-goals that inform our design—that is, goals that we do not seek to achieve:
(1) to prevent insider attacks, regardless of outsider cooperation; (2) to prevent
attacks that involve application-layer payloads; (3) to prevent timing or other
side-channel attacks; (4) to provide data privacy or authenticity; (5) to provide
privacy for dedicated server hosts; (6) to support per-flow privacy for non-TCP
transport protocols.

Summary. This specific collection of non-goals, as well as the earlier goals,
were chosen to be supportive of the example applications such as the one we
mentioned earlier, as well as the needs of ISPs. As Dingledine and Mathewson [6]
noted, users would benefit greatly if their ISPs chose to proactively assist in
improving users’ privacy, and our goal is to instantiate their vision. Power users
can, however, continue to layer stronger mechanisms like Tor on top of AHP.

3 Measurement Study: Your ISP Is Crowded

Privacy researchers have long held that identity privacy can only be provided by
hiding within a “crowd” of other users [26]. When an adversary cannot distin-
guish between the members of the crowd, each member of the crowd’s privacy is
preserved. The larger the crowd, the better the privacy. In the past, researchers
have designed systems to artificially induce a crowd of privacy-seeking users, typ-
ically through an overlay network. Then, by measuring the size and properties of
the induced crowd, we can ask “how much privacy does the induced crowd pro-
vide?” This approach has yielded many fruitful results in the anonymity research
literature.

In this paper, we learn from the crowd-based approach and apply it to the
new research area at hand. Specifically, since we aim to raise the privacy bar
across the board for users of an ISP, we ask: “how much privacy can we provide
by default?” The answer to this question comes in two parts. First, we must
determine whether an appropriate crowd exists in the Internet today. Second,
we must design a system to leverage this crowd appropriately. In this section we
address the first part, and show that ISPs are already crowds of sufficient
size to provide privacy given an appropriate system design. Our key observation
is that each IP address prefix provides a “crowd” of addresses within which we
can provide identity privacy3. Thus, the requirement is simply that the system
multiplex the hosts within that address space across the available addresses in
a manner that is opaque to an outside party.
3 The Internet’s routing system today is structured hierarchically, with so-called “Tier-

1” ISPs at the top of the hierarchy—such ISPs have complete routing information
for all valid destinations in the Internet. Other ISPs and networks attach to these
Tier-1 ISPs to perform routing. Each ISP or network is assigned one or more IP
address blocks or “prefixes” within which it can assign public addresses for its hosts.
These prefixes are publicly announced to other networks via the Border Gateway
Protocol (BGP).

148 B. Raghavan et al.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

N
um

be
r

of
 p

re
fix

es

Prefix size (# of IPs)

(a) Prefix size distribution for ASes in
the RouteViews BGP feed

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

N
um

be
r

of
 p

re
fix

es

Prefix size (# of IPs)

SBC/AT&T
Comcast
Verizon

Road Runner
EarthLink

Cox

(b) Prefix size distribution for 6 largest
ISPs

Fig. 1. Address block sizes in the Internet

Since we wish to understand how much potential for privacy already exists in
today’s Internet, we first need to look at where the potential crowd comes from.
The Internet consists of numerous Autonomous Systems (ASes)—each of which
is typically an ISP or large organization—that route traffic to each other. An
AS contains thousands or millions of hosts, each of which is typically assigned
an IP address. Although routing protocols operate on the level of ASes, packet
forwarding operates on the level of IP addresses—each packet must name both
a source and a destination IP. As such, each packet identifies a host, which is
a crowd of size one. What if we view each AS or ISP as a crowd within which
outside parties cannot peek? Each ISP controls some portion of the Internet’s ad-
dress space; an ISP can provide the required opaqueness by obfuscating packets’
source addresses as they traverse the network boundary to the outside Internet.

Thus, our challenge is to understand the size of crowds that are possible when
hiding hosts within existing ISP address spaces. To this end, we examine the
BGP routing advertisements as seen by RouteViews on Sept. 7, 2007 [19]4. As
a baseline, Figure 1(a) shows the size distribution of all advertised IP prefixes;
we can see quite clearly that many prefixes are small—on the order of a few
thousand addresses at most. The most prevalent prefix size advertised is /24,
few prefixes that are advertised are smaller than that. Thus it appears that
prefixes as advertised today provide insufficiently large crowd size.

However, the deployment of AHP is of most value in larger ISPs, within
which there is both more room to hide and perhaps more commercial incentive
for deployment. To explore such a scenario, we examine in Figure 1(b) the sizes
of address space advertisements for the six largest consumer ISPs—SBC/AT&T,
Comcast, Verizon, Road Runner, EarthLink, and Cox5. The results show that
many small prefixes are being advertised even in these large ISPs. However,
4 The specific date has no special significance and is simply a snapshot of route ad-

vertisements taken at the time of our analysis.
5 We isolate the advertisements for these ISPs by searching the text identifiers of the

IANA AS number allocations for these ISPs’ common names.

Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default 149

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 1e+12

P
ro

ba
bi

lit
y

Aggregate size (# of IPs)

SBC/AT&T
Comcast
Verizon

Road Runner
EarthLink

Cox

Fig. 2. Size of crowds if ISPs were to aggregate based upon physical location; CDFs
of the size of the aggregated crowds (log scale) based upon BGP advertisements from
RouteViews

upon aggregation, many of these small prefixes are subsumed. ISPs have an
interest in advertising larger address blocks, if for no other reason than to reduce
management overhead and reduce routing table sizes. With small prefixes comes
greater routing flexibility. These two factors are in tension. However, prefixes can
be reasonably aggregated together if they originate from the same geographic
region; this is aided by the network structure of large ISPs, which have points
of presence (PoPs) in most major cities.

To discover how much potential there is for such geographic aggregation,
we used the Oasis [9] and NetGeo [20] geolocation services to map all the IP
prefixes of the six ISPs above and aggregated them based upon location. Many
IP prefixes map to the same location, likely indicating that they originate from
the same PoP. This approach is not perfect, as the services contain necessarily
incomplete and inaccurate data; about 15% of the prefixes were unmappable, and
we omit them since we are interested in the potential for large aggregates, not
small aggregates. Thus, our results represent a lower bound on the aggregation
possible within the studied ISPs. Figure 2 shows CDFs of the aggregated address
spaces with prefixes aggregated if they mapped to the same physical location
irrespective of numerical proximity. We immediately see that address spaces that
are geographically close have great potential for aggregation on those grounds.
While in the scope of the Internet’s address space a million addresses is relatively
small, such a space is likely ample for hiding6. For example, 50% of Road Runner
crowds (that is, 50% of prefixes) would contain over ten million IPs if aggregated
by location; 50% of Earthlink crowds would contain over 100 million IPs.

6 We leave open the question of when and where from an ISP traffic engineering per-
spective it is appropriate to actually perform such aggregation among geographically-
proximate IP prefixes.

150 B. Raghavan et al.

Since address hiding is a fundamentally different service than mix-net style
anonymity systems, direct comparisons of the sizes of IP prefixes to that of
anonymity sets is not possible. However, it is possible to look at the raw numbers
for other systems, to check that the values are in the same range. Tor is estimated
to have on the order of 200,000 active users. Architecturally, each of these users
appears the same from the perspective of a destination host. To consider a
parallel concept—what level of identifiability in the real world is acceptable—
we can look at the Census. The U.S. Census Bureau has long had policies to
enable meaningful extraction of demographic data from the decennial census
while still maintain a level of privacy for people in the queried data sets. As of last
year, different microdata queries with the Census Bureau were limited to return
data for population groups of at least 10,000 and, for another dataset, 100,000
individuals. Thus we are comforted that ISPs can easily advertise 1,000,000
address IP prefixes within which users can hide.

4 A Cryptographic Approach to ISP Crowds

AHP’s design is realized in two parts, one at the ISP gateway, and an optional
component on the client. An ISP can unilaterally deploy AHP-capable gate-
ways, thereby enabling its clients to immediately benefit from deployment. Im-
portantly, with AHP, ISPs can provide the benefit of client-side privacy to their
users even in the absence of any explicit client support for it. The client-side
component of AHP is required only to support peer-to-peer and server appli-
cations; it does not affect application-level protocols, and thus supports both
legacy clients and servers.

We wish to protect users from having their applications inadvertently reveal
their identity. Thus, AHP must be transparent to ordinary client-server appli-
cations and must maintain privacy. Some user applications, such as peer-to-peer
programs, require the ability to support both outgoing and incoming connec-
tions. Because incoming connections generally require an externally routable IP
address, AHP allows applications to request a temporary, but fixed inbound
identifier at which external hosts can contact them. We denote one-time only
addresses as hidden addresses and denote sticky addresses to be those that can
be reached by many parties from the outside. Internal to the ISP, we assign each
host two addresses, a default hidden one with which to communicate with full
privacy, and a sticky one that provides a stable external identifier that can be
contacted by multiple hosts via multiple flows. In our design, applications must
explicitly request use of the sticky address.

4.1 Design Overview

While there are numerous challenges that we faced in the design of AHP—such as
the need to handle multiple ingress and egress points and the need to minimize
the amount of data stored for forensic purposes—the high-level design of the
AHP gateway is both simple and efficient. Each outgoing packet’s IP address

Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default 151

Table 1. A summary of AHP design components and mechanisms

Goal Mechanism Description §
Secure
default

hidden and
sticky

Each host is assigned two addresses; the default is strictly-
hidden (hidden), the other partially-exposed (sticky)

4.2

Address
hiding

Tweakable
block cipher

Efficient permutation of local IP/port into public IP/port given
private key and public destination IP/port

4.3

Long-lived
flow support

Collision
detection

Prevents two flows of different epochs from mapping to the
same public IP/port

4.3

Birthday
attack
prevention

Key rotation
AHP gateway changes its block cipher key per epoch to prevent
repeat flow transformations

4.3

Forensic
support

Time-based
keys

Epoch keys selected during key rotation are derived from a
master key based on the time, and can be regenerated later

4.3

Inbound flow
support

sticky mode
Enables hosts behind an AHP gateway to request semi-
permanent public addresses to accept inbound connections

4.4

Backward
compatibility

expose
wrapper

Wraps unmodified applications to enable their use of sticky
mode to allow inbound connections from remote hosts

4.4

(host portion only)/port is encrypted. Encryption on short values, such as 16
bits of an address, is non-trivial; these and other challenges lead us to selecting
a short-domain tweakable block cipher. The key used in this process is rotated
over time, mitigating birthday attacks and ensuring that the permutation can
be reproduced at a later time—this is crucial not only for forensic support, but
to support multiple ingress and egress routers within an ISP.

Most large ISPs have many routers through which packets can enter and leave
the network. Due to asymmetry of routes, a flow’s outbound packets may traverse
a different router than its inbound packets. A non-keyed, NAT-like solution would
require constant, real-time replication of flow-table state between all participat-
ing routers in the ISP—clearly an onerous process. While we omit a full concept
of multi-ingress/egress support using AHP, our approach is straightforward—all
participating routers simply use the same keyed permutation and exchange small
amounts of information every few hours to keep their state in sync.

When presented with packets from a hidden address, the gateway performs a
full hiding operation, which includes transforming the IP/port into a different
public IP/port for every distinct destination. However, when presented with
packets from a sticky address, the gateway performs the transformation solely
based upon the internal IP/port pair and not the destination IP/port pair, so
as to maintain a consistent public IP/port to which remote hosts can connect
and communicate7. Next we delve deeper into the details of our implementation,
both abstractly and as it pertains to our software prototype. Table 1 provides a
summary of several AHP design components and mechanisms described below,
and hints at some of the challenges that our design overcomes.
7 We must note, however, that providing sticky addresses is not without consequences.

Any system that provides pseudo-permanent identifiers like our sticky addresses may
inadvertently reveal at the client-side the destination of packets through correlated
inbound flows. Most modern NATs enable hosts to register ports to be forwarded,
but a NAT’s goal is not to ensure identity privacy. In our context, to fully understand
the impact sticky addresses and peer to peer applications when used with AHP, we
hope to study a real deployment of AHP within a small ISP.

152 B. Raghavan et al.

4.2 Address Partitioning

To preserve privilege separation, all hosts within the local routing domain receive
two addresses for routing within the ISP: a hidden address and a sticky address.
A hidden address can be converted into a sticky address and vice versa by flip-
ping the high order bit of a /8 address. hidden addresses reside in 10.128.0.0/9
and sticky addresses reside in 10.0.0.0/98. The hidden address is assigned to
the default network interface on the user’s host, thereby ensuring that network
communication is private by default. The ISP will scramble hidden and sticky
addresses when communicating with hosts outside of the ISP.

4.3 Handling Traditional Client Applications: hidden Mode

In hidden mode, when using client-server applications, there are no perceptible
changes required by the client. Since each host’s hidden address is its default, all
programs that do not explicitly specify an interface will bind to it and use it for
outgoing TCP connection requests. sticky addresses are not even needed for such
applications, so no changes need to be made on the host. Thus AHP requires no
modifications to web applications like Firefox and Safari or even Tor clients.

Address hiding. Similar to a NAT, we aim to translate addresses. However,
our fundamental design constraint is that we provide forensic support. Given the
large storage requirements to store a NAT’s flow tables over a long history, the
challenge we face is to translate hidden addresses deterministically by permuting
the hidden address and the TCP source port. To improve privacy and ensure
that no two flows from the same source can be correlated, we must base the
permutation not just on a private key, but on the destination IP and port.

We find that the primitive that meets this challenge is the tweakable
block cipher [17]. Given a public “tweak” t and a private key k (known
only to the gateway router), we can instantiate a tweakable block cipher
Ek,t(M) = Fk(M ⊕H(t))⊕H(t), where F is an underlying block cipher and H
is a cryptographic hash function. In our prototype, we instantiate the block ci-
pher F using 20-round RC5 with a 16-bit word length (producing a 32-bit block
length) and instantiate H with SHA-19. In our discussion, we restrict the space
of hidden addresses to 10.128.0.0/16; we also discuss address spaces and hiding
sets in Appendix B. Used in this manner, E(·) yields a secure PRP keyed on the
private key k that is held by the AHP gateway and by the public data t that—in
the manner of tweakable block ciphers—selects the particular PRP family that
the key operates with. The operation amounts to a single-block encryption, and

8 In our implementation, we assume that all local addresses are assigned from within
the 10.0.0.0/8 address block, which is officially reserved as a block of private-network
IP addresses. Note that this assumption holds even when the externally advertised
prefix is small, e.g., a /24 or smaller.

9 Cryptanalysis has proved effective against lower-round variants of RC5; in addition,
any block cipher with only a 32-bit block width is potentially vulnerable to birthday
attacks. We mitigate these potential issues via key rotation, as we discuss later.

Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default 153

Src PortSrc IP

Dst IP Dst Port

F

F

H

Src Port’Src IP’

c + n + 1

k

⊕

⊕

t

Fig. 3. The concrete instantiation of
AHP. The final result, (Src IP’, Src Port’)
replaces the original source IP and Port
pair.

Table 2. Summary of findings from trace-
based simulation of flow collisions

Quantity Value

Duration 30000s
Total number of flows 8960585
Largest epoch current flowset 227489
Largest epoch old flowset 3062
Total number of collisions 120511
Total number of old-flow collisions 582

requires no authentication (say, with an appended MAC) because tampering of
the packet header will necessarily cause misrouting of the packet by the routing
system. We apply the tweakable block cipher E(·) as shown in Figure 3: we refer
to this as the Hide operation. We store the host portion of the hidden address in
the high-order two bytes of a four-byte block b, and store the TCP source port
in the low-order two bytes. We compute the tweak t using the same approach,
except that we use the entire destination address and port, yielding a six-byte
tweak. We apply Ek,t(b) and replace host portion of the hidden address with the
two high-order bytes of the result and similarly replace the port with the two
low-order bytes. Finally, we replace the network portion of the hidden address
with that of the public IP prefix, and forward the packet.

While our description suffices to explain how ordinary data packets are sent,
there are several issues that arise with this basic design. First, to ensure long-
term security from birthday attacks, the gateway must rotate keys. Second,
since each permutation (created by E(·)) is independent, collisions in the public
IP/port space will occur between flows hidden with different keys. As we describe
next, these two issues must be resolved simultaneously. A separate issue is that
we must be able to handle multiple ingress and egress points; handling such
ingress and egress points is technically straightforward given our solutions to
the above two challenges, which is not surpising since we iterated on this goal
in combination with the first two issues mentioned above. We do not detail our
somewhat involved design for handling multiple ingress/egress points, however
it may prove to be a useful extension for a real deployment in a large ISP.

Overcoming challenges of long-lived flows. Key rotation presents a
fundamental challenge: since no bits introduced by the AHP gateway can
persist solely in packet state over the lifetime of a flow, there is no way to tag
packets within a flow with their time of birth (which would indicate which key
to use for the flow). Instead, we must associate a flow with a key without packet
state or per-flow state at the gateway. We achieve this by maintaining sets
that associate packets with the keys that are used for their translation—each key

154 B. Raghavan et al.

corresponds to its epoch. We maintain a set of sets, (S1, . . . , Sn) each associated
with a counter designating its epoch number, (c, . . . , c + n − 1) for some value
c10. The last element of each of these sets is (Sn, c + n− 1). When a TCP SYN
packet arrives, our goal is to ensure that the resulting public IP/port pair are
not already in use by another flow. To this end, we perform the Hide operation
on the outgoing packet and search for the (Src IP’, Src Port’, Dst IP, Dst Port)
in the sets beginning with S1 proceeding to Sn. We use the corresponding key
to translate the flow and stop the search at the first matching set. If there is no
match, we insert it into the “current” set. If there is a match, we send a TCP RST
to the client, forcing it to attempt to reconnect. While this solution is somewhat
complex, most network applications are designed to be robust to temporary
outages; we evaluate the frequency of matches in the next section. When a TCP
RST or TCP FIN packet arrives, we perform the same search for the matching
set, but perform a set remove operation of the flow. Maintaining sets of each
key’s associated flows requires flow state within each epoch; in Section 5 we
study the memory requirements of these flow sets.

Avoiding birthday attacks. To ensure that two flows with the same flow ID
do not translate the same twice, we must rotate keys at the AHP gateway over
a fixed time period—an epoch. The lifetime of each key is determined based on
the privacy guarantees we wish to provide. For each existing set Si, we create
a parallel set S′

i and, for some constant time window (say, five minutes), we
insert any active flows that match Si into S′

i. After the time window expires,
we shift all counters and sets down by one, and replace them each with their
parallel sets that only contain currently active flows. We add all flows present in
the oldest set S1 into a per-flow table of very long-lived flows, indexed by their
destination IP/port. Finally, we clear the newest set and increment its counter,
thereby changing the current key.

Epoch key selection. By deriving epoch keys from a master key and the
current epoch counter, we avoid having to store all epoch keys. Thus, if needed
for forensics, we can easily regenerate the key for any particular epoch. The
current key, kc+n−1, is derived from the master key k using AES as a PRF,
kc+n−1 ← Fk(c+n−1). (c increments every epoch; n is the number of sets used
for collision detection.)

Multiple ingress and egress points. AHP’s design extension to support
multiple ingress/egress points ensures that large ISPs that have asymmetric
routes can still use AHP. We can ensure that each router increments its epoch
counter at the same time via ordinary ntp time synchronization. At the end of
each epoch, all routers responsible for a given IP prefix merge their parallel sets
S′

i. This ensures that the flow state at these routers is synchronized, thereby
avoiding collisions upon flow arrival.

10 Here we present the conceptual model; in practice, set of sets is circular, and only
requires the low value, c, rather than the entire set of counters.

Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default 155

4.4 Handling Peer-to-Peer Applications: sticky Mode

Moving beyond client-only applications poses a new challenge—enabling appli-
cations to reserve public IP/port pairs to receive incoming connections as is
necessary to support P2P applications like BitTorrent. Since the available ad-
dress and port space must be shared with that of hidden mode connections, we
must change our mechanism to ensure that the two modes operate harmoniously.

As we have discussed, when in sticky mode, two fundamental changes in be-
havior occur. First, since sticky mode entails a publicly addressable IP/port pair,
the external address for a host does not change based upon the remote IP or
port. Second, for the gateway to know to reserve an IP/port pair, the user ap-
plication must make an explicit request; we provide a wrapper that makes these
requests on behalf of unmodified client applications. Since an explicit mapping
must be made, the gateway behaves like a NAT. However, to avoid having to
store the mappings for forensics, we select the mappings in a manner similar to
in hidden mode.

sticky wrapper library. Unlike ordinary client applications, peer-to-peer appli-
cations require inbound connection support. Thus, we provide a wrapper script,
expose, that uses library interposition in Unix (via LD_PRELOAD) to intercept
specific system calls that require special handling in sticky mode11. Changing
the gateway to support reservation of sticky addresses is straightforward. The
primary cause for concern is that sticky addresses will collide with hidden ad-
dresses. To avoid this, we add a smaller, parallel group of flow sets to pre-test
incoming packets: any that match the sticky sets are translated in the same man-
ner as hidden addresses, except that the gateway uses a constant (0) as the tweak
value, and in doing so ensures that the sticky address maps to the same sticky
address for all incoming flows, regardless of origin IP or port.
11 Specifically, bind() and getsockname() both require modification. With bind(), our

main task is to explicitly select the sticky interface on the host in the sin addr field.
However, before returning to the application from the library, but after the local
bind() call, we make a request via a single UDP packet to the gateway to reserve
a sticky IP/port pair. In the UDP request is the local IP and port assigned by the
real bind() call, as retrieved via the real getsockname() call. If the library does not
receive an affirmative response containing the socket’s sticky address and port within
a timeout (currently 500ms), the library returns -1 and sets errno to EADDRINUSE. If
the library receives an affirmative response from the gateway, it returns 0. To ensure
that peer to peer applications that wish to announce their presence can do so, we
intercept getsockname(). If the gateway allowed the allocation of a sticky address,
then we possess the socket’s externally-visible IP address/port combination, and
return it to the application. When the application calls listen(), we acknowledge
the setup of the sticky address in a second UDP packet to the gateway; the packet
serves a similar purpose to a DHCP lease, and must be renewed periodically (we
do not implement periodic renewal; how often to renew is a matter of policy) to
maintain the public address. In addition, we add the socket to a table of active
server sockets. Finally, when the application calls accept(), we return the result of
the real accept() call, but also add the newly returned socket to the list of sockets
with the given sticky address.

156 B. Raghavan et al.

5 Analysis

We have already analyzed several aspects of AHP’s security in-line in Section 4.
In addition we study specific aspects of AHP’s design—including collision like-
lihood and forwarding performance—that warrant further exploration. We con-
sider the length of the key rotation interval in Appendix C.

5.1 Forwarding Performance

Any in-network system such as AHP must be capable of high line rates. While
we expect that a real deployment would involve a hardware implementation of
the AHP gateway, we measured our software prototype as an indication of the
efficiency of the design itself. Our prototype of AHP runs as a daemon process
under Linux 2.6 and handles all AHP gateway functionality. The prototype cap-
tures packets using superuser-specified IPTables rules that divert packets to the
daemon via userspace queueing. Packets are then translated appropriately and
transmitted via a raw socket. The prototype supports configuration of the size
of the IP prefix in question, of its memory usage, and of its key rotation interval.

We forwarded data via an ordinary TCP socket from a host to itself over the
system’s loopback network interface, to test the performance of the core of the
algorithm. We perform the test on a 1-Ghz Pentium M laptop running Linux
2.6.22. We find, not surprisingly, that other packet handling costs are greater
than the cost of AHP’s processing, and thus, as the packet size increases, so does
the forwarding rate. At its peak, the system forwards at 408 Mbps. We find that
although our AHP gateway is somewhat slower than native Linux forwarding,
which peaks at 506 Mbps on the same hardware, the precise forwarding rates
themselves are not of primary importance, since the overhead of AHP processing
is a fixed per-packet cost that is small relative to other overheads.

5.2 Collisions

In the operation of an AHP gateway, “collisions” can occur wherein two distinct
local IP/port tuples going to different IP/port tuples are mapped to the same
external IP/port tuple. Since tweakable block ciphers represent a family of
permutations parametrized by both the tweak and the key, key rotation yields
a different, specific permutation that may collide with mappings under past
or future keys. Here, the collision probability is governed not by the birthday
paradox, as arriving flows with the same key cannot collide with one another.
We compute the likelihood of collision as follows: the collision of a newly arriving
flow is related only to the number of flows that exist in the flow sets for old
keys. Thus, by selecting an appropriate key rotation interval—one that balances
privacy and collisions—the problem can be mitigated. A recent study by Lee
and Brownlee [14] indicates that only about 10% of flows last over ten seconds,
and the fraction that lasts for 1,000 seconds is vanishingly small—less than
0.1%. Assuming a key rotation period of 1,000 seconds, which is well under that
which is needed for maintaining key rotation privacy (indeed, with a 1,000-second

Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default 157

key-rotation period, the probability of a birthday collision of the local port on a
host is less than 0.003), less than 0.1% of flows will remain in flow sets for old
keys. Assuming these flows all remain for a long time (conservatively, one day),
and the gateway services ten million flows per day, that yields, conservatively,
10,000 old flows. Given a /16 IP prefix, the space of possible address/port pairs
is roughly 232, and thus the probability that any single flow arrival will collide
with an old flow is 2.3× 10−6, which we believe to be small enough for practical
purposes—about one out of every half-million flows will collide.

To rest our analysis upon firmer ground, we perform a trace-based simulation
of collision rates. Our goal is to better understand the collision probability that
governs the rate of TCP RSTs being sent to hosts. We use a real day-long
cross-Pacific trace from March 3, 2006 of a 100-Mbps backbone link provided by
the Japanese WIDE project [33]. A summary of our results is shown in Table 2.
While the sources and destinations of the packets in the trace are not all from one
particular ISP or IP prefix, we use the trace to get a better understanding of not
only how many flows occur over the one-day period, but also how many persist
long enough that they would have caused collisions if they had been hidden
by an AHP gateway. We begin our trace-based simulation by preprocessing the
input trace: since we have 32-bits of IP address and 16-bits of port for each
packet source by hashing them together to produce a single 32-bit identifier for
them. (This preprocessing step may cause extra collisions that would not occur
in practice, which will mean our results are on the safe-side.) After this step,
we apply our ordinary AHP address hiding to the resulting packet headers and
store them appropriately in their flow sets. We rotate keys every 300 seconds
and use a 30-second grace period before rotation; we did not carefully choose
these durations, but found the results were not sensitive to them. We use only
two sets—a current flow set and a recent flow set. We keep an exact old-flow set
for those flows that last more than two rotations (600 seconds).

What we find, as shown in Table 2, is that since the vast majority of flows
are short-lived, the tables for older flows do not gather many flows, and remain
small over time. As a result, the collision rate (and thus, the RST rate) is low.
However, we were initially puzzled that the collision rate was even as high as
it was. Upon careful examination of the packet traces, we found that the vast
majority of the collisions in our count appear to be due to TCP SYN flood
attacks—if such a packet is unlucky enough to collide once, then each duplicate
SYN in the flood similarly collides12. Legitimate senders, on the other hand, do
not send many duplicate SYNs for each flow.

6 Related Work

AHP belongs to a different class of privacy-preserving network protocols, but
resembles prior protocols designed to provide anonymity. We note some of the
12 We did not exactly quantify the impact of SYN floods on the collision rate, since there

were several cases in which it was ambiguous whether a series of packets constituted
an attack.

158 B. Raghavan et al.

key works here, but defer to Danezis and Diaz’s detailed survey of the extensive
research in anonymity [4]. Prior work can be broadly classified as belonging ei-
ther to anonymity research or new Internet architectures. Since Chaum’s seminal
work, many researchers have developed re-routing based anonymity systems, in-
cluding Crowds [26], Freedom [34], Tor [7], Tarzan [10], GAP/GNUnet [2], Herbi-
vore [30], P5 [28], Hordes [16], Slicing [13], and JAP [12]. Over time, researchers
have developed attacks of ever-increasing sophistication, involving techniques
such as timing analysis [15,27,29] and broad spectrum traffic analysis [22,25], and
have found weaknesses in systems designed to enable forensic support [5]. From a
design perspective, AHP bears closest resemblance to CPP, a system that hierar-
chically encrypts IPv6 addresses to obtain privacy [32], and Anonymizer [1] and
Proxify [24], which provide commercial application-level anonymization prox-
ying. However, the design goals of AHP are different; critically, AHP is eas-
ily composable with other anonymity systems (including Anonymizer.com and
Proxify) and operates at the network layer. As a result of our different goals,
the architecture AHP differs significantly from that of either of these commer-
cial services. While not designed explicitly with anonymity or address hiding in
mind, a separate thread of research in the networking community lends itself to
address hiding. In particular, four projects—IPnl [8], ROFL [3], HIP [21], and
i3 [31]—describe fundamentally new Internet architectures that could accom-
modate additions to provide AHP-like functionality.

7 Conclusions

Today’s Internet does not adequately protect the privacy of users. Indeed, even
with strong end-to-end cryptographic mechanisms like SSL and the emergence
of privacy controls within applications, such as the private browsing modes
of Safari and Firefox, the Internet architecture—almost by definition—violates
the privacy of Internet users by assigning unique identifiers (IP addresses) to
users’ machines. Dingledine and Mathewson’s [6] observation—that a little bit of
anonymity for everyone by default is valuable—captures the essence of the goal in
this research, while also striving for a system that is is both incrementally deploy-
able and appropriately incentivized for those responsible for deployment: ISPs.
If our approach were adopted, the privacy of network communications would not
be decreased from that to today’s, even if ISPs chose to invoke AHP’s foren-
sic capabilities—and indeed users could layer Tor or other stronger mechanisms
on top of AHP. In addition, we argue that the average Internet user’s privacy
would be improved by AHP. Our results show that today’s ISPs can be treated
as a crowd to provide users identity privacy. Our prototype shows that AHP in-
duces negligible overhead. In addition to benchmarks, we ran ordinary Internet
applications as case studies—Firefox, BitTorrent, and Tor—on top of AHP and
anecdotally observed no negative impact. We believe that AHP could be inte-
grated into existing ISP infrastructures, and is appropriately incentivized with
forensic capabilities for regulatory and policy compliance, high performance, and
the ability to provide address hiding as a service to one’s customers.

Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default 159

References

1. Anonymizer, http://www.anonymizer.com/
2. Bennett, K., Grothoff, C.: Gap – practical anonymous networking. In: Proceedings

of Workshop on Privacy Enhancing Technologies (2003)
3. Caesar, M., Condie, T., Kannan, J., Lakshminarayanan, K., Stoica, I.: ROFL:

routing on flat labels. In: Proceedings of ACM SIGCOMM (2006)
4. Danezis, G., Diaz, C.: A survey of anonymous communication channels. Technical

Report MSR-TR-2008-35, Microsoft Research (January 2008)
5. Danezis, G., Sassaman, L.: How to bypass two anonymity revocation schemes. In:

Proceedings of the Privacy Enhancing Technologies Symposium (2008)
6. Dingledine, R., Mathewson, N.: Anonymity loves company: Usability and the net-

work effect. In: Proceedings of WEIS (2006)
7. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion

router. In: Proceedings of the USENIX Security Symposium (2004)
8. Francis, P., Gummadi, R.: IPNL: A nat-extended internet architecture. In: Pro-

ceedings of ACM SIGCOMM (2001)
9. Freedman, M.J., Lakshminarayanan, K., Mazières, D.: OASIS: Anycast for any

service. In: Proceedings of USENIX/ACM NSDI (2006)
10. Freedman, M.J., Morris, R.: Tarzan: a peer-to-peer anonymizing network layer. In:

Proceedings of ACM CCS (2002)
11. Granboulan, L., Pornin, T.: Perfect block ciphers with small blocks. In: Biryukov,

A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 452–465. Springer, Heidelberg (2007)
12. Java Anon Proxy, http://anon.inf.tu-dresden.de/
13. Katti, S., Cohen, J., Katabi, D.: Information slicing: Anonymity using unreliable

overlays. In: Proceedings of USENIX NSDI (2007)
14. Lee, D., Brownlee, N.: Passive measurement of one-way and two-way flow lifetimes.

SIGCOMM Comput. Commun. Rev. 37(3) (2007)
15. Levine, B.N., Reiter, M.K., Wang, C., Wright, M.K.: Timing attacks in low-latency

mix-based systems. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 251–265.
Springer, Heidelberg (2004)

16. Levine, B.N., Shields, C.: Hordes — A Multicast Based Protocol for Anonymity.
Journal of Computer Security 10(3) (2002)

17. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, p. 31. Springer, Heidelberg (2002)

18. McCoy, D., Bauer, K., Grunwald, D., Kohno, T., Sicker, D.: Shining light in dark
places: Understanding the Tor network. In: Privacy Enhancing Technologies Sym-
posium (July 2008)

19. Meyer, D.: Route Views Project. http://antc.uoregon.edu/route-views
20. Moore, D., Periakaruppan, R., Donohoe, J., Claffy, K.: Where in the world is

netgeo. caida.org? In: Proceedings of INET (2000)
21. Moskowitz, R.: Host identity payload. Internet Draft, IETF (Feburary 2001),

draft-moskowitz-hip-arch-02.txt (expired)
22. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of tor. In: Proceedings of the

IEEE Symposium on Security and Privacy, pp. 183–195 (2005)
23. Privoxy, http://www.privoxy.org/
24. Proxify, http://proxify.com/
25. Raymond, J.-F.: Traffic analysis: Protocols, attacks, design issues and open prob-

lems. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS,
vol. 2009, pp. 10–29. Springer, Heidelberg (2001)

http://www.anonymizer.com/
http://anon.inf.tu-dresden.de/
http://antc.uoregon.edu/route-views
draft-moskowitz-hip-arch-02.txt
http://www.privoxy.org/
http://proxify.com/

160 B. Raghavan et al.

26. Reiter, M.K., Rubin, A.D.: Anonymous web transactions with crowds. Commun.
ACM 42(2), 32–48 (1999)

27. Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity
systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
pp. 116–131. Springer, Heidelberg (2003)

28. Sherwood, R., Bhattacharjee, B.: P5: A protocol for scalable anonymous commu-
nication. In: Proceedings of IEEE Symposium on Security and Privacy (2002)

29. Shmatikov, V., Wang, M.-H.: Timing analysis in low-latency mix networks: Attacks
and defenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006.
LNCS, vol. 4189, pp. 18–33. Springer, Heidelberg (2006)

30. Sirer, E.G., Goel, S., Robson, M., Engin, D.: Eluding carnivores: file sharing with
strong anonymity. In: Proceedings of the ACM SIGOPS European workshop (2004)

31. Stoica, I., Adkins, D., Zhuang, S., Shenker, S., Surana, S.: Internet indirection
infrastructure. In: Proceedings of ACM SIGCOMM (2002)

32. Trostle, J., Way, B., Matsuoka, H., Tariq, M.M.B., Kempf, J., Kawahara, T., Jain,
R.: Cryptographically protected prefixes for location privacy in ipv6. In: Proceed-
ings of the Privacy Enhancing Technologies Symposium (2004)

33. WIDE Project, http://www.wide.ad.jp/
34. Zero Knowledge Systems Freedom Network, http://www.zks.net/

A Case Studies

In this section, we briefly discuss the use of AHP with common applications,
and in post-hoc forensic analysis. To provide anecdotal evidence that use of
AHP presents no user-perceived changes in application behavior or performance
degradation, one of the authors of this paper spent an afternoon using several
ordinary applications that were on a network segment behind our prototype
AHP gateway. We used several typical network applications—Mozilla Firefox,
BitTorrent, SSH, and XChat—and an existing anonymity system—Tor13.

Firefox and XChat. Firefox ran normally, as did XChat—both only open
ordinary HTTP connections and perform DNS queries, which are translated
properly by AHP in hidden mode. There was no noticeable slowdown in browsing
performance. While this is only anecdotal, we found no cases in which a Web
page failed to load as usual.

Tor. Though Tor opens a listening socket on the local machine (which is the
port on which it accepts SOCKS connections), since all connections are local,
AHP does not interfere. As recommended, we used Tor with Privoxy [23] which
presents an HTTP proxy interface to Tor and performs application-level privacy
13 To accommodate for the fact that when connecting to the Internet, our broadband

Internet service only has a single IP address assigned to it, we set up a small local
network within which to perform address hiding before routing to the Internet. We
connected the user’s machine directly (over Ethernet) to a second machine which
served as the AHP gateway. Given the constraint of only one public IP address, we
performed address hiding within the local subnet and then performed NAT (which
was needed since the public IP address space is much smaller than the private address
space in this scenario) before actually sending packets out to the public Internet.

http://www.wide.ad.jp/
http://www.zks.net/

Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default 161

filtering. We were able to browse the Web as usual via Tor with no interference
from AHP. As a result, those Internet users who desire additional privacy beyond
the capabilities provided by AHP will still be able to enjoy the benefits of Tor
and similar overlay anonymity services.

BitTorrent. BitTorrent performs best when it can make outgoing connections
to other peers and accept incoming connections. To enable inbound connections,
we ran the official BitTorrent client in sticky mode using expose. While this did
require one additional step—adding expose to the command line—we believe
this step is not onerous, and furthermore, we believe the changes required here
are even less than those to support transition to NATs (for which many appli-
cations had to be updated). No code needed to be changed in the BitTorrent
application itself. Regardless, our main observation is that Internet users can
continue to use peer-to-peer applications if their ISPs offer AHP to them as a
service. One concern is that sticky mode incurs overhead at the AHP gateway,
as the gateway has to process and store requests on behalf of applications that
wish to accept inbound connections. To discover whether BitTorrent requires
repeated or burdensome communication with the AHP gateway when in sticky
mode, we logged its system calls while downloading the top ranked torrent from
a popular BitTorrent website. We left all application settings at their defaults.
Over the course of the approximately 30 minute download, BitTorrent accepted
2,034 inbound TCP connections, made 3,980 outbound TCP connections, and
yet only needed to bind() a listening TCP socket exactly once. (That one call
to bind() initialized a sticky IP/port pair in the AHP gateway.)

Forensic recovery. Recall that one of the principal goals of AHP is to enlist
ISPs to help improve users’ Internet privacy while also still allowing ISPs to be
consistent with existing or emerging government legislation and internal corpo-
rate policies. AHP thus, for example, enables ISPs to easily respond to requests.
We built a simple forensic tool that performs the same operation as an AHP
gateway to Unhide the address and port of a given packet—the packet is read
in from a user-specified file. The only remaining information—the timestamp
and which side initiated the flow—must be provided to the tool so it can select
the key for that timestamp. Though collisions can occur, they only occur across
different remote IP/port tuples. For a given (remote) destination IP address and
port, there exists only one permutation at a given gateway, and thus a unique
mapping for each hidden address that is communicating with that IP/port pair.

B Flexible Hiding Sets

A fundamental property of in-network, directed-routed anonymity or address
hiding systems is that their hiding sets are firmly tied to route advertisements.
Thus, if an ISP only advertises small IP prefixes, and cannot or does not aggre-
gate them with adjacent prefixes, then the address space within which a user
hides is small, leaving the user open to a host of de-anonymization attacks. At
the other extreme, a large ISP with a large IP prefix (such as a /8) can leverage

162 B. Raghavan et al.

the expansive IP space to hide all its customers even across continents. This
tension between presenting larger hiding sets for users and enabling fine grained
route control is not a new one—network engineers in ISPs try to optimize their
routing advertisements to maximize routing flexibility (by advertising small pre-
fixes) while also considering route stability, convergence, and update overhead
(by advertising large prefixes). Thus the consideration of selecting the appropri-
ate size IP prefix to advertise to aid in user address hiding is not a new, undue
burden upon network administrators and engineers.

B.1 Variable Prefix Sizes

Due to the lack of variable block-size block ciphers to use as the underlying
PRP, the span of IP prefix sizes we can support using the exact techniques
we describe above directly using the block cipher are limited. In our prototype
implementation, we first built support for 16 bit externally visible IP prefixes,
which, along with a 16-bit port field, are appropriate for a cipher with a 32-bit
block width.

However, to provide ISPs greater flexibility, a deployment implementation
would need to support a variety of IP prefix lengths. The shuffle-based random
permutation design of Granboulan and Pornin [11] lets us select arbitrary size
prefixes, though their algorithm is computationally expensive. In hardware, a
table-based permutation is appropriate for small IP prefixes.

We extended our prototype to cope both with IP prefixes larger than and
smaller than a /16 prefix. For those smaller, we were required to perform a slight
layer violation, and include the high-order bits of the TCP timestamp field in the
block permuted by the cipher (to pad the IP/port pair up to the 32-bit mark).
For those prefixes larger than /16, we restrict ourselves to even bitlength IP
prefixes, and build a Luby-Rackoff cipher using a larger block-size primitive—in
our case AES—as a PRF; such a design comes with the corresponding loss of
security due to the PRF to PRP transformation.

B.2 Disjoint Prefix Aggregation

A fundamental problem with operating strictly on IP prefixes is that an ISP may
not use strictly neighboring address spaces, and thus, may be forced to advertise
them separately. Instead, we suggest that with a slightly modified version of
AHP, we can aggregate multiple smaller, disjoint prefixes into one IP address
space over which AHP can anonymize clients. Our primary approach is to revisit
the notion of permuting addresses as opposed to encrypting them. By permuting
addresses, we eliminate the need for strict, IP prefix-based partitioning.

The following simple technique would allow the aggregation of disjoin prefixes:
given n prefixes (p1, . . . , pn), we map the addresses via a bijection to Z

+
k where

k = |p1| + · · ·+ |pn|. We then apply a permutation such as that of Granboulan
and Pornin [11] to Z

+
k and remap the result back to the original prefixes.

Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default 163

As a result of this approach, anonymity sets can be made as large an ISP’s entire
address space. We leave a thorough study of disjoint prefix aggregation to future
work.

C Key Rotation

In AHP we must rotate keys if we are to protect the unlinkability of flows
originating from the same true source address to the same destination address
over time. How often should key rotation occur? The epoch length, which we
define to be the period of key rotation, constrains the maximum length of a flow.
Too short an epoch will unduly constrain flow durations—too long and it may
allow port reuse at end hosts and thus privacy loss.

Suppose a client creates a new socket to the same port on a server repeatedly.
Though most server applications typically set the SO_REUSEADDR socket option,
thereby allowing port reuse even before TCP fully flushes its state for a particular
port, most client applications allow the operating system to select a random
port. Under that assumption, and with the additional constraint that client
applications do not have the necessary rights to use the first 1024 port numbers,
k = 64512 ports are available. Allowing the full 2 minutes for each port to become
available again after use, we can compute the time required to reuse a port with
probability 0.5 using the Taylor series approximation of the birthday paradox:
p(n) = 1 − e−

n(n−1)
2k . Substituting, we compute n to be 299 attempts, which

indicates that we should expect a port collision to occur after 35886 seconds,
or roughly 10 hours. Naturally, then, we would like for the counter value that
we use to increment in 10 hours or less. We discuss selection of a specific key
rotation interval later in the context of collision analysis.

	Enlisting ISPs to Improve Online Privacy: IP Address Mixing by Default
	Introduction
	Address Hiding Goals
	Measurement Study: Your ISP Is Crowded
	A Cryptographic Approach to ISP Crowds
	Design Overview
	Address Partitioning
	Handling Traditional Client Applications: hidden Mode
	Handling Peer-to-Peer Applications: sticky Mode

	Analysis
	Forwarding Performance
	Collisions

	Related Work
	Conclusions
	Case Studies
	Flexible Hiding Sets
	Variable Prefix Sizes
	Disjoint Prefix Aggregation

	Key Rotation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

