
Sphinx: A Compact and Provably Secure Mix Format

George Danezis
Microsoft Research,

Cambridge, United Kingdom.
gdane@microsoft.com

Ian Goldberg
University of Waterloo,

Ontario, Canada.
iang@cs.uwaterloo.ca

Abstract

Sphinx is a cryptographic message format used to
relay anonymized messages within a mix network. It
is more compact than any comparable scheme, and
supports a full set of security features: indistinguish-
able replies, hiding the path length and relay position,
as well as providing unlinkability for each leg of the
message’s journey over the network. We prove the
full cryptographic security of Sphinx in the random
oracle model, and we describe how it can be used as
an efficient drop-in replacement in deployed remailer
systems.

1. Introduction

Mix networks were proposed by David Chaum [7]
in 1981 as an efficient means to achieve anonymous
communications. A mix (or a mix node) is simply
a message relay that accepts a batch of encrypted
messages, decrypts them and sends them on their
way. An observer of a mix node should be unable to
link incoming and outgoing messages; this provides
anonymity to the users of the network. A number of
theoretical [12], [15], [9], [5], [21] as well as deployed
systems [16], [8] have been proposed that further
develop the idea of mixes. The Mixmaster network [16]
is currently composed of about 25 reliable remailers,
while the newer Mixminion [8], adding the ability to
reply anonymously to messages, is composed of about
20 reliable nodes.

Anonymizing messages through a mix network
comes at a cost: the messages are batched and therefore
delayed, as well as padded to a standard length to
prevent traffic analysis. Furthermore, multiple encryp-
tion layers have to be used to encapsulate the routing
information necessary to relay the message through a
sequence of mixes. The cryptographic mechanism used
to deliver this routing information to each intermediate
mix, as well as to transform the message as it travels
through the network, is called the cryptographic packet

format. The cryptographic mechanism is to some ex-
tent independent from other traffic analysis protections
offered by the mix network, as long as they guarantee
that some aspects of the routing information, such as
path length or position in the path, are not leaked [4].

The minimum overhead introduced by the crypto-
graphic packet format impacts the types of traffic that
can realistically be anonymized. Previous work, like
Mixminion [8] and Minx [9] added an overhead of
at least a full RSA ciphertext (at least 256 additional
bytes for modern 128-bit security levels). Provable
designs, such as the ones proposed by Möller [15], Ca-
menish and Lysyanskaya [5] or Shimshock et al. [21],
use multiple RSA-sized ciphertexts to relay informa-
tion for each stage of the mixing, making the header
necessary for anonymization many kilobytes long.
Such formats may be acceptable for relaying large
email messages, but add a significant overhead to short
messages, the length of Instant Messaging or SMS
messages (that are up to 160 characters.) It is therefore
of great importance to devise cryptographic schemes
that are compact to efficiently anonymize those classes
of traffic. Furthermore, anonymous replies rely on
cryptographic addresses that are of similar size to the
headers required to route messages thought the net-
work. Compact packet formats directly lead to compact
addresses and thus to cheaper receiver anonymity.

Traditionally, cryptographic packet formats have
been based on heuristic security arguments. From early
on it became apparent that these complex crypto-
graphic systems are difficult to get right: the original
scheme by Chaum [7] was shown to have crypto-
graphic weaknesses by Pfitzmann and Pfitzmann [18]
and Minx [9] leaked information which theoretically
allowed an adversary to extract the full plaintext of
messages [21]. As a result several authors proposed
provably secure packet formats. Some of them only
provide the bare minimum functionality [15], [5], and
in particular no provision for anonymous replies, while
others suffer a significant transmission overhead [21].
It has so far been an open problem to devise a compact

and provably secure packet format.
Our key contribution is Sphinx: a cryptographic

packet format that can be used to route messages over
a mix network. Sphinx provides all features expected
by modern remailer applications:

• It provides bitwise unlinkability, making it cryp-
tographically difficult to link incoming and out-
going messages from a mix. This is the basic
property all packet formats provide.

• It allows for paths up to an arbitrary maximum
length, while hiding the number of hops a mes-
sage has travelled so far, as well as the actual
number of mixes on the path of a message.
These are hidden even from the mixes that are
processing the messages.

• The processing of reply messages is indistinguish-
able from the processing of normal “forward”
messages. The anonymity sets of both types of
traffic are therefore confounded, providing greater
protection for both.

• It resists any active tagging attacks, where the
adversary modifies and re-injects messages to
extract information about their destinations or
content.

• It is compact: for 128-bit security, the overhead
is only 32 bytes plus a single group element
(not one per hop) plus 32 bytes of routing and
integrity protection information per hop. The size
of the group element can be as small as 32 bytes
using Dan Bernstein’s Curve25519 elliptic curve
library [3]; the element is the x-coordinate (in
GF (2255−19)) of a point on an elliptic curve. For
example, the header of a Sphinx message with a
maximum path length of 5 mixes can be encoded
in as little as 224 bytes.

From a systems perspective, Sphinx is designed as
a drop-in replacement for the Mixminion packet for-
mat [8]. It makes the same systems and security
assumptions as Mixminion, but is more compact and
cryptographically provably secure. This means that
Sphinx can be easily integrated with the Mixminion
software to take advantage of the thousands of lines of
robust client and server code. Our reference implemen-
tation of Sphinx, which provides all of the functionality
needed for clients, mix nodes, and the nymserver, and
which works either over a 2048-bit prime field or
Curve25519, is less than 600 lines of Python code
(including simple tests).

Our description of Sphinx will proceed in the fol-
lowing fashion: section 2 provides an overview of
the threat model, requirements and design rationale of
Sphinx; sections 3 and 4 provide a formal definition

of the cryptographic format and the associated proofs
of security respectively. In section 5 we discuss the
efficiency of the scheme and compare it with other pro-
posals. Finally we provide some concluding remarks in
section 6.

2. Design overview

Mix networks achieve anonymity by relaying mes-
sages over a sequence of mixes, called the path. The
sender cryptographically encodes a message, which is
partially decoded by each mix along the path. As long
as a single mix in the path is honest, meaning that
it does not share its secrets with an adversary, the
message will benefit from some anonymity.

2.1. Threat Model & Requirements

It is traditional to consider the security of crypto-
graphic packet formats against an active adversary that
is able to observe all traffic in the network, as well as
to intercept and inject arbitrary messages. Furthermore,
we assume that some, but not all, of the mixes in the
path of a relayed message are corrupt; i.e., under the
direct control of an adversary that knows all their keys,
and other secrets, and is able to fully control their
functioning. The principal aim of the adversary is to
extract some information about the ultimate destination
of mixed messages through inferring the final address
or some of their contents. The security properties of
cryptographic mix packet formats prevent or tightly
control any such information leakage.

Specifically, Sphinx needs to ensure that if multiple
messages enter an honest mix and are batched together,
it is not feasible to link an output message to any
input message with probability significantly higher
than uniform. This is the fundamental requirement of
any packet format. Yet modern packet formats also
control the amount of information leaked to mixes
(including dishonest mixes) along the path. A dishonest
mix should not be able to infer either the full length
of the path of a particular message, or its own position
on that path. Simple traffic analysis detects if a mix is
first or last on the path, so we do not consider this a
compromise.

An advantage of mix networks is that they pro-
vide a unified mechanism for both sender and re-
ceiver anonymity. Alice may encode a single-use reply
block [8] and attach it to an anonymous message
destined to Bob. Bob cannot know that the originator
of the message is Alice, but can use the reply block
contained in the message as an address to send a reply.
The reply is then routed through the network until

2

it reaches Alice. In both cases Alice benefits from
anonymity properties, first as the sender of the message
(sender anonymity) and the second time as the anony-
mous receiver of a message (receiver anonymity).
Nymservers [14] have been developed as services that
make use of anonymous replies to bridge the world
of mix networks with traditional email. Users can
send normal email to pseudonymous email addresses,
which are then routed through the mix network using
anonymous reply blocks. We note that the network
does not attempt to keep it a secret that Bob is talking
to some particular pseudonym; we assume Bob’s email
communication is likely to be unencrypted (though
orthogonal end-to-end encryption mechanisms can of
course also be used). What it does protect is the fact
that that pseudonym belongs to Alice.

To increase the security of both sender- and receiver-
anonymous messages, the two kinds of messages
should use the same network and the same relay
mechanisms. Hence it is a requirement of the crypto-
graphic packet format that forward and reply messages
be cryptographically indistinguishable; this makes the
task of engineering packet formats more difficult. Tra-
ditional methods for achieving non-malleability (such
as providing a MAC over the full header and body of
the relayed message) are not readily available, as the
reply message body is unknown at the time the reply
block is created.

Finally, Sphinx is required to be resistant to active
attacks: an adversary can use any corrupt node to inject
arbitrary messages into honest nodes in an attempt
to extract information. Sphinx protects against replay
attacks—where the adversary reinjects a previously
seen message verbatim—and tagging attacks—where
the adversary modifies a message before reinjecting it
into the network. In neither event will Sphinx allow
the adversary to learn any information about the final
destination of the message or its contents. Other denial-
of-service and flooding attacks (n−1 attacks) [20] are
not considered in the threat model, since they are not
cryptographic in nature and are handled by orthogonal
mechanisms [12], [13].

2.2. Design Rationale

Sphinx is based on the idea that a mix packet format
should encapsulate enough information to cryptograph-
ically secure a confidential and integrity-protected
channel to each of the mixes on a message’s path. This
requires keys to be shared, or distributed, securely to
each of the mixes on the path, in order that they may
decode the routing information, as well as other parts
of the message. Traditionally, this has been done with

RSA [19] encryption, while Sphinx instead uses Diffie-
Hellman [10].

At the heart of the Sphinx key distribution strategy
lies a single element of a cyclic group of prime order
satisfying the decisional Diffie-Hellman assumption.
This element is used by each mix on the path to derive
a secret that is shared with the original sender of the
message—a set of keys that can be used for encryption,
integrity protection, etc. are further extracted from this
shared secret. The element used for key derivation
cannot be transported unaltered throughout the path,
however, as this would lead to linkable messages. To
avoid this, the element is blinded at each mixing step
to make it indistinguishable from any other output
element. The blinding factors are extracted from the
shared secrets, and so both senders and mixes can
perform all operations necessary to extract keys used
at each hop of the mix message processing. There
are many possible choices for the cyclic group; two
common ones are a subgroup of the multiplicative
group of a prime field, and an elliptic curve group. The
latter in particular leads to a very compact design, since
for 128-bit security, group elements can be expressed
in just 32 bytes, as opposed to 256–384 bytes for a
prime field of similar strength.

Besides extracting the shared key, each mix has to
be provided with authentic and confidential routing
information to direct the message to the subsequent
mix, or to its final destination. We achieve this by
a simple encrypt-then-MAC mechanism. A secure
stream cipher or AES in counter mode is used for
encryption, and a secure MAC (with some strong but
standard properties) is used to ensure no part of the
message header containing routing information has
been modified. Some padding has to be added at each
mix stage, in order to keep the length of the message
invariant at each hop.

The steps involved in decoding and routing the
message at each mix are rather simple. Their full
technical description is provided in section 3.6 and is
illustrated in the corresponding Figure 3. In summary:

1) The mix receives the message and, using the
element from the cyclic group and its private key,
extracts a set of shared session keys.

2) The MAC of the message is checked to ensure
that the header has not been modified.

3) Some padding (of all zeros) is added at the end
of the message to keep the length invariant.

4) The header of the message is decrypted (in-
cluding the newly added padding), the element
blinded and the payload of the message de-
crypted.

5) The routing information and next MAC are ex-

3

tracted from the decrypted header, and the result-
ing message is forwarded to the next destination.

Senders encode a message by deriving all session
keys, wrapping the message in multiple layers of
encryption, and calculating the correct message authen-
tication codes for each stage of the journey. Calculating
the correct MACs is not a trivial task: the successive
layers of padding that are encrypted at each stage of
the mixing have to be included in the integrity check.
The MACs ensure that a modified header is detected
immediately.

The payload of the message is kept separate from the
mix header used to perform the routing. It is decrypted
at each stage of mixing using a block cipher with
a large block size (the size of the entire message),
such as LIONESS [1]. In case the adversary modifies
the payload in transit, any information contained in
it becomes irrecoverable. Sender-anonymous messages
contain the final address of the message, as well as
the message itself as part of the payload, and so any
modification destroys this information.

Anonymous replies are equally simple to construct:
the intended receiver of the reply (who will benefit
from the anonymity properties) builds a mix header
addressed back to herself with no payload. This header
acts as an anonymous reply address, and can be
included in a message to give anyone the ability to
reply. Some additional information, such as the address
of the first mix hop, is also needed.

A reply is built by attaching a message to the reply
address and routing it through the mix network. The
processing of the reply message is identical to the
processing of forward messages, leading to simplicity
of implementation and larger anonymity sets.

3. Formal protocol description

3.1. Notation

Let κ be a security parameter. An adversary will
have to do about 2κ work to break the security of
Sphinx with nonnegligible probability. We suggest
using κ = 128.

Let r be the maximum number of nodes that a
Sphinx mix message will traverse before being deliv-
ered to its destination. We suggest r = 5.

Define the following:
G: A prime-order cyclic group satisfying the De-

cisional Diffie-Hellman Assumption. G∗ is the set
of non-identity elements of G. The element g is a
generator of G, and q is the (prime) order of G, with
q ≈ 22κ.

A number of hash functions, which we model by
random oracles:
• hµ : G∗ → {0, 1}κ, used to key µ, below
• hρ : G∗ → {0, 1}κ, used to key ρ, below
• hπ : G∗ → {0, 1}κ, used to key π, below
• hτ : G∗ → {0, 1}2κ, used to identify previously

seen elements of G∗
• hb : G∗ × G∗ → Z∗q , used to compute blinding

factors
We implement these functions with appropriately trun-
cated SHA-256 hash functions.
µ : {0, 1}κ × {0, 1}∗ → {0, 1}κ: a Message

Authentication Code (MAC). We normally model µ
as a pseudo-random function (PRF). However, in one
part of the proof (section 4.2), the adversary gets to
know the key to the MAC. In this case, simply being
a PRF guarantees nothing, whereas we still want µ
with a known key to behave like a hash function. For
this reason, we model µ as a random oracle in that
section (which of course is stronger than a PRF). In a
realistic implementation, we would use a MAC based
on a hash function, such as SHA256-HMAC-128.
ρ : {0, 1}κ → {0, 1}(2r+3)κ: a pseudo-random

generator (PRG). A PRG is the basis for any stream
cipher: the key is fed as an input to the PRG, which
outputs a long pseudorandom string. This string is
XORed with the plaintext to yield the ciphertext, or
with the ciphertext to recover the plaintext. As above,
in section 4.2 the adversary will be able to know the
input to the PRG, which removes all of the PRG’s
security properties. So again, for that section, we
model ρ as a random oracle. We can implement ρ with
any secure stream cipher, or any secure block cipher
in counter mode, which operates in the same way.
π : {0, 1}κ × {0, 1}`π → {0, 1}`π : a family of

pseudo-random permutations (PRPs). `π will be the
size of the message bodies that can be transmitted
over Sphinx (plus κ bits of overhead). Given any
(k, x) ∈ {0, 1}κ×{0, 1}`π , both π(k, x) and π−1(k, x)
should be easy to compute. (The latter is the unique
value y ∈ {0, 1}`π such that π(k, y) = x.) π−1 should
also be a family of pseudo-random permutations. We
use the LIONESS [1] PRP to implement π.
N ⊂ {0, 1}κ: a set of mix node identifiers. Each

node n ∈ N has a private key xn ∈R Z∗q and a public
key yn = gxn ∈ G∗. We assume the presence of a PKI
that publishes an authenticated list of all (n, yn) pairs.
D ⊂ {0, 1}≤2rκ: a set of destination addresses,

usually normal email addresses. It must be the case
that N ∩ D = ∅ and that N ∪ D is prefix-free. Note
that N ∩ D = ∅ does not imply that end users of
Sphinx cannot themselves run Sphinx nodes; it is just
that the identifier for their node (in N) will be different

4

0

r0

f1

0f1

r1

f2

0f2

r2

f3

XOR

XOR

XOR

Scale:
k

Figure 1. Construction of the filler strings φi for
ν = r = 4. Here, ρi is the final 2(i + 1)κ bits of
ρ(hρ(si)).

from their email address. One of the elements ∗ ∈ D
is distinguished.

The notation 0a means the string of 0 bits of length
a, x[a..b] means the substring of x consisting of bits
a through b, inclusive (the leftmost bit of x is bit 0),
‖ denotes concatenation, |s| is the length of string s,
and ε is the empty string.

3.2. Creating a mix header

This section describes the procedure to create a
Sphinx mix message header. It is used as a subrou-
tine for the procedures to create forward messages
and single-use reply blocks in sections 3.3 and 3.4,
respectively.

Input: a destination address ∆ ∈ D, an iden-
tifier I ∈ {0, 1}κ and a sequence of mix nodes
{n0, n1, . . . , nν−1} with ν ≤ r. It must also be the
case that |∆| ≤ (2(r − ν) + 2)κ.

Pick a random x ∈R Z∗q .
Compute a sequence of ν tuples

(α0, s0, b0), . . . , (αν−1, sν−1, bν−1) as follows:
• α0 = gx, s0 = yxn0

, b0 = hb(α0, s0)
• α1 = gxb0 , s1 = yxb0n1

, b1 = hb(α1, s1)
• . . .
• αν−1 = gxb0b1···bν−2 , sν−1 = y

xb0b1···bν−2
nν−1 ,

bν−1 = hb(αν−1, sν−1)
The αi are the group elements, the si are the Diffie-

Hellman shared secrets, and the bi are the blinding
factors.

Compute the filler strings φ0, . . . , φν−1:

n3 g3

n2 g2

n1 g1

 r(hr(s2))

 D I 0

 r(hr(s3))

f3

b3

Concatenate

XOR

b3

s3 MAC

b2

XOR

 r(hr(s1))

b2

s2 MAC

b1

XOR

 r(hr(s0))

b1

s1 MAC

b0

XOR
s0

MAC

g0

Figure 2. Construction of (β0, γ0) for a Sphinx mix
header, with ν = r = 4. The construction of φ3 from
Figure 1 ensures that the truncated part of βi+1

equals the truncated part of ρ(hρ(si)), indicated by
the dotted lines and shading, for each 0 ≤ i < ν.

• φ0 = ε
• For 0 < i < ν, φi = {φi−1‖02κ} ⊕{

ρ(hρ(si−1))[(2(r−i)+3)κ..(2r+3)κ−1]

}
Note that |φi| = 2iκ. This step is illustrated in
Figure 1.

Compute a sequence of mix headers
Mν−1,Mν−2, . . . ,M0 as follows: Mi = (αi, βi, γi) ∈
G∗ × {0, 1}(2r+1)κ × {0, 1}κ where:
• βν−1 =

{{
∆‖I‖0(2(r−ν)+2)κ−|∆|

}
⊕{

ρ(hρ(sν−1))[0..(2(r−ν)+3)κ−1]

}}
‖φν−1

• βi =
{
ni+1‖γi+1‖βi+1[0..(2r−1)κ−1]

}
⊕

ρ(hρ(si))[0..(2r+1)κ−1] for 0 ≤ i < ν − 1

5

a gb d

PayloadHeader

Mix n

Secret xn

s

b x00 Padding

Derive

Key

Check

MAC

a’

Blind

r(hr(s))

XOR

n’ g’ b’

Decrypt

d’g’b’
Route to

Mix n’

Figure 3. The processing of a Sphinx message ((α, β, γ), δ) into ((α′, β′, γ′), δ′) at Mix n.

• γi = µ(hµ(si), βi) for 0 ≤ i ≤ ν − 1
The above step is illustrated in Figure 2.
Output: the mix header M0 and the sequence of

shared secrets s0, . . . , sν−1.

3.3. Creating a forward message

This section gives the procedure used to create
a forward message to be sent through the Sphinx
network.

Input: a message m, a destination address ∆ and a
sequence of mix nodes {n0, n1, . . . , nν−1} with ν ≤ r.

Compute the mix header M0 and the sequence
of shared secrets s0, . . . , sν−1 as above, passing the
distinguished element ∗ ∈ D as the destination address
and 0κ as I . Compute:
• δν−1 = π(hπ(sν−1), 0κ‖∆‖m)
• δi = π(hπ(si), δi+1) for i = ν − 2, . . . , 0
Output: the pair (M0, δ0)
The forward message is this pair (M0, δ0), and

should be sent to n0.

3.4. Creating a single-use reply block

This procedure is used to create a single-use reply
block.

Input: a destination address ∆ and a sequence of
mix nodes {n0, n1, . . . , nν−1} with ν ≤ r. ∆ should
be the user’s own address.

Pick a random identifier I ∈R {0, 1}κ and compute
the mix header M0 and the sequence of shared secrets
s0, . . . , sν−1 as above.

Pick a random key k̃ ∈R {0, 1}κ.
Output: I , the tuple (k̃, hπ(s0), . . . , hπ(sν−1)), and

the tuple (n0,M0, k̃).
Store the tuple (k̃, hπ(s0), . . . , hπ(sν−1)) in a local

table indexed by I . Send (n0,M0, k̃) to the nymserver
over a secure channel, to be indexed under the user’s
pseudonym. This can be done, for example, by encrypt-
ing it with the nymserver’s public key, signing it with
the pseudonym’s private key, and sending the message
to the nymserver using the Sphinx forward channel.

3.5. Using a single-use reply block

When the nymserver receives a message m destined
for a pseudonym, it will look up a previously unused
(n0,M0, k̃) tuple indexed by that pseudonym. It will
then send (M0, π(k̃, 0κ‖m)) to n0 and remove the
tuple from its index.

3.6. Message processing by mix nodes

Messages received by mix nodes are of the form
(M, δ) = ((α, β, γ), δ) ∈ G∗ × {0, 1}(2r+1)κ ×
{0, 1}κ × {0, 1}`π . (The node should ensure that the
message is in this form; in particular, that α ∈ G∗.)
When mix node n, with private key xn, receives such
a message, it proceeds as follows:

Compute the shared secret s = αxn . If hτ (s) is
already in this node’s table of seen message tags,
discard the message. (Note that this table can be
flushed whenever the node rotates its private key.)
Otherwise, continue by comparing γ to µ(hµ(s), β).
If they do not match, discard the message. Otherwise,

6

store hτ (s) in the table of seen message tag, and
continue by decrypting the suitably padded β (as a
stream cipher, XORing the output of the PRG ρ) to
get B = {β‖02κ} ⊕ ρ(hρ(s)).

Use the prefix-freeness of N ∪D to uniquely parse
a prefix of B as n ∈ N ∪ D. (If this is not possible,
the message is discarded.)

If n ∈ N is found: This message is destined
for another Sphinx node. Compute the blinding factor
b = hb(α, s), and let α′ = αb. Let γ′ = B[κ..2κ−1],
β′ = B[2κ..(2r+3)κ−1], and δ′ = π−1(hπ(s), δ). Send
((α′, β′, γ′), δ′) to n. Figure 3 illustrates the processing
steps involved in this case, as an example of how the
decoding process works.

If n = ∗ is found: The current node is the exit
node for a forward message. Let δ′ = π−1(hπ(s), δ).
If δ′[0..κ−1] = 0κ, parse δ′[κ..`π−1] as ∆‖m for ∆ ∈ D
using the prefix-freeness of D. If this is successful,
m should be a plaintext message, and is sent to ∆.
Otherwise, the message has been tampered with and is
discarded.

Otherwise, if n ∈ D\{∗} is found: The current
node is the exit node for a reply message, and n is the
owner of a pseudonym. Let I = B[|n|..|n|+κ−1] and
δ′ = π−1(hπ(s), δ). Send (I, δ′) to n.

3.7. Reply message processing by pseudonym
owners

Upon receiving (I, δ), a pseudonym owner looks
up (and subsequently removes) (k̃, k0, . . . , kν−1)
in its table indexed by I , and computes δ′ =
π−1

(
k̃, π (k0, π (k1, · · ·π (kν−1, δ) · · ·))

)
and m =

δ′[κ..`π−1]. If δ′[0..κ−1] = 0κ then accept m as the
received message.

4. Proof of security

From a cryptographic point of view, mix protocols
like Sphinx share many properties with onion routing
protocols. At a minimum, we desire our mix protocol
to have all of the security properties of onion routing.

In [5], Camenisch and Lysyanskaya give four prop-
erties of an onion routing protocol: correctness, in-
tegrity, wrap-resistence, and security, all detailed be-
low. They show that any onion routing protocol having
all of these properties realizes ideal onion routing func-
tionality in the Universal Composability model [6].
This means that an adversary against a protocol with
these four properties has no better chance of success
than an adversary against an ideal protocol; that is, at
a high level, one in which adversaries (even ones that

control some of the mix nodes) have no access to the
underlying cryptographic implementation, but rather
can observe only opaque identifiers for messages.

For our mix network, we would like, in addition to
the above properties, that adversaries in the middle of a
path should be unable to distinguish forward messages
from replies (unlike the situation in [5]). It is clear
that adversary nodes at the edges of the network—
that is, nodes that deliver messages to users who are
not themselves nodes—are necessarily able to distin-
guish forward from reply messages: outgoing forward
messages are in plaintext, since messages should be
deliverable to arbitrary parties on the Internet who
have no special software installed; on the other hand,
outgoing reply messages to the pseudonym owner are
encrypted. Entry nodes also receive forward messages
from arbitrary end users, but receive reply messages
from the nymserver (the forward and reply messages
are cryptographically indistinguishable, however). But
between the entry and the exit, nodes should be unable
to distinguish the two cases.

Formally, under the assumptions on the components
given in section 3.1, Sphinx realizes ideal onion routing
functionality in the Universal Composability model (as
defined in [5]), and also makes forward and reply
messages indistinguishable to middle mix nodes. We
prove this result in the following four sections.

4.1. Correctness

It is straightforward by inspection that the protocol
works correctly in the absence of an adversary; that
is, it processes the mix messages correctly, sends the
right intermediate mix messages to the right mixes, and
finally sends the right message to the right destination.

4.2. Integrity

The second requirement of [5] is that an adversary
cannot construct a mix message that will travel through
a path of more than N honest nodes, for some fixed
bound N , except with negligible probability. We show
that Sphinx satisfies this requirement, with N = r+1,
even if we allow the adversary to know all private keys
xn in the system. (Note that the adversary knows the
nodes’ private keys, but the nodes still behave honestly,
according to the protocol.) This last adversarial power
is what necessitates modelling µ and ρ as something
stronger than the usual PRF and PRG notions. Again,
for the purposes of this section, we treat them as
random oracles.

Note that although the Sphinx protocol specifies that
no more than r node identifiers get embedded into a

7

Sphinx header, it is in fact possible to embed up to r+1
such identifiers, as long as the embedded ∆ = ∗ and is
very short (less than κ bits). This means an adversary
can indeed construct a mix message that will have path
length r+1. This is not a problem for our proof, since
the proof only requires that there is some upper bound
on the path length. We show that an adversary cannot
construct a mix message that results in a path length
greater than N = r + 1, and that is sufficient.

We assume the adversary does significantly less than
2κ work, and show that the probability of producing a
requisite mix message is negligible.

Let a mix message constructed by the adversary
be ((α0, β0, γ0), δ0), and sent to node n0. That node
processes it to produce ((α1, β1, γ1), δ1), which is sent
to n1, etc.

Node ni will successfully process a message and
send it on to the next node if and only if the following
all hold:
• ni has never before (during the life of its current

private key xni) processed a mix message with the
same αi (since the map αi 7→ α

xni
i is bijective

and hτ is collision-resistant)
• γi = µ

(
hµ
(
α
xni
i

)
, βi
)

• there is a prefix of Bi = {βi‖02κ}⊕ρ(hρ(α
xni
i))

which is in N ∪ D; this will be ni+1 if it is in
N .

If these hold, then the first κ bits of Bi will be ni+1

itself, the next κ bits will be γi+1, and the remaining
(2r + 1)κ bits will be βi+1. Note that βi+1 ={
βi[2κ..(2r+1)κ−1] ⊕ ρ(hρ(α

xni
i))[2κ..(2r+1)κ−1]

}
‖{

ρ(hρ(α
xni
i))[(2r+1)κ..(2r+3)κ−1]

}
. In particular, the

leftmost 2κ bits of βi are used to construct ni+1 and
the MAC γi+1; the remaining (2r− 1)κ bits of βi are
shifted left to form (after decryption by XORing with
a substring of an output of ρ) the leftmost (2r − 1)κ
bits of βi+1; the rightmost 2κ bits of βi+1 are simply
a substring of an output of ρ.

Consider the following problem P: Let
f0, f1, . . . , f2κ−1 be a family of random oracles
with range {0, 1}κ. Let ρ̂ and ρ0 be other random
oracles with range {0, 1}κ. (The domains do not
matter.) The problem is to find x and y such that
ρ̂(x) = fρ0(x)(y). We claim that an adversary has
only a negligible chance of solving problem P if he
performs significantly less than 2κ work.

Proof: For each i ∈ {0, 1}m, let ri be the number of
times the adversary called ρ0 and had it output i, and
let Fi be the number of times he called fi. (We can
assume the adversary never calls ρ̂ on an input unless
he also calls ρ0 on that input.) Then the adversary has∑
i riFi chances to solve problem P, and each chance

is successful with probability 2−κ. Let A be the total
number of calls the adversary makes to ρ0, and let
i∗ be the most common output, occurring A∗ of the A
times. To maximize

∑
i riFi while holding

∑
i(ri+Fi)

constant, the adversary should only query fi∗ , and not
any of the other fi. Suppose he does so B times. Then
his probability of success is bounded above by A∗·B

2κ ,
having done A+B work.

If A = B ≈ 2κ(1− 1
w) for some w, then we expect to

find w-collisions in the A outputs of ρ0, but not w+1-
collisions [17], so we expect A∗ = w. Then the success
probability is bounded above by A∗·B

2κ = w · 2− κ
w . If

A = B ≈ 2m, then w = κ
κ−m , and this probability

bound is κ
κ−m · 2

m−κ, as required.
Note the difference between this problem and a

standard collision problem (such as ρ̂(x) = f(y)),
which would have success probability 22m−κ for doing
2m work, and to a standard search problem (such as
ρ̂(x) = f(x, y)), which would have success probability
2m−κ for doing 2m work. �

Now suppose an adversary can construct a mix mes-
sage ((α0, β0, γ0), δ0) which is successfully processed
by mix nodes n0, n1, . . . , nN , whose private keys xi
are known to the adversary. We will show that this
means that the adversary can solve the above problem
P.

Given such a message, the adversary can pro-
cess it in the manner of each mix node in turn,
to generate ((α1, β1, γ1), δ1), ((α2, β2, γ2), δ2), . . . ,
((αN , βN , γN), δN). Now since node nN successfully
processes this last message, it must be the case that
γN = µ(hµ(αxNN), βN).

For notational convenience, for 0 ≤ i ≤ r, de-
fine ρi(x) to be ρ(x)[(2(r−i)+2)κ..(2r+3)κ−1]‖02(r−i)κ;
that is, the last (2i + 1)κ bits of ρ(x), followed
by 2(r − i)κ bits of zeros. Also define ρ̂i(x) to be
ρ(x)[(2(r−i)+1)κ..(2(r−i)+2)κ−1]; that is, the block of κ
bits of ρ(x) immediately preceding the bits selected
for ρi(x). Finally, for 1 ≤ i ≤ r + 1, define ρ̃i(x) to
be ρ(x)[(2i−1)κ..(2i+1)κ−1].

A careful, but straightforward, calculation shows
that γN = a0 ⊕ a1 ⊕ · · · ⊕ aN−1, where aj =
ρ̂j(hρ(α

xj
j)).

Similarly, βN = b0 ⊕ b1 ⊕ · · · ⊕ bN−1, where bj =
ρj(hρ(α

xj
j)).

Now consider the function
g(p0, k1, k2, . . . , kN−1, kµ) =
µ
(
kµ, (p0‖02rκ)⊕

(⊕N−1
i=1 ρi(ki)

))
. We claim

that the adversary who does less than 2κ work
cannot distinguish this g from a truly random
function which takes the same inputs. Why is this?
Since µ is a random oracle, the only way the

8

adversary could distinguish the situations is if it could
generate a pair of inputs (p0, k1, k2, . . . , kN−1, kµ)
and (p′0, k

′
1, k
′
2, . . . , k

′
N−1, k

′
µ) which cause the

corresponding arguments of the call to µ to be equal.
Clearly we must have kµ = k′µ.

Let B = (p0‖02rκ) ⊕
(⊕N−1

i=1 ρi(ki)
)

and B′ =

(p′0‖02rκ) ⊕
(⊕N−1

i=1 ρi(k′i)
)

. Note that the last 2κ
bits of B are just ρ̃N−1(kN−1), the last 2κ bits.
of ρ(kN−1). If B = B′, then ρ̃N−1(kN−1) =
ρ̃N−1(k′N−1). Since the adversary has done less than
2κ work, he has only a negligible chance of finding
kN−1 6= k′N−1 with the last 2κ bits of ρ(kN−1) and
ρ(k′N−1) equal. Thus, except with negligible probabil-
ity, kN−1 = k′N−1.

Now consider the block of 2κ bits before the final
block of 2κ bits of B. This is just ρ̃N−2(kN−1) ⊕
ρ̃N−1(kN−2). So if B = B′, and kN−1 = k′N−1

as above, then we must have that ρ̃N−1(kN−2) =
ρ̃N−1(k′N−2), and as above, kN−2 = k′N−2. Continu-
ing in this way, we get that (k1, k2, . . . , kN−1, kµ) =
(k′1, k

′
2, . . . , k

′
N−1, k

′
µ) except with negligible proba-

bility.
Note that this logic would not have extended to k0,

had it been included, since only κ, and not 2κ, bits of
ρ(hρ(αx0

0)) are included in βN .
Finally, if B = B′ and (k1, k2, . . . , kN−1, kµ) =

(k′1, k
′
2, . . . , k

′
N−1, k

′
µ), then clearly p0 = p′0.

Let k = (k1, . . . , kN−1, kµ). Then we just showed
that the function g(p0,k) is indistinguishable from a
true random oracle with less than 2κ work. Now let
fp0(k) = g(p0,k)⊕ρ̂1(k1)⊕· · ·⊕ρ̂N−1(kN−1). Since
the ρ̂i do not call the random oracle µ, this is also
indistinguishable from a true random oracle.

But if the adversary constructed a mix message
which was successfully processed by n0, . . . , nN ,
then he has a solution to ρ̂0(k0) = fρ′0(k0)(k),
where ρ′0(x) = ρ(x)[(2r+2)κ..(2r+3)κ−1]; namely, ki =
hρ(αxii) and kµ = hµ(αxNN). But this is just problem
P.

Therefore, since he has only a negligible probability
of finding a solution to problem P with considerably
less than 2κ work, he also has only a negligible
chance of constructing a mix message which will be
successfully processed by N + 1 nodes, and the result
is proven.

It is instructive to note where this proof relies
on the fact that N > r. The key is that for
i ≤ r, the computation of γi contains bits from
β0. For example, γr =

(⊕r−1
j=0 ρ̂j+1(hρ(α

xj
j))

)
⊕

β0[(2r+1)κ..(2r+2)κ]. [Compare this to γN , above,
which equalled

⊕N−1
j=0 ρ̂j(hρ(α

xj
j)), with no compo-

nent from β0.]
Since the computation of βr does not involve

these bits of β0, it is easy to find αx0
0 , . . . , α

xr−1
r−1

and β0 that satisfy γr = µ(hµ(αxrr), βr). Just
pick any αx0

0 , . . . , α
xr−1
r−1 , compute βr, and

let β0[(2r+1)κ..(2r+2)κ] = µ(hµ(αxrr), βr) ⊕(⊕r−1
j=0 ρ̂j+1(hρ(α

xj
j))

)
.

4.3. Wrap-resistence

We need to show that given a mix message
((α′, β′, γ′), δ′), an adversary is unable to wrap it;
that is, the adversary cannot produce a mix message
((α, β, γ), δ) such that a mix node (even one whose
private key x the adversary can select) processing
((α, β, γ), δ) will yield ((α′, β′, γ′), δ′).

In order for the adversary to succeed, it is necessary
that αhb(α,s) = α′ where s = αx. We will show that an
adversary which makes c queries to the random oracle
hb can find such an (α, x) pair with probability at most
c
q−1 ; for an adversary that does less than 2κ work, this
is negligible.

The proof is simple: if the adversary outputs a
correct (α, x) pair, then she must have queried the
random oracle with (α, αx). But each (α, s) query to
the oracle yields a random value b ∈R Z∗q . Since α is
a generator of G∗, the probability that αb equals the
given α′ is 1

q−1 , and the result follows.

4.4. Security and Indistinguishability of For-
ward and Reply Messages

We need to show that an adversary controlling all
nodes except one particular node, N, cannot distinguish
mix messages entering node N, where each contains a
(∆,m) pair of the adversary’s choice, each has a path
following node N of the adversary’s choice, and the
messages can each be either forward or reply messages,
as the adversary likes. Additionally, the adversary can
see how N reacts to any mix message except one with
a header matching the challenge message.

In particular, this would not only prove that the
security property of [5] is satisfied, but also that
forward and reply messages are indistinguishable to
any party that does not know the exit node’s private
key.

Formally: consider the following game G. The ad-
versary selects a sequence of mix nodes n0, . . . , nν−1

with ν ≤ r. One of these, nj , is the challenge node N.
The adversary can select the private keys xni ∈ Z∗q
for all i 6= j, but does not know xnj (he does
know the public key ynj). The adversary also selects a

9

destination address ∆ ∈ D\{∗}, a message m, and a
bit f that indicates whether this message should be a
forward message (f = 1) or a reply message (f = 0).

The adversary then selects a second set
n′0, . . . , n

′
ν′−1 with ν′ ≤ r, and ∆′ ∈ D\{∗},

m′, and f ′. It must be the case that
(n0, n1, . . . , nj) = (n′0, n

′
1, . . . , n

′
j), but it need

not be the case that the list of subsequent nodes
after nj = n′j = N is the same (or even of the same
length).

The challenger randomly chooses a bit b and con-
structs one of two mix messages as follows:

If b=0 and f=0: The challenger passes ∆ and
{n0, . . . , nν−1} to the procedure of section 3.4 to
create a single-use reply block. There is no need to
store values in the local table, or to send (n0,M0, k̃)
to the nymserver. However, M0 and k̃ are used, along
with m, in the procedure of section 3.5 to construct the
mix message ((α0, β0, γ0), δ0) which it would send to
n0.1

If b=0 and f=1: The challenger passes ∆, m, and
{n0, . . . , nν−1} to the procedure of section 3.3. This
procedure returns the mix message ((α0, β0, γ0), δ0).

If b=1: The challenger performs the same actions as
above, but uses the primed values n′0, . . . , n

′
ν′−1, ∆′,

m′ and f ′ instead of their unprimed counterparts.
((α0, β0, γ0), δ0) is given to the adversary, whose

job it is to determine b. The adversary can also give
any mix message ((α′, β′, γ′), δ′) to the challenge node
nj to see how it reacts, so long as (α′, β′, γ′) 6=
(αj , βj , γj). Here, as in [5, §4.2], we only care about
uniqueness of the header, not of the message body.

We will show that the adversary cannot determine
the value of b with significantly better chance than
random guessing. Once we have proven this, we note
that the ability of the adversary to individually select
whether each of the two messages is a forward message
or a reply message also implies our desired property

1. Following section 3.5, we assume for simplicity that all reply
messages are delivered using the nymserver. However, this assump-
tion is not essential. If Alice wishes to send a reply block directly
to Bob, for Bob’s use in replying to her, she just modifies the
procedure of section 3.4 to send him (n0,M0), omits k̃ from
the tuple in her local table, and omits the π−1(k̃, ·) step from
the procedure of section 3.7. The proof then need only have one
additional part: to show that an adversary cannot cryptographically
distinguish replies output by the nymserver from replies output by a
first node n0 whose private key the adversary does not know. (Here,
“cryptographically distinguish” excludes distinuguishing based on
traffic analysis; that is, observing the origin of the message.) The
remaining path in the two reply blocks should be the same, and the
adversary is allowed to know all other nodes’ private keys. This is
straightforward: the only salient difference between the messages is
that the payload in the nymserver message is π(k̃, 0κ‖m) and in the
other is π−1(hπ(sn0), 0κ‖m). Both of these are indistinguishable
from a random string to an adversary that knows neither k̃ nor sn0 .

that the adversary cannot distinguish forward messages
from replies. This holds so long as there is even a
single node yet to process the message whose private
key the adversary does not know.

The advantage of the adversary is the difference
between 1/2 and the probability the adversary guesses
b correctly. We wish to show that the advantage for an
adversary that does significantly less than 2κ work is
negligible.

We use the usual method of hybrid games. We
construct the modified game G1 by doing the same
thing as G, except that we insist that j = 0. Since
in game G the adversary can immediately act as
nodes n0, . . . , nj−1 to determine ((αj , βj , γj), δj), the
adversary can win game G1 if and only if he can win
game G.

Game G2 is the same as G1 except that s0 (in the
procedure of section 3.2, called from section 3.3 in the
case of a forward message or section 3.4 in the case of
a reply message) is selected uniformly at random from
G∗, as opposed to being calulated as s0 = yxn0

. An
adversary that can distinguish game G1 from G2 can
easily be used to distinguish (yn0 , α0 = gx, s0 = yxn0

)
from (yn0 , α0, z) for a random z ∈R G∗, thus solving
the DDH problem in G∗, contrary to our choice of
G∗. Here it is important that the adversary should not
be allowed to query N with the challenge (α0, β0, γ0)
header, since N would not be able to process it. That
γ must be a MAC on β with key hµ(αxn0

0) ensures
that (α0, β, γ) 6= (α0, β0, γ0) will be rejected by N
except with negligible probability. If any (α, β, γ) is
submitted to N with α 6= α0 such that N successfully
processes the message, then the success of the MAC
ensures that, again except with negligible probability,
the adversary knew the MAC key hµ(αxn0

0). Since hµ
is a random oracle, the adversary must have queried it
with αxn0

0 . But if the adversary knows that last value,
he can process the message just as well as N can, and
the ability to query N does not help him.

Game G3 is the same as G2 except that β0, γ0,
and δ0 are selected uniformly at random from their
respective domains. If the adversary can distinguish
games G2 and G3, then he can distinguish (with less
work than 2κ) the output of ρ with a random input from
a random string, or µ with a random key from a random
function, or π with a random key (hπ(s0)—with s0

being the randomly selected value from game G2—in
the case of forward messages, or k̃ in the case of reply
messages) from a random permutation, which he can
do with only negligible probability, by our choice of
ρ, µ, and π.

In game G3, since α0 is independent of the bit b,
and β0, γ0, and δ0 are all random (and independent of

10

b), it is clear the adversary’s advantage is 0. Since each
game is indistinguishable from the one before to the
adversary, except with negligible probability, we see
that the adversary’s advantage in the original game G
is negligible, as required.

5. Performance and Space Efficiency

In this section we give a brief overview of es-
tablished cryptographic packet formats, and compare
them to Sphinx both in terms of functionality as well
as message size overhead. Throughout this section
p denotes the size of any public key element in a
packet format, s denotes the size of the symmetric
key elements (per hop), and r denotes the maximum
number of hops that messages can be routed through
(all sizes are in bytes). When comparing overhead
sizes, we will attempt to match the 128-bit security
offered by Sphinx. Some older designs only supplied
80-bit security, using 1024-bit RSA keys, for example.
We will be generous to the competing formats and
stipulate that an RSA or Diffie-Hellman modulus of
2048 bits (256 bytes) is sufficient to offer 128-bit
security, even though NIST [2] suggests that 3072-bit
moduli are more appropriate for that security level.
In the elliptic curve setting, we use the usual figure
of 256-bit (32-byte) elements (assuming only the x-
coordinate of the elliptic curve point is required, or
point compression is used) in order to achieve 128-bit
security.

The Sphinx packet format relies on a single public
key element, blinded at each stage of mixing, and for
each hop a message authentication code and the appro-
priate routing information. The cryptographic overhead
sums to p + (2r + 1)s bytes in total for the header,
and an additional s bytes for integrity of the payload.
The most costly operations involved in building a
packet are the 2r public key operations. Relaying a
Sphinx message requires only two public key oper-
ations (the Diffie-Hellman and blinding operations),
plus the check that α ∈ G∗, for some choices of G∗. (In
Curve25519, for example, this check does not involve
a public-key operation, but in Z∗p, it does.)

Mixmaster [16] is an established remailer infrastruc-
ture, with about 25 nodes with over 90% reliability
according to Echolot statistics2 as of November 2008.
The main cryptographic shortcoming of the format is
the lack of support for anonymous replies. The now-
aging design uses 1024-bit RSA for the asymmetric
encryption part, encapsulating routing information and
a 3-DES key to be used in CBC mode (with a changing

2. http://www.palfrader.org/echolot/

IV). Integrity is ensured through the use of an MD5
hash. The standard supports relaying messages over 20
hops—each hop adding a fixed 512 bytes of overhead.
In total the equivalent of the routing header occu-
pies 10240 bytes. Abstracting away from the concrete
cryptographic mechanisms employed the length of a
mixmaster header is (1 + p + 8 + 8s + 31)r + s
bytes (including a version number, an IV and padding).
Sphinx is shorter since it does not require a public key
element for each hop, and does not require an IV, since
all keys are only used once.

The first provable cryptographic packet format was
due to Möller [15] and provided very similar func-
tionality to the Mixmaster format—it supports sender-
anonymous messages but not replies. The scheme
makes use of multiple layers of DHAES/DSIES en-
cryption. This requires an element of a cyclic group on
which the Decisional Diffie-Hellman problem is hard,
and a message authentication code per hop of mixing.
To achieve a similar level of security to Sphinx this
introduces an overhead of 272 bytes (256 bytes for the
group element and 16 bytes for the MAC) per hop in
addition to any routing information. The length of a
packet header can be abstracted as (p + s)r. As for
Mixmaster the format length suffers from the fact that
a separate public key element has to be included for
each stage of mixing.

Camenisch and Lysyanskaya [5] provided formal
definitions in the Universal Composability model, and
a concrete, provably secure, packet format for mixing
forward messages, which we call the CL05 format. The
CL05 scheme separates the messages into a header and
a payload. The header is composed of asymmetrically
encrypted ciphertexts containing the address of the
next hop. They rely on a CCA2-secure encryption
scheme with tags, and the bulk of the encryption is
performed using a pseudorandom permutation (that is,
a block cipher). The length of the header in the CL05
scheme is rp+ (r + 1)s—unsurprisingly very similar
to Möller [15], given the shared design philosophy. It
is worth noting that the CL05 scheme does support
replies, with a very similar cost, but those are distin-
guishable from sender anonymous messages.

Mixminion [8] was the first packet format to propose
indistinguishable anonymous replies. Its cryptographic
design is based on two headers which are swapped
midway along the path. The headers are constructed
using layers of asymmetric encryption (2048-bit RSA-
OAEP) and AES in CBC mode. Instead of appending
the RSA ciphertexts to each other, Mixminion com-
presses the headers by including parts of the next
RSA ciphertext in the plaintext of the previous one.
This means that the 2048 bytes of each sub-header

11

Scheme Overhead Length Indistin. Security Z∗n ECC
Replies (p=256, s=16, r=5) (p=32, s=16, r=5)

Mixmaster [16] (1 + p + 8 + 8s + 31)r + s no heuristic 2136 11761

Möller [15] (p + s)r no provable 1360 4001

Mixminion [8] 2[p + (2s + 2s)(r − 1)] + s yes heuristic 1040 8481

CL05 [5] rp + (r + 1)s no provable 1376 4161

Minx [9] p + (s + 2)(r − 1) yes broken 328 2321

SSH08 [21] pr yes provable 1280 1602

Sphinx p + (2r + 2)s yes provable 448 224

Table 1. Comparison between the lengths of different cryptographic packet formats in bytes. RSA
schemes superscripted with (1) have been converted to use elliptic curve Elgamal (hence p′ = 2p), while
schemes superscripted with (2) use a simple Diffie-Hellman over EC. The parameter p denotes the length

of asymmetric elements, s is the length of symmetric elements, while r is the maximum path length.

can encode information for more than 8 hops. Given
that the OAEP overhead is about 2s and that a hash
and a key is contained in each layer of the header
(again 2s) the cost of both headers of Mixminion is
2[p+(2s+2s)(r−1)]+s bytes. There exist no known
attacks against this format, but at the same time it only
comes with heuristic security arguments.

Minx [9] was the first attempt to achieve a very
compact mix packet format. It uses raw RSA, and
AES in IGE and bi-IGE modes, without any additional
overhead for integrity checking. Instead it relies on the
fragility and error propagation characteristics of bi-IGE
to ensure no information is recoverable from tagging
attacks. Like Mixminion, it encapsulates parts of RSA
ciphertexts into previous plaintexts, making the headers
quite small. Its abstract length is p + (s + 1)(r − 1)
bytes (assuming only a single byte of routing data).
The security argument underlying Minx is heuristic,
however, and recent work [21] shows that there is
indeed a polynomial-time attack against it, taking
advantage of the naive use of raw RSA encryption.

Shimshock et al. [21] proposed a fix for Minx, which
we denote SSH08. The SSH08 format encodes only
keys in separate RSA headers destined to each mix,
and for technical reasons does not use the compression
technique employed by Mixminion and Minx. This
leads to a cost of pr bytes. It is also worth noting
that the encoding of a message relies on making one
byte of the hash of the RSA plaintext collide with the
one byte destination of the packet. That is, there is no
way of telling hop i which node should be hop i + 1
short of constructing a message whose hash happens
to contain the (8-bit) identifier of the desired hop i+1.
This requires, on average, about 256 RSA encryptions
per hop to construct the message. This design choice
makes the packet format quite compact, and easily
portable to elliptic curves, at the cost of flexibility.

The sender can only communicate a very small amount
of information to each mix, since it would have to
find—using brute force—an element that decodes to
the desired information.

Table 1 summarises the overhead lengths and other
properties of each cryptographic packet format and
compares them to Sphinx. Concrete lengths are illus-
trated through the choice of two sets of parameters, in
each case for a message that is capable of travelling
on paths up to length r = 5. First the length of the
header is calculated for cryptosystems based on the
hardness of the discrete logarithm and RSA problems
over number fields. To achieve 128-bit security we
require p = 256 byte (2048-bit) asymmetric elements,
and s = 16 byte symmetric elements. We can see that
in this context Sphinx outperforms all other secure pro-
posals (note that Minx is not considered secure [21]).

A second comparison is made between Sphinx
and other schemes when they are implemented using
asymmetric primitives based on elliptic curves. In that
context we substitute RSA encryption, used by most
other schemes, with an EC-based version of Elgamal.
This requires two asymmetric elements of total length
p′ = 2p. Sphinx and SSH08 on the other hand do
not encrypt anything, and the asymmetric part of the
header is only required to perform key derivation.
As such they only use a single element of length
p = 32 bytes, the size necessary to achieve 128-bit
security. The SSH08 scheme is more compact than
Minx only because it is capable of transmitting very
little information from the sender to the intermediate
mixes (about 8 bits of information, at the cost of
about 28 public key operations per mix). Sphinx can
carry much more information to intermediate mixes,
supporting more complex mixing strategies, and at a
much lower computational cost to the sender.

12

6. Conclusions

Sphinx is a compact and provably secure mix packet
format, designed as a drop-in replacement for existing
remailers.

Sphinx is flexible in two important ways: first, it al-
lows the system designer to chose their preferred fam-
ily of cryptographic primitives. With Diffie-Hellman
over prime fields, Sphinx is the most compact format,
with an overhead of 448 bytes to route through 5
mixes. The use of ECC makes it even more compact,
with a header length of only 224 bytes. The com-
pactness of the format allows novel applications of
anonymity to flourish: short messages can be cheaply
routed, supporting privacy for services like micro-
blogging with a low cryptographic overhead.

Second, Sphinx can be trivially extended to act as
a general-purpose secure transport between senders
of messages and the intermediate mixes on a path.
This means that system designers are free to choose
any mix strategies, including those that rely on the
sender providing detailed information to mixes about
the processing of messages. Such strategies are cru-
cial for blending high-and-low latency traffic [11], or
preventing flooding attacks [13].

The security guarantees associated with Sphinx are
very strong, and backed by reduction proofs to well-
studied cryptographic primitives. Hence, we can say
with high confidence that the short length of the
packets does not lead to any reduction in security.

The line of research up to this state-of-the-art Sphinx
design demonstrates that the cryptographic aspects of
anonymous communications are now well understood
and mature. Off-the-shelf packet formats are now
available to route messages through any system, al-
lowing designers of anonymity systems to concentrate
on preventing traffic analysis and sorting out denial-
of-service problems, as well as implementing robust
business models around anonymous communications.
Sphinx can act as a transport layer for any of these
applications, ensuring that the cryptography of the
anonymous transport is no longer a security worry.

Acknowledgements: The authors would like to thank
Greg Zaverucha and Emilia Käsper for comments on
early drafts of this paper, as well as Steven Murdoch
for suggesting micro-blogging as a potential applica-
tion for Sphinx.

References

[1] Ross J. Anderson and Eli Biham. Two Practical and
Provably Secure Block Ciphers: BEARS and LION. In

Dieter Gollmann, editor, FSE, volume 1039 of Lecture
Notes in Computer Science, pages 113–120. Springer,
1996.

[2] Elaine Barker, William Barker, William Burr, William
Polk, and Miles Smid. Recommendation for Key
Management—Part 1: General (Revised). National In-
stitute of Standards and Technology Special Publication
800-57, May 2006.

[3] Daniel J. Bernstein. Curve25519: New Diffie-Hellman
Speed Records. In Public Key Cryptography 2006,
pages 207–228, 2006.

[4] Oliver Berthold, Andreas Pfitzmann, and Ronny
Standtke. The disadvantages of free MIX routes and
how to overcome them. In H. Federrath, editor, Pro-
ceedings of Designing Privacy Enhancing Technolo-
gies: Workshop on Design Issues in Anonymity and
Unobservability, pages 30–45. Springer-Verlag, LNCS
2009, July 2000.

[5] Jan Camenisch and Anna Lysyanskaya. A formal
treatment of onion routing. In Victor Shoup, edi-
tor, Proceedings of CRYPTO 2005, pages 169–187.
Springer-Verlag, LNCS 3621, August 2005.

[6] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS, pages
136–145, 2001.

[7] David Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 4(2), February 1981.

[8] George Danezis, Roger Dingledine, and Nick Math-
ewson. Mixminion: Design of a Type III Anonymous
Remailer Protocol. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy, pages 2–15, May
2003.

[9] George Danezis and Ben Laurie. Minx: A simple and
efficient anonymous packet format. In Proceedings
of the Workshop on Privacy in the Electronic Society
(WPES 2004), Washington, DC, USA, October 2004.

[10] Whitfield Diffie and Martin E. Hellman. New directions
in cryptography. IEEE Transactions on Information
Theory, IT-22(6):644–654, 1976.

[11] Roger Dingledine, Andrei Serjantov, and Paul Syver-
son. Blending different latency traffic with alpha-
mixing. In George Danezis and Philippe Golle, ed-
itors, Proceedings of the Sixth Workshop on Privacy
Enhancing Technologies (PET 2006), pages 245–257,
Cambridge, UK, June 2006. Springer.

[12] Ceki Gülcü and Gene Tsudik. Mixing E-mail with
Babel. In Proceedings of the Network and Distributed
Security Symposium - NDSS ’96, pages 2–16. IEEE,
1996.

13

[13] Dogan Kesdogan, Jan Egner, and Roland Büschkes.
Stop-and-go MIXes: Providing probabilistic anonymity
in an open system. In Proceedings of Information
Hiding Workshop (IH 1998). Springer-Verlag, LNCS
1525, 1998.

[14] David Mazières and M. Frans Kaashoek. The Design,
Implementation and Operation of an Email Pseudonym
Server. In Proceedings of the 5th ACM Conference on
Computer and Communications Security (CCS 1998).
ACM Press, 1998.

[15] Bodo Möller. Provably secure public-key encryption
for length-preserving chaumian mixes. In Proceedings
of CT-RSA 2003. Springer-Verlag, LNCS 2612, 2003.

[16] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len
Sassaman. Mixmaster Protocol — Version 2. IETF
Internet Draft, 2003.

[17] Mridul Nandi and Douglas R. Stinson. Multicolli-
sion Attacks on Some Generalized Sequential Hash
Functions. IEEE Transactions on Information Theory,
53(2):759–767, February 2007.

[18] Birgit Pfitzmann and Andreas Pfitzmann. How to
break the direct RSA-implementation of MIXes. In
Proceedings of EUROCRYPT 1989. Springer-Verlag,
LNCS 434, 1990.

[19] Ronald L. Rivest, Adi Shamir, and Leonard M. Adle-
man. A method for obtaining digital signatures and
public-key cryptosystems. Commun. ACM, 21(2):120–
126, 1978.

[20] Andrei Serjantov, Roger Dingledine, and Paul Syver-
son. From a trickle to a flood: Active attacks on several
mix types. In Fabien Petitcolas, editor, Proceedings
of Information Hiding Workshop (IH 2002). Springer-
Verlag, LNCS 2578, October 2002.

[21] Eric Shimshock, Matt Staats, and Nick Hopper. Break-
ing and Provably Fixing Minx. In Nikita Borisov and
Ian Goldberg, editors, Proceedings of the Eighth Inter-
national Symposium on Privacy Enhancing Technolo-
gies (PETS 2008), pages 99–114, Leuven, Belgium,
July 2008. Springer.

14

