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Abstract— In this paper we define a new metric for quantifying
the degree of anonymity collectively afforded to users of an
anonymous communication system. We show how our metric,
based on the permanent of a matrix, can be useful in evaluating
the amount of information needed by an observer to reveal the
communication pattern as a whole. We also show how our model
can be extended to include probabilistic information learned
by an attacker about possible sender-recipient relationships.
Our work is intended to serve as a complementary tool to
existing information-theoretic metrics, which typically consider
the anonymity of the system from the perspective of a single user
or message.

I. I NTRODUCTION

Starting with Chaum’s work on mix-based anonymity sys-
tems [1], many research papers have been devoted to the
subject of designing and evaluating systems for anonymous
communication. Some designs exist only in the literature,
while a few have been implemented and publicly deployed
(e.g., [2], [3]).

With each new system design or implementation, it becomes
more important to be able to evaluate and compare the
privacy afforded by a system to its users. Most previous work
has focused on evaluating the anonymity of a system from
the perspective of a single user or message in that system;
however, it is not clear how to generalize such measurements
to express the level of anonymity of the system as a whole
(we elaborate on this point in Section II).

In this paper we define a new system-wide metric, based
on the permanent of a matrix, which measures the amount
of information needed by an observer to reveal the overall
communication pattern between senders and recipients in an
anonymity system. Our metric can be used alongside existing
metrics, which typically measure the anonymity of a system
from the perspective of a single user or message, in order
to provide a more complete representation of the privacy
provided by that system.

The rest of this paper is structured as follows. First, we will
review some of the previous work done to establish measures
of anonymity. In Section II, we introduce our model and
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formally define our proposed anonymity metric. We then show
how our model can be generalized to include probabilistic
information in Section III. We demonstrate how to apply our
metric to some common types of mixes in Section IV. In
Section V, we compare our metric to some existing metrics to
illustrate the more important differences. Section VI describes
how we can obtain a lower-bound on the anonymity level
of a system while avoiding some computational complexity
inherent in computing the permanent of a matrix. Finally, we
conclude in Section VII.

A. Related Work

Chaum introduced the notion of ananonymity setin his
work on DC-Networks [4]. An anonymity set is the set of
participants who are likely to be the sender or recipient of a
particular message. As the size of an anonymity set increases,
so does the anonymity of the members of that set. Kesdogan,
Egner, and Büschkes also use this metric for evaluating their
design of Stop-and-Go MIXes (SG-MIXes) [5].

Serjantov and Danezis [6] showed that simply measuring the
size of an anonymity set is inadequate for expressing instances
where not all members of that set are equally likely to have
sent a particular message. They go on to define aneffective
anonymity set size, based on the information theoretic concept
of entropy, as

S = −

n
∑

u=1

pu log2(pu),

where n is the number of users in the anonymity set,
and pu is the probability that a useru had a roler ∈
{sender, recipient} for a particular message. The authors
interpret the effective anonymity set sizeS as the amount of
additional information the attacker needs in order to identify
the user who was either the sender or recipient of a particular
message.

Diaz et al. [7] independently proposed a similar entropy-
based metric they refer to as thedegree of anonymity, a term
first introduced by Reiter and Rubin in the Crowds design [8].
They define the degree of anonymityd as

d =
S

Smax

,



whereS is as above andSmax is the maximum entropy of
the system and is equal tolog2(n). The difference between the
degree of anonymity and the previous entropy-based metric is
that, by dividingS by the maximum entropy of the system,
d is normalized to the range[0, 1] and becomes a measure of
anonymity independent of the number of users involved.

In Tóth and Hornák’s analysis of non-adaptive real-time
systems [9] they introduce the notions ofsource-hidingand
destination-hiding. A system is source-hiding with parameter
Θ if the observer cannot assign a sender to any delivered
message with a probability greater thanΘ. Similarly, a system
is destination-hiding with parameterΩ if the observer cannot
assign a recipient to any sent message with a probability
greater thanΩ.

Tóth and Hornák [10] later analyze the two entropy-based
metrics and highlight some of the shortcomings of both by
showing that a system can appear near-optimal according to
the entropy-based metrics even though an attacker may still
be able to guess the sender of some messages with high
probability. They use this to argue for using, as a measure, the
maximum probability that an attacker can assign to a sender or
recipient with respect to a particular message. Such a measure
focuses better on the local aspect of anonymity, which may
be of more interest to individual users of the system.

Instead of measuring how much protection a system affords
a single entity, whether that entity is a sender, recipient,or
message in a system, Newman, Moskowitz, and Syverson [11]
propose an entropy-based approach to evaluating how much
protection a Traffic Analysis Prevention (TAP) system can pro-
vide to its users collectively. Specifically, the authors consider
systems that perform actions such as padding and rerouting
in order to increase the number of potential traffic matrices
(TMs), thereby decreasing the probability of an observer being
able to determine the actual TM based on her observations.
The authors introduce an entropy-based approach to measure
the amount of uncertainty the adversary has in determining
the actual TM from the set of possible TMs.

II. A PERMANENT-BASED ANONYMITY METRIC

The previous work on measuring anonymity mostly focuses
on the level of anonymity from the perspective of a single
user or message, with the most notable exception being the
work done by Newman et al [11]. The anonymity set size [4],
the entropy-based effective anonymity set size [6], and the
normalized entropy-based metric [7] all follow this model.

Using such metrics, one can measuresender anonymityfor
a given recipient (or a message received). Or, one can measure
recipient anonymityfor a given sender (or a message sent). It
is not clear how to generalize such a metric to clearly express
a system-wide anonymity level. One can use the minimum
degree of anonymity among all users as the anonymity degree
of the whole system, but this only reveals the “weakest link”
in the chain; it may not capture the overall system behavior.
Another possibility is to add up the individual anonymity
degrees for all users to obtain the anonymity level of the
whole system. The problem with this approach is that it does

not consider the interdependence between anonymity sets of
different users.

We propose a new system-wide metric, based on the per-
manent of a matrix, which measures the amount of additional
information needed toreveal the whole communication pattern
between senders and recipients in the system. We stress that
our approach is not intended to replace the existing entropy-
based metrics. Rather, it can be used as a complementary
tool, which we believe represents a reasonable and intuitive
combination of the individual anonymity levels of the usersof
a system, to obtain a more complete, system-wide perspective.

A. Preliminaries

We consider an anonymity system, such as a network of
mixes, which aims to provide its users (senders and recipi-
ents) with anonymous communication. As is common in the
literature, we assume the existence of an observer who is able
to see some or all of the messages entering and exiting the
anonymity system. We also assume that every message the
observer is able to see entering the system will be among the
messages he is able to see exiting the system, andvice versa.
That is, there exists a one-to-one relation between inputs to
and outputs from the anonymity system.

In our model, an input may be a message or flow entering
the anonymity system on one end, and an output may be
a message or flow leaving the system at another end. In
general, if the system provides perfect anonymity, then any
input is equally likely to correspond to any output; however,
due to the design of a system, or after a successful attack
by an active adversary, some input-output pairings can be
rendered infeasible, decreasing the level of anonymity of the
system. For example, Danezis & Serjantov consider route-
length restrctions in mix network to eliminate some possible
sender-recipient pairings [6].

One might also consider a system providing anonymity to
its users with some quality-of-service guarantees, implying an
upper bound on the latency for each message going through the
system. In addition, there is a lower bound on latency due to
the time required for processing packets in the system, suchas
cryptographic operations and routing over several mixes. We
note that these assumptions are similar to those made by Tóth
and Hornák in their PROB-channel model [9].

B. A Permanent-based Approach

Let the inputs of an anonymity system be denoted by the
set S = {si} and the outputs byT = {ti}. Given a set of
possible associations between inputs and outputs, we construct
a bipartite graphG = (V1, V2, E) to represent the system,
whereV1 = S, V2 = T , andE is the set of edges representing
all possible(si, tj) mappings.

While initially defining our metric, we consider a real-time
anonymity system that provides a minimum and maximum
latency of messages through the system. More precisely, the
delay∆i for some messagemi going through the anonymity
system is bounded by
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Fig. 1. (a) An example mix network, with the entry and exit times observed
for four messages. (b) The corresponding bipartite graph, given that∆min =
1 and∆max = 4.

∆min ≤ ∆i ≤ ∆max,

for some given∆min and ∆max. Even if we treat the
internals of the system as a black-box, with the times of
messages entering and exiting being the only observable
information, we can still obtain a restricted set of possible
mappings between inputs and outputs. We can then construct
a bipartite graphG, with the entry and exit times of messages
constituting the vertices (V1 andV2, respectively) ofG. That
is, eachsi and tj represent not messages, but rather numeric
timestampsassociated with messages entering or exiting the
anonymity system, respectively.

For anysi andtj , if ∆min ≤ tj −si ≤ ∆max, then there is
an edge inG connecting the vertices corresponding tosi and
tj .

Fig. 1(a) presents an example with 4 messages, each en-
tering the network at timesi for somei and leaving at time
tj for somej, where i, j ∈ {1, 2, 3, 4}. Assuming that, for
this system,∆min = 1 and∆max = 4 (the time unit used is
not relevant), we conclude that a message entering ats1 = 1
will leave the system sometime in the interval[2, 5], resulting
in two edges inG; (s1, t1) and (s1, t2). Continuing in this
manner, we can obtain the bipartite graph in Fig. 1(b).

Note that the correct relationship between inputs and outputs
corresponds to a perfect matching on the constructed bipartite
graph. When the anonymity provided by the system is maxi-
mal, we obtain a complete bipartite graph,G = Kn,n, where
n is the number of inputs (or, equivalently, outputs).

Considering all possible permutations of{1, 2, ..., n}, there
are n! ways of mapping a set ofn inputs to a set ofn
outputs, henceKn,n hasn! different perfect matchings. Thus,
intuitively, a passive adversary observing the system has a1/n!
probability of identifying the correct matching. If, on theother
hand,G contains a single perfect matching, then no anonymity
is provided at all.

Following this intuition, given a bipartite graphG represent-
ing the system, we note that the number of perfect matchings
in G, combined with the normalization we present later in
this section, can provide an indication as to thestrengthof
the anonymity system.

A bipartite graphG = (V1, V2, E) can be represented by
its adjacency matrixA; a (0,1)-matrix of sizen × n, where
n = |V1| = |V2|. For eachu ∈ V1 and v ∈ V2, if the edge
(u, v) exists inG, the entryA(u, v) is set to 1, otherwise it
is set to 0. It is known that counting the number of perfect
matchings inG is equivalent to thepermanentof A, which is
given by

per(A) =
∑

π

n
∏

i=1

A(i, π(i)), (1)

where the summation is over all permutations of
{1, 2, ..., n}. For a (0,1)-matrix, the summation terms in (1)
are either 0 or 1. A term in the summation is 1 if and only if
all entriesA(1, π(1)), A(2, π(2)), ..., A(n, π(n)) are 1, which
means thatG has a perfect matching
{(1, π(1)), (2, π(2)), ..., (n, π(n))}.

We can assume that there exists at least one perfect matching
between inputs and outputs, indicating the true communication
pattern. At most, every input potentially corresponds to any
output. Thus, the number of perfect matchings in ann × n
(0,1)-matrixA is bounded by1 ≤ per(A) ≤ n!.

C. Definition

We now precisely define our metric based on the matrix
permanent. In doing so, we obtain a normalized value in the
range [0, 1] representing the anonymity level of the system.
A value of 0 means no anonymity is provided, whereas a
value of 1 means that the anonymity provided by the system
is maximal. This is the same interpretation as used in the
normalized entropy-based metric [7].

Given ann× n (0,1)-matrixA representing possible input-
output correlations in an anonymity system, we define the
system’s anonymity level as

d(A) =

{

0 n = 1
log(per(A))

log(n!) n > 1
(2)

where n! is the permanent of the all-1 matrixJ of size
n × n. Note that whend(A) = 1, the degree of anonymity
of the system is maximal and the corresponding graphG is
a complete bipartite graphKn,n. On the other hand, when
d(A) = 0, G has only a single perfect matching and the
system provides no anonymity for any participant. For the
system in Fig. 1, the level of anonymity can be computed
as log(4)/ log(24) ≈ 0.44.

While the entropy-based metrics of Serjantov & Danezis [6]
and Diaz et al. [7] have intuitive interpretations with and
without normalization, we argue that the normalization we
presented is necessary with our permanent-based approach.

Consider, again, the example system in Fig. 1(a). If the
system had an additional input and output,s5 = 9 andt5 = 10,
respectively, then the corresponding bipartite graph would
have a single additional edge linkings5 to t5. Arguably, this
modified system has weaker anonymity properties than the first
since there is an edge linkings5 to t5 with absolute certainty;
however, simply counting the number of perfect matchings



in the bipartite graph does not reflect the overall decrease
in anonymity, since the number of perfect matchings is the
same for both systems. If we apply our normalized measure,
then the anonymity level of the modified system decreases
from log(4)/ log(24) ≈ 0.44 to log(4)/ log(120) ≈ 0.29,
correctly indicating that the latter system is less desirable than
the former.

III. G ENERALIZED PERMANENT-BASED ANONYMITY

METRIC

We used the permanent of a (0,1)-matrix as a basis to define
our permanent-based anonymity metric. Such a metric captures
a scenario where one can model the feasibility between inputs
and outputs as a (0,1) relation. In general, an observer may also
possess probabilistic information about correlations between
inputs and output, possibly obtained by observing the inputs
and outputs of each individual mix in the system (instead of
treating the system as a black box), or by some probabilistic
attack. In such a case, one can construct a doubly stochastic
matrix, where the sum of each row and column is 1, rather than
a simple (0,1)-matrix. An entry(u, v) in this matrix represents
the probability that inputu is associated with outputv.

In this section, we generalize our metric to capture scenarios
involving probabilistic information. This generalization has
a resemblance to the effective anonymity set size defini-
tion [6], except instead of counting the possible senders of
a received message, the authors use the probabilities assigned
to each possible sender to compute an entropy-based effective
anonymity set size.

A. Including Probabilistic Information

When the matrix is no longer a (0,1)-matrix, the permanent
does not have the same intuitive meaning as the number of
perfect matchings in a bipartite graph. Still, we can show that
the permanent of a doubly stochastic matrix can yield insight
into the anonymity level of a system when the values of the
matrix are probabilities rather than simply 0s and 1s.

Consider apermutation matrixP of size n × n, which is
a special doubly stochastic matrix, obtained by permuting the
rows of the identity matrixIn according to some permutation
of the numbers1 to n. Each row and column ofP has a
single nonzero entry, which must be 1. The permanent of
P is 1 since there exists a single permutation that yields a
non-zero summation term in the permanent. This is, in fact,
the maximum value of the permanent of a doubly stochastic
matrix.

As the total value becomes more evenly distributed to the
other entries in a row or column, rather than on a single
value, the value of the permanent decreases. Indeed, when
the values are uniformly distributed (that is, when all entries
of P are1/n) the permanent is minimum and is equal ton!

nn
.

This lower bound on the permanent of a doubly stochastic
matrix is known as theVan der Waerden conjectureand
was proven by Egorychev [12] and also, independently, by
Falikman [13]. Thus, the permanent of a doubly stochastic
matrix P is bounded by the inequalityn!/nn ≤ per(P ) ≤ 1.
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Fig. 2. A sample mix network observed globally. Five messages enter and
exit the system, and each message entering a mix is equally likely to follow
any outgoing link. The probabilities represent the likelihood of messages being
on a particular link.
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Fig. 3. The doubly stochastic matrixP corresponding to the system in Fig.
2. In this example,per(P ) = 0.0417 andd(P ) = log(0.0417)

log( 5!

55
)

= 0.9747

In our initial model using a (0,1)-matrixA, a greater value
of per(A) indicated a higher level of anonymity. In contrast,
the level of anonymity of a system represented by a doubly
stochastic matrixP is highest when its permanent is minimum
(that is, when the probabilities inP are uniformly distributed).
It is worth noting that in both the basic model using a (0,1)-
matrixA and the probabilistic model using a doubly stochastic
matrix P , the anonymity level of both systems system is
minimum whenper(A) = per(P ) = 1, indicating a single
perfect matching.

B. Definition

Given a doubly stochastic matrixP representing the proba-
bilities of input-output relationships in an anonymity system,
we define the degree of anonymity,d, as

d(P ) =

{

0 n = 1
log(per(P ))

log( n!

n
n )

n > 1
(3)

where we recall thatn!/nn is the minimum value of the
permanent of ann × n doubly stochastic matrix, by the Van
der Waerden conjecture.

Fig. 2 gives a simple example of how to obtain probabilities
for mapping inputs to outputs in an anonymity network com-
posed of several mixes. Fig. 3 presents the doubly stochastic
matrix corresponding to the example system. Again, we use
the same notationsi for inputs andti for outputs, but note that
the inputs and outputs do not represent the time instants in this
scenario. Rather, they are simply used to label the incoming
and outgoing messages to and from the anonymity system.



The anonymity system in Fig. 2 follows the scheme pre-
sented by Serjantov & Danezis [6], in that each mix in the
system is equally likely to have sent an incoming message
on any one of its outgoing links. A global observer can then
form probability distributions on the links that representthe
likelihood of finding a particular message on a specific link.

The probability distribution on an outgoing link of a mix is
obtained by adding all distributions on the incoming links of
that mix, and dividing by the number of outgoing links. For
example, mixM4 in Fig. 2 has two input links, with proba-
bility distributions{(s1, 1/2), (s2, 1/2)} and{(s3, 1)}, so the
probability distribution on each of its outgoing links becomes
{(s1, 1/4), (s2, 1/4), (s3, 1/2)}. Following in this manner, we
can obtain the probabilities of relating a particular inputto a
particular output and construct the doubly stochastic matrix P
corresponding to this system, which is given in Fig. 3. Given
the matrixP , the degree of anonymityd(P ) can be computed
as in (3) and is approximatelylog(0.042)/ log(0.038) ≈ 0.97.

IV. A PPLICATION TO SOME COMMON M IX TYPES

When defining our permanent-based anonymity metric in
Section II, we used the example of a real-time anonymity net-
work. We now extend our analysis and apply our permanent-
based metric to some common types of high-latency mixes
from the literature.

A. Threshold Mixes

A threshold mixis a mix that collects incoming messages
until it has received some thresholdN , applies a cryptographic
transformation to each message received, and then forwardsall
N messages on to their next destination in a random order.
We refer to each time the mix purges its store of messages as
a mix round.

For an individual round, each input message is equally likely
to correspond to any of theN output messages; however,
messages within a particular round do not “blend” with
messages from any previous or subsequent round. Fig. 4(a)
shows the bipartite graph of possible relationships between
inputs to and outputs from two rounds of a threshold mix
with N = 3. After one round, the graph is a complete bipartite
graphG = K3,3. The permanent of the graph’s corresponding
adjacency matrix is3! = 6 and yields an optimal degree of
anonymity ofd = log(3!)/ log(3!) = 1.0.

After the second round, each message is blending with a
smaller fraction (one-half, to be precise) of the total messages
observed exiting the mix. The corresponding bipartite graph G
is composed of two smaller complete bipartite graphs where
G = K3,3 ∪ K3,3. The permanent ofG’s adjacency matrix
representation shown in Fig. 4(b), is thus3!× 3!. The overall
degree of anonymity decreases fromd = 1.0 to d = log(3! ×
3!)/ log(6!) = 0.5447.

Extending this example to any threshold mix with a thresh-
old N , over r rounds we can compute the overall degree of
anonymity of the mix as follows:

d(A) =
log(per(A))

log(n!)
=

log((N !)r)

log((N × r)!)

s 1s 2s 3s 4s 5s 6
t 1t 2t 3t 4t 5t 6

R o u n d 1R o u n d 2 A =

















t1 t2 t3 t4 t5 t6

s1 1 1 1 0 0 0

s2 1 1 1 0 0 0

s3 1 1 1 0 0 0

s4 0 0 0 1 1 1

s5 0 0 0 1 1 1

s6 0 0 0 1 1 1

















Fig. 1. The adjacency matrix corresponding to two rounds of a(a) (b)

Fig. 4. (a) GraphG of possible sender-recipient relationships over two
rounds of a threshold mix with a thresholdN = 3. (b) Adjacency matrixA
corresponding to two rounds of the threshold mix. In this example,per(A) =
36 andd(A) = 0.5447.

Fig. 5. Degree of anonymity for threshold mixes withN = 3, 5, and 10
over ten rounds.

The graph in Fig. 5 shows how the degree of anonymity
changes overr rounds for various threshold values.

B. Timed Mixes

A timed mix is a mix that collects messages fort sec-
onds, applies a cryptographic transformation to each message
received, and then forwards all messages on to their next
destination in a random order. Since there is no longer a
constant number, or threshold, of messages that enter and exit
the mix during each round, the degree of anonymity of a timed
mix depends on both theduration of each mix round and the
arrival rate of messages into the mix.

Let the arrival rate of messages into the mix beδ messages
per second. The average number of messages arriving to and
exiting from the mix during a single round of lengtht is then
δ × t. Following in the same manner as we did for threshold
mixes, we can express the degree of anonymity for a timed
mix with parametersδ and t over r rounds as

d(A) =
log(per(A))

log(n!)
=

log(((δt)!)r)

log((δtr)!)
.

From the previous equation, it is easy to see that a threshold
mix with a threshold ofN is equivalent to a timed mix with
a round length oft seconds whenN = δ× t. We can use this
analysis to select parameters of threshold or timed mixes to
provide a desired degree of anonymity.



Consider a timed mix that has an average message arrival
rate ofδ = 1/6 messages per second. If we have a threshold
mix with a threshold ofN = 10 messages, we would require
the timed mix to have a round length of at leastt = 60 seconds
to provide the same minimum degree of anonymity as the
threshold mix. Similar arguments can be made for other values
of N , δ, andt.

C. Pool Mixes

A pool mix is a mix that, at end of each round, randomly
selects a subset of the messages inside the mix to crypto-
graphically transform and forward to their next destination.
The remaining messages will be retained internally for the
next round. Pool mixes may determine the length of a single
round according to a threshold or timed algorithm, as above,
or some combination of the two.

We let N be the number of inputs into the mix in a
single round. The mix will then haveN outputs selected
randomly from a pool ofN + n messages inside the mix,
where n is the number of messages retained in the mix at
every round. Initially, the pool mix is primed withn “dummy
messages” created by the mix itself that are indistinguishable
from authentic messages.

Pool mixes are able to blend messages across multiple
rounds of the mix, unlike simple threshold or timed mixes that
only blend together messages within the same round. Indeed,
a message exiting a pool mix may correspond toanyprevious
message that has ever entered the mix. There is a non-zero
possibility that a message will remain in the mix indefinitely;
however, the probability of a message remaining in the mix
for r rounds decreases asr increases. Serjantov & Danezis
showed in [6] that a message exiting the pool mix at roundr
corresponds to a message that previously entered the mix at
round0 < x ≤ r with a probability of

p(r, x) =
N

N + n

(

n

N + n

)r−x

,

where, again,N is the number of messages that enter the
mix every round andn is the number of messages retained in
the mix each round. Each individual output from the mix at
roundr then has a probability ofp(r, x)/N of corresponding
to each input at some previous roundx.

For the sake of example, we will consider a threshold pool
mix with a threshold ofN = 2 and pool size ofn = 2.
Initially, the pool mix creates two dummy messages and places
them in its pool. After receiving two more input messages, the
mix will randomly select two messages to forward to their next
destinations and retain the other two messages in the mix.

Let us consider messages1. At the end of the first round,
s1 has a1/2 chance of being forwarded to its next destination
and a1/2 chance of being retained in the mix (1/4 for each
output or position in the pool). After the second round,s1 has
a p(2, 1)/N = 1/8 chance of corresponding to each of the
round’s two outputs,t3 and t4.

Continuing in this manner through two mix rounds, we can
populate a doubly stochastic matrixP as shown in Fig. 6.

P =

2

6

6

6

6

6
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t1 t2 t3 t4 p′

1 p′

2

s1 1/4 1/4 1/8 1/8 1/8 1/8
s2 1/4 1/4 1/8 1/8 1/8 1/8
s3 0 0 1/4 1/4 1/4 1/4
s4 0 0 1/4 1/4 1/4 1/4
p1 1/4 1/4 1/8 1/8 1/8 1/8
p2 1/4 1/4 1/8 1/8 1/8 1/8
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Fig. 6. Doubly stochastic matrix corresponding to two rounds a pool mix
with N = 2 andn = 2. Eachpi is a message in the pool at the start of the
mix round and eachp′i is a message in the pool after the mix fires.s 1s 2s 3 t 1t 2t 3t 4s 4

s 1s 2s 3 t 1t 2t 3t 4s 4
(a) (b)

Fig. 7. (a) A system that provides no anonymity for any messages, from a
global perspective. (b) Another system that provides a reasonable degree of
anonymity for all but one message sent.

From P , we can calculate the degree of anonymity of the
example pool mix as

d(P ) =
log(per(P ))

log( m!
mm

)
=

log(0.0176)

log(0.0154)
≈ 0.9688,

wherem = r ×N + n is the number of rows and columns
in the m × m matrix P . A similar analysis can be made for
other values ofr, N , andn.

V. COMPARISON TOEXISTING MEASURES OF

ANONYMITY

In this section we highlight a few of the more important
differences between our proposed metric and some of the
current metrics. Given that the more common existing metrics
measure anonymity specific to a particular message or user,
whereas our metric is a system-wide metric, direct quantitative
comparisons between metrics are not especially meaningful.
Instead, we will show how our permanent-based metric can
be used to identify properties of a system that other metrics
might not.

A. Information-theoretic Metrics

While individual users of an anonymity system are most
likely interested in only their own level of anonymity, sucha
narrow focus can overlook important properties of a system as
a whole. Consider if an adversary is able to determine through
passive observation the possible links in the two systems
represented as bipartite graphs in Fig. 7. Using the simple
entropy-based metric, we can compute an effective anonymity
set size for each input and output. In Fig. 7(a),s4 andt1 have
an effective anonymity set size ofS = −(1 × log(1)) = 0,
while the rest have an effective anonymity set size ofS =



−(2 × (1/2 log(1/2))) = 1. The normalized entropy-based
metric also yields a non-zero degree of anonymity for all but
two nodes in the first system.

A clever adversary would be able to further his analysis
in Fig. 7(a) and eliminate many additional links by working
backwards from vertices with a degree of one. In our first
example system, an adversary could eliminates1 from t2’s
sender anonymity set, sincet1 is positively linked to s1.
Indeed, when we apply our system-wide metric, we see that
the bipartite graph has only a single perfect matching, thus
identifying the true communication pattern of the system.

While the entropy-based metrics indicate that, from the
perspective of a single message sent or received, many mes-
sages have a non-zero degree of anonymity, the system in Fig.
7(a) in fact providesno anonymity forany message sent or
received. Our system-wide metric, though, correctly identifies
this weakness in the system.

B. Source- and Destination-hiding Metrics

The notions ofsource-hidingand destination-hidingare
measures of the highest probability an adversary is able to
assign to a link between a particular message and its sender
or recipient. In that sense, they are a “worst-case” measureof
a system.

In both example systems given in Fig. 7, the source-
and destination-hiding metrics would identify that the given
systems provide no anonymity for some communicants. That
is, the two systems are both source-hiding with parameter
Θ = 1.0 and destination-hiding with parameterΩ = 1.0,
meaning there are one or more senders positively linked to
their recipients andvice versa. The two example systems,
however, clearly provide different overall levels of anonymity.
Some of the messages in Fig. 7(b) even have a nearly optimal
level of anonymity.

With our permanent-based metric, we are interested in
the maximum probabilities an adversary is able to assign to
an entire setof matchings between senders and recipients
(a maximum weight perfect matching), instead of individual
links, indicating the most likely true communication pattern
in the system. The authors of [9] refer to this asglobal back-
tracing, which they dismiss as inefficient as it is exponential
in the number of sent messages.

With our permanent-based metric, global back-tracing
would be equivalent to finding a maximum weight perfect
matching in a bipartite graph with probabilities assigned to
each edge in the graph. Using an algorithm such as the
Hungarian method [14], we can more easily find a single
maximum weight perfect matching in the weighted bipartite
graph inO(n3). Enumerating all perfect matchings is still, of
course, exponential.

VI. B OUNDING THE ANONYMITY

The anonymity metric we defined in Sections II and III is
based on computing the permanent of a matrix. While it is
NP-hard to compute the permanent of a matrix [15], even if
the entries are 0-1, there has been an on-going and promising

research effort to develop efficient approximations and bounds
on the permanent of 0-1 and real matrices [16], [17].

Jerrum et al. have given a fully polynomial randomized
approximation algorithm, which provides an arbitrarily close
approximation, in time polynomially dependent onn and the
desired error [18]. Their algorithm is based on an almost
uniform sampling of perfect matchings using a Markov chain
Monte Carlo method. Bezakova et al. [19] improve this run-
ning time toO(n7 log4 n) by using a new “cooling schedule”
for the simulated annealing algorithm running on top of the
Markov chain. Still, these algorithms are impractical for large
systems, since the degrees of the polynomial running times
are too large.

We now describe an approach to obtaining bounds on the
degree of anonymity of a given system by using known,
easy-to-compute inequalities relating to the permanent ofa
matrix, which avoid the described computational complexity of
computing the exact or approximated value of the permanent.

A. A Simple Bound

When defining our permanent-based metric in Section II, we
argued that the greater the number of possible sets of match-
ings between inputs to and outputs from the anonymity system,
the harder it is for an observer to correctly identify the correct
relationship between senders and recipients. Subsequently, we
can obtain a lower bound on the anonymity level of a system
by determining the minimum number of possible perfect
matchings in the system’s corresponding bipartite graph.

The best known general lower bound for the permanent of a
(0,1)-matrix was given by Ostrand [20] and is an improvement
on an earlier lower bound due to Jurkat and Ryser [21].
Ostrand proved

per(A) ≥

n
∏

i=1

max{1, ri − i + 1}, (4)

whereA is a (0,1)-matrix with a nonzero permanent and
r1, r2, ..., rn are row sums ofA arranged such thatr1 ≤ r2 ≤
... ≤ rn.

In our model, we can assume that the permanent of a (0,1)-
matrix representing possible sender-recipient relationships is
greater than 0, since there must exist at least one perfect
matching (the actual communication pattern). It is also pos-
sible to permute the rows ofA such that the row sums{ri}
satisfy r1 ≤ r2 ≤ ... ≤ rn, without distorting the sender-
recipient relationships represented by the matrix. Further, the
permanent of a matrix is invariant under a permutation of its
rows [22]. Thus, we can apply Ostrand’s lower bound to our
model without loss of generality.

Let pmin(A) be the minimum possible number of per-
fect matchings in a (0,1)-matrixA given by (4). Substitut-
ing pmin(A) into our original definition of the degree of
anonymity of a system in (2), we obtain the inequality

d(A) ≥
log(pmin(A))

log(n!)
,



which we interpret as the minimum degree of anonymity of
the system represented byA.

B. Generalizing the Bound

In Section III, we considered instances where an observer
can assign probabilities to relationships between sendersand
recipients and then form a doubly stochastic matrix of those
probabilities. When the entries of the matrix are probabilities
instead of simply 0s and 1s, we can no longer use the bounds
presented above.

Minc has shown a lower bound on the permanent of
nonnegative matrices [23], an improvement of previous work
done by Jurkat and Ryser [24]. Minc proved

per(A) ≤

n
∏

i=1

i
∑

t=1

a∗

it + (r1 − na∗

11)

n
∏

j=2

j−1
∑

s=1

a
′

js, (5)

where(a∗

i1, ..., a
∗

in) is ann-tuple of A representing theith
row of A arranged in nonincreasing order,(a

′

i1, ..., a
′

in) is
an n-tuple of A representing theith row of A arranged in
nondecreasing order,r1 is the row sum of the first row ofA,
anda

′

11 anda∗

11 are the least and greatest values, respectively,
in the first row ofA.

We showed in Section III that a higher value for the per-
manent of a doubly stochastic matrix indicates a lower degree
of anonymity. Continuing with this logic, we letpmax(P ) be
the maximum value of the permanent of a doubly stochastic
matrix P , according to (5). Substitutingpmax(P ) into (3), we
have the inequality

d(P ) ≥
log(pmax(P ))

log( n!
nn

)
,

which we interpret as the minimum possible degree of
anonymity yielded by a system in the presence of an observer
who can assign probabilities to relationships between senders
and recipients.

VII. C ONCLUSION

We have described a new approach to quantifying the
degree of anonymity of a system as a whole by modeling
the possible associations between inputs to and outputs from
the system as a bipartite graph and using the permanent of the
graph’s adjacency matrix to derive a degree of anonymity for
that system. We have also shown how our permanent-based
anonymity metric can be generalized to include probabilistic
information determined by an attacker.

Our work is intended to complement the existing measures
of anonymity that have been developed. Though users of
a particular anonymity system are most likely interested in
only their own level of anonymity, we have shown that
our combinatorial approach can help identify properties ofa
system that other metrics might not.

REFERENCES

[1] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,”Communications of the ACM, vol. 4, no. 2, February 1981.

[2] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design of
a Type III Anonymous Remailer Protocol,” inProceedings of the 2003
IEEE Symposium on Security and Privacy, May 2003.

[3] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” inProceedings of the 13th USENIX Security
Symposium, August 2004.

[4] D. Chaum, “The dining cryptographers problem: Unconditional sender
and recipient untraceability,”Journal of Cryptology, vol. 1, pp. 65–75,
1988.

[5] D. Kesdogan, J. Egner, and R. Büschkes, “Stop-and-go MIXes: Pro-
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