
TCP Covert Timing Channels: Design and Detection

Xiapu Luo, Edmond W.W. Chan and Rocky K.C. Chang
Department of Computing, The Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong, SAR, China
{csxluo|cswwchan|csrchang}@comp.polyu.edu.hk

Abstract

Exploiting packets’ timing information for covert communi-
cation in the Internet has been explored by several network tim-
ing channels and watermarking schemes. Several of them em-
bed covert information in the inter-packet delay. These chan-
nels, however, can be detected based on the perturbed traffic
pattern, and their decoding accuracy could be degraded by jit-
ter, packet loss and packet reordering events. In this paper,
we propose a novel TCP-based timing channel, named TCP-
Script to address these shortcomings. TCPScript embeds mes-
sages in “normal” TCP data bursts and exploits TCP’s feed-
back and reliability service to increase the decoding accuracy.
Our theoretical capacity analysis and extensive experiments
have shown that TCPScript offers much higher channel capac-
ity and decoding accuracy than an IP timing channel and Jit-
terBug. On the countermeasure, we have proposed three new
metrics to detect aggressive TCPScript channels.

1 Introduction

Network covert channels pose a serious threat to the Inter-
net security, and their use for concealing malicious activities is
on the rise [4]. Most early network timing channels were de-
signed for local area networks, e.g., [19]. Only recently have
several practical network timing channels emerged. Several
of them are based on the timing information implicitly carried
in the packets. An IP timing channel (IPTime) [3], for exam-
ple, decodes an IP packet arrival during a timing interval as 1
and regards the absence of it as 0. Since the IP timing chan-
nel uses absolute time as the reference, it needs time synchro-
nization between encoder and decoder. The recently proposed
ICMP timing channel [2] and JitterBug [6] do not have this
constraint, because they embed messages into different values
of inter-packet delays.

Although these timing channels are relatively simple to im-
plement, they suffer from two major problems. First, to embed
covert messages, these channels perturb IP packets’ transmis-
sion patterns and inter-packet intervals, which can disrupt the
normal traffic behavior of the higher-layer protocols, such as

TCP. Therefore, these timing channels could be detected by
analyzing the traffic pattern at a higher layer. Second, the de-
coding accuracy of these channels could be degraded signifi-
cantly by jitter, packet loss, and packet reordering events that
are prevalent in the Internet.

In this paper, we propose TCPScript, a novel approach of
embedding a covert channel in a TCP flow. Unlike other tim-
ing channels, TCPScript retains TCP’s bursty transmission be-
havior and is much more reliable than other timing channels
under various network conditions. Our contributions can be
summarized below:

1. We have designed TCPScript to encode stealthy informa-
tion into the TCP data bursts. Since the encoding is not
based on the inter-packet delay, TCPScript is more re-
silient to delay jitters. Moreover, we have exploited clus-
tering algorithms and TCP’s rich protocol features to fur-
ther increase TCPScript’s reliability.

2. We have analytically computed the channel capacity for
TCPScript, IPTime, and JitterBug. To our best knowl-
edge, this is the first information-theoretic analysis per-
formed for these network timing channels. The capacity
analysis is important for evaluating a covert channel’s im-
pact and for designing effective defense systems.

3. We have implemented TCPScript and conducted exten-
sive experiments on a test bed and the PlanetLab plat-
form. Both the information-theoretic analysis and the ex-
periment results showed that TCPScript enjoys a higher
data rate and decoding accuracy than IPTime and Jitter-
Bug under various network conditions.

4. In terms of countermeasures, we have proposed three new
metrics for detecting TCPScript. The experiment results
have shown that our new metrics can uncover aggressive
TCPScript channels.

A roadmap We first review in §2 previous works on network
timing channels. In §3, we present TCPScript’s encoding and
decoding algorithms. To evaluate TCPScript’s performance,
we present an information-theoretic analysis in §4 and an ex-
perimental evaluation in §5. We consider the countermeasures
in §5 which will present new metrics for detecting TCPScript
and experiment results. We finally conclude this paper in §7.

1

2. Related work

The works on network timing channels can be traced back
to the work by Venkatraman et al. [1] who pointed out that tem-
poral covert channels could exploit five characteristics of com-
munications; however, they did not detail how to implement
these covert channels. Some network timing channels require
time synchronization between encoder and decoder. For exam-
ple, Padlipsky et al. proposed a timing channel where one bit
is conveyed through transmitting data or not [14], and Cabuk
et al. [3] applied a similar idea to IP packets.

Other network timing channels have been designed with-
out the constraint of time synchronization. Girling first sug-
gested hiding information into the delays between successive
transmissions from a user [7]. Building on this idea, Shah et
al. [6] proposed JitterBug that encodes binary bits into packet
inter-arrival times. A JitterBug encoder modulates the outgo-
ing packets by the value of inter-packet delay modulo a timing
window (w): bit 0 is encoded by a small value and bit 1 by
a large value. JitterBug distinguishes itself from other timing
channels in that it does not introduce new packets. As another
example, Berk et al. [2] proposed using inter-packet delay of
ICMP packets to encode single-bit and multiple-bit messages.
However, the decoding accuracy of this class of inter-packet
delay channels is still susceptible to network conditions. More-
over, they lack mechanisms for detecting and correcting errors.

A few detection algorithms have been proposed for inter-
packet delay channels by identifying anomalous statistics in
the inter-packet delay. For example, Cabuk et al. proposed
two new metrics for detection: variance in the inter-packet
delays and ε-similarity between neighboring inter-packet de-
lays [3]. Shah et al. outlined a detection method for JitterBug
based on regularities of the inter-packet arrival times induced
by a JitterBug channel [6]. Berk et al. proposed two methods
for detecting the ICMP timing channels [2]. The first method
is catered for a smart attacker who is assumed to possess the
highest capacity, and the second is similar to the one proposed
in [6]. Recently, Gianvecchio and Wang have proposed using
the Shannon entropy and the corrected conditional entropy of
inter-packet delays to detect IPTime and Jitterbug [17]. On
preventive measures, Kang and Moskowitz proposed the net-
work pump that can significantly suppress a network timing
channel’s throughput [13].

Besides, there are many steganographic techniques [11] that
can be used to embed covert messages into the content of pack-
ets. Although such covert channels usually enjoy a higher ca-
pacity, they can be defeated by active wardens [5] and other
steganoanalysis methods [11].

3. The TCPScript
3.1. The model

There are four parties in the model considered in this paper:
a TCPScript encoder (or just encoder), a TCPScript decoder

(or just decoder), a TCP server (e.g., a web server), and a war-
den. The encoder and warden are in a close proximity in terms
of communication delay. The warden can monitor and ana-
lyze all the incoming and outgoing network traffic, including
those from the encoder’s machine. The goal of the encoder is
to leak out information to the decoder outside without being
detected by the warden. In so doing, she establishes a “nor-
mal” TCP connection with the server outside her network and
embeds messages in the TCP data channel. The decoder, on
the other hand, can eavesdrop the segments sent from the en-
coder to the server. However, it does not have to eavesdrop the
reverse traffic.
3.2. A basic encoding algorithm

Assume that the encoder is given a sequence of multibit
covert messages (mi, i = 1, . . .) to transmit to the decoder.
Let each multibit covert message be represented by a positive
integer: mi ∈ [1, M], ∀i, where M is a constant pre-agreed
by the encoder and decoder. In TCPScript, each mi is encoded
by a burst of mi back-to-back TCP data segments. We call
such a burst a mi-burst. To facilitate correct decoding, two ad-
jacent messages (data bursts) are separated by an appropriate
time interval. As a result, the covert messages are encoded in a
sequence of TCP data bursts that resembles the typical pattern
for a TCP bulk transfer.

Figure 1(a) depicts the encoding process for two adjacent
messages mi = 3 and mi+1 = 2. The encoder sends a burst
of three segments to the server for mi. By eavesdropping the
three segments, the decoder can decode mi. Moreover, the
packets arrive at the server with a time dispersion of Tp be-
tween two adjacent segments, and the server sends back two
TCP acknowledgements (ACKs). The encoder considers the
transmission of mi successful after receiving the ACK for the
segments within an encoding period TE which begins from the
time of transmitting the data burst. At the end of TE , the en-
coder may send a new data burst for the next message.

To give a more precise description, we let the size of all
TCP data segments be the encoder’s maximum segment size
(MSS) in bytes (the data size could be set to other values com-
patible for the TCP-based application in use). Denote the TCP
sequence number (SN) of the jth data segment in the ith burst
(or covert message) by SNi,j , where j = 1, . . . , mi. Consid-
ering the transmission of message mi, if the encoder receives
the ACK for the mi data segments within TE, the next data
segment to be sent for mi+1 will have a sequence number of
SNi,mi

+ MSS.
However, it is possible that not all the ACKs will arrive dur-

ing TE due to loss, delay jitter, or reordering experienced by
the data segments or ACKs. As we will show next, the corre-
sponding messages may still be decoded correctly. However,
the encoder does not have enough information to ascertain the
decoding result. Instead, it will continue the transmission of
the subsequent messages. In our design, the encoder will al-
ways send the oldest unacknowledged data segment at the be-
ginning of a new data burst. For example, Figure 1(b) shows

i i+1

i,1 i,3 i+1,1 i+1,2i,2

p

E E

(a) There are no packet loss and reordering events, and all ACKs arrive
within TE .

i i+1

i,1 i,3 i+1,1

i+1,2

i,2

E E

(b) The second segment (with SNi,2) is lost; however, the decoding
result is still correct.

Figure 1. Two scenarios for encoding messages mi = 3 and mi+1 = 2 in TCPScript, and the messages are
decoded correctly in both scenarios.

that the second segment in the mi-burst is lost. The encoder
therefore retransmits the second and third segments in the next
burst (i.e., SNi+1,1 = SNi,2 and SNi+1,2 = SNi,3). As we
will see next, the repeated observation of the third segment will
not affect the decoding accuracy.
3.3. A basic decoding algorithm

Prior to the covert communication, the encoder and decoder
will agree on two parameters: the number of bursts (denoted by
N) and the value of M . There are several methods of decoding
the messages. In the following we present an off-line decod-
ing algorithm based on packet clustering which comprises two
sequential stages:

STAGE 1 The decoder first uses a clustering algorithm to
partition all the captured TCP data segments into N clusters,
each of which corresponds to a covert message. Note that this
clustering technique can mitigate the impact of delay jitter ex-
perienced by other clustering approaches using the inter-packet
delay. We have selected the hierarchical clustering algorithm
[15] which constructs the hierarchical cluster tree based on the
centroid linkage (i.e., the Euclidean distance between two clus-
ters’ centroids). Our experiment results have shown that this
algorithm achieves better performance than other popular clus-
tering algorithms [15].

STAGE 2 Consider the set of packets identified by the clus-
tering algorithm as part of the mi-burst. The decoder first ob-
tains the maximum and minimum SNs in the set, denoted by
SNi,max and SNi,min, respectively. Then the decoded mes-
sage m̃i is simply given by

m̃i ←−
SNi,max − SNi,min

MSS
+ 1. (1)

Although the decoding algorithm is very simple, it pos-
sesses the following attractive properties:

(1) Even if some data segments are missing in the mi-burst
due to packet loss, for example, the decoding result will still be
correct, provided that the first and last segments are captured
and classified into the mi-burst.

(2) If there are missing packets at the head of the mi+1-
burst but the previous burst mi is decoded correctly, then the
decoding result for mi+1 will still be correct by setting

SNi+1,min = min{SNi+1,min , SNi,max + MSS}. (2)

Since mi is decoded correctly, the last segment with SNi,max

must be captured. Therefore, SNi+1,min should be given by
SNi,max + MSS. For the m1-burst, we could set SN1,min to
min{SN1,min, SN0,max + 1}, where SN0,max is the SN of
the encoder’s TCP SYN segment.

(3) However, there are two scenarios where decoding errors
will occur. The first scenario is illustrated in Figure 2(a), where
all three data segments are received (i.e., SNi,max = SNi,3),
but the ACK for the segment with SNi,3 is lost. According to
the encoding algorithm, the encoder will retransmit the third
segment (i.e., SNi+1,1 = SNi,3) at the beginning of the next
burst. If this segment is lost again, then Eq. (2) will give
SNi+1,min = SNi,3 + MSS, thus resulting in a decoding er-
ror for mi+1 (m̃i+1 = mi+1−1). The second case, as shown in
Figure 2(b), occurs when the last segment in a burst is missing
(here SNi+1,1 = SNi,3).

3.4. The choices of TE and M

The choice of TE obviously represents a trade-off between
the decoding accuracy and channel throughput. Assuming that
the TCP server does not use delayed ACK, the encoder can set
the value of TE to at least RTT + (mi − 1)Tp for mi, where
RTT is the estimated round-trip time between the encoder and
the server. As a TCP sender, the encoder is already equipped
with the RTT estimate. To estimate the value of Tp, a simplest
approach is to use the time interval between adjacent ACKs as
an approximation for Tp, because the ACKs unlikely experi-
ence a large time dispersion because of their small size.

The range of M is determined jointly by the TCP server’s
maximum receive window size (denoted by RWNDmax) and
the MSS: 1 ≤ M ≤ RWNDmax

MSS
. If the window scale option

(a) A packet loss scenario that causes a decoding error for mi+1. (b) A packet loss scenario that causes a decoding error for mi.

Figure 2. Two packet loss scenarios that will cause decoding errors in TCPScript’s basic decoding algo-
rithm.

is not used, then RWNDmax ≤ 64 KB. Taking a common
setting of MSS = 1460 bytes, M =

⌊

64KB
1460

⌋

= 44. Moreover,
depending on the desired behavior of the cover traffic, the en-
coder may select M from [10, 20] to mimic the behavior of a
long-lived TCP flow and from [3, 8] to mimic the behavior of a
short-lived TCP flow [18].

3.5 A loss-resilient TCPScript

To improve the reliability against packet losses, we have
also proposed a loss-resilient TCPScript (LR-TCPScript)
which is not included in this paper due to the page limit. Its ba-
sic idea is to recover the packet burst (i.e. message) for which
the encoder fails to receive all the expected ACKs within TE,
before sending the next message. There are two main mecha-
nisms in LR-TCPScript. An LR-TCPScript’s encoder first uses
a timeout-retransmission scheme to recover the message. This
mechanism, however, is inadequate to handle two special sce-
narios: the lost of all data segments and the lost of all ACKs in
a burst. We therefore employ a rollback mechanism to address
these two scenarios.

4. An information-theoretic analysis

Determining a covert channel’s capacity is very useful for
assessing its impact and for designing the defense systems [8].
However, very few works studied the capacity of network tim-
ing channels [21, 2]. Venkatraman et al. used a noiseless model
to analyze the capacity of network covert channels that exploit
the spatial and temporal variation in transmission characteris-
tics [21]. Berk et al. used the Arimoto-Blahut algorithm to
estimate the capacity of inter-packet delay channels [2].

However, all the previous works do not consider the effect
of packet loss on the channel capacity. In this section, we fill
this gap by modeling the capacity of TCPScript, IPTime, and
JitterBug in the presence of packet loss. We will compare their
information capacity (in terms of bits) derived from the chan-
nel models under different packet loss probability, denoted by

Ploss. Here we do not consider the impact of severe jitters, be-
cause all three channels could effectively mitigate such effects
by selecting proper parameters (e.g., setting the time interval to
80ms in IPTime [3] and the window size to 100ms in Jitterbug
[6]). On the other hand, all of them are susceptible to packet
losses.

We model the three channels as discrete memoryless chan-
nels (DMCs) with the input symbols and output symbols de-
noted as X and Y , respectively. Moreover, p(x) and q(y) are
the probability mass functions for X and Y . We also denote
P (X = xi) by p(xi). A DMC’s capacity is defined as:

C = max
p(x)

{H(X) − H(X |Y)} = max
p(x)

{H(Y) − H(Y |X)},

(3)
where H(X) (or H(Y)) is the entropy of X (or Y), and
H(X |Y) and H(Y |X) are conditional entropies [22].

According to each channel’s characteristics, we model IP-
Time, JitterBug, and TCPScript using Z-Channel, Binary Era-
sure Channel, and Error and Erasure Channel, respectively, as
shown in Figure 4.

IPTIME There are two input symbols to the channel:
nonarrival of a packet (0) and arrival of a packet (1). There-
fore, symbol 1 will be decoded as 0 due to a packet loss
(with probability PI10), but symbol 0 is always decoded as 0.
From Figure 3(a), we obtain the probability transition matrix

as Q(Y |X) =

(

1 0
PI10 1 − PI10

)

, where Ploss = PI10.

By applying the known capacity result for a Z-Channel [9], we
have

C = F[p(x)(1 − Ploss), 1 − p(x)(1 − Ploss)]

−p(x)F[(1 − Ploss), Ploss], (4)

where F[α, β] = − log2(α
αββ), and p(x) = (P

Ploss

1−Ploss

loss)/(1 +

(1 − Ploss)P
Ploss

1−Ploss

loss).
JITTERBUG Each symbol is represented by the time in-

terval between two consecutive packets. Therefore, if at least

(a) Modeling IP timing channel as a Z-
Channel.

(b) Modeling JitterBug as a Binary Erasure
Channel.

(c) Modeling TCPScript as an Error and Era-
sure Channel.

Figure 3. Modeling TCPScript, IP timing channel, and JitterBug as discrete memoryless channels.

one packet is lost, it will become a deletion channel whose
channel capacity is difficult to estimate [23]. To simplify the
analysis, we consider the case of transmitting two packets and
model it as an erasure channel. The erasure state E is en-
tered when either packet is lost with probabilities PJ0E and
PJ1E for the input symbol of 0 and 1, respectively. From
in Figure 3(b), we obtain the probability transition matrix

as Q(Y |X) =

(

1 − PJ0E PJ0E 0
0 PJ1E 1 − PJ1E

)

, where

PJ0E = PJ1E = 1 − (1 − Ploss)
2. Then we can obtain

C = (1 − Ploss)
2.

TCPSCRIPT Recall from §3 that packet losses at a burst’s
tail will result in decoding errors, but packet losses at a burst’s
head may or may not. Moreover, there are two kinds of errors:
m̃i < mi or mi is missing entirely. The first type of error
enforces that xi > yi. The second type of error is the result
of losing the entire burst of packets; that is, the corresponding
output symbol is an erasure state. To simplify the analysis, we
derive the upper bound (burst-tail errors or burst-head errors)
and lower bound (only burst-tail errors) on the probability of
correct decoding which will in turn give the lower bound and
upper bound on the capacity, respectively.

We derive the upper bound on p(xi|xj) (denoted by
p̄(xi|xj)) by obtaining the probability that packet losses occur
only to the bursts’ tails. Therefore, the probability transition
matrix is:

p̄(xi|xj) =

(1 − Ploss)
jP i−j

loss if i > j

1 −
∑i−1

k=0 p(xi|xk) if i = j
0 if i < j,

(5)

where i = 1, . . . , N and j = 0, . . . , N . The case of j = 0
corresponds to the erasure state.

To derive the lower bound on p(xi|xj) (denoted by
p(xi|xj)), we consider packet losses in either the head or tail
of a burst. Therefore, the probability transition matrix is:

p(xi|xj) =

P i
loss if j = 0

(i − j + 1)(1 − Ploss)
jP i−j

loss if i > j 6= 0

1 −
∑i−1

k=0 p(xi|xk) if i = j
0 if i < j,

(6)

where i = 1, . . . , N and j = 0, . . . , N . Based on Eq. (5)
and Eq. (6), we can therefore estimate the lower bound and
upper bound for TCPScript’s capacity by applying the Blahut-
Arimoto algorithm [22].

For a fair comparison, we multiply the capacity of IPTime
and JitterBug by log2M (i.e., equivalent to log2M parallel
channels). We use IP Time-log2M to refer to the IPTime ca-
pacity for M symbols and similarly for JitterBug and TCP-
Script. We use TCPScript U(or TCPScript L) to indicate the
upper (or lower) bound of TCPScript’s capacity in Figure 4.
We first discuss the results for M = 2 (i.e., single-bit en-
coding) which are shown in Figure 4(a). TCPScript’s upper
bound is overlapped with IPTime’s (that is why the IPTime
graph cannot be seen from the figure). When M = 2, TCP-
Script’s channel model is reduced to a Z-Channel if we group
the erasure state with state 1 on the decoder side. Moreover,
we have observed that JitterBug slightly outperforms the other
two at a low Ploss; however, the trend is reversed at a higher
Ploss. These results are consistent with the fact that any packet
loss will reduce JitterBug into a deletion channel.

Figures 4 also shows the results for M = 4, 6, 8 (i.e., multi-
bit encoding). When M = 4, TCPScript’s upper bound is
higher than the other two channels’ capacity; however, the
lower bound is still below the other two at low values of Ploss.
When M is increased to 6 and 8, Figure 4(b) clearly illustrates
the advantage of TCPScript, because both upper and lower
bounds are higher than the other two for almost all Plosss.
Moreover, the advantage becomes even more outstanding as
Ploss increases. The major reason responsible for its resilience
to packet losses is that not all packet losses will incur decoding
errors—only those occurred to a burst’s tail and some occurred
to a burst’s head. In contrast, every packet loss will result in
decoding errors for IPTime and JitterBug.

5. Performance evaluation

In this section, we report the performance evaluation results
for TCPScript, JitterBug, and IPTime. We have implemented
the TCPScript encoder as an HTTP client that uses the HTTP
POST method to transmit data to a web server. We use Linux

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Loss probability

Ch
an

ne
l c

ap
ac

ity
 (B

it)

IPTime−1
JitterBug−1
TCPScript−1 U
TCPScript−1 L
IPTime−2
JitterBug−2
TCPScript−2 U
TCPScript−2 L

(a) Channel capacity with 2 and 4 input symbols.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

1

2

3

4

Loss probability

Ch
an

ne
l c

ap
ac

ity
 (B

it)

IPTime−3
JitterBug−3
TCPScript−3 U
TCPScript−3 L
IPTime−4
JitterBug−4
TCPScript−4 U
TCPScript−4 L

(b) Channel capacity with 8 and 16 input symbols.

Figure 4. Comparing the channel capacity for TCPScript, IP timing channel, and JitterBug.

raw sockets to customize the outgoing packets. Note that the
encoder could also be easily implemented in other TCP-based
applications (e.g., FTP and P2P applications). For the TCP-
Script decoder, we utilize libpcap to capture the traffic sent
from the encoder to the web server. Moreover, we have imple-
mented IPTime’s and JitterBug’s encoding and decoding algo-
rithms. Both use a fixed timing interval (or timing window) of
w. The JitterBug encoder adopts the default tolerance parame-
ter ε = w/4 [6].

We have conducted extensive experiments in both a test bed
and the Internet using PlanetLab nodes. The test bed allows
us to study the impact of arbitrarily network conditions on
the channel performance, whereas the PlanetLab platform pro-
vides a real network environment for evaluation. For the pur-
pose of evaluation and comparison, we are interested in their
empirical channel accuracy α and empirical channel goodput
ζ defined as

α = 1 − pe and ζ =
αN log2 M

Td

, (7)

where pe is the channel’s bit error rate, and Td is the total time
required for delivering the N covert messages. We employ the
Levenshtein (or Edit) distance to compute pe, which is given
by the minimum number of insertions, deletions, and substitu-
tions required to convert a decoded message into the original
message.

5.1. Test-bed experiments

The test bed has a dumbbell topology. An encoder is located
on one end of the topology, whereas the decoder and a web
server are located on the other. The two ends are connected by
two routers R1 and R2. We have deployed Dummynet in both
routers to emulate various network conditions. All the network
links are full duplex with capacity of 100Mbit/s. The encoder
embeds covert messages into the TCP packets destined to the
web server which can be eavesdropped by the decoder.

We have conducted test-bed experiments with the following
parameter settings. The RTT between the encoder and the web
server is 30ms. The TCPScript encoder uses TE = {40, 60}ms
to transmit 100 codewords (N = 100) with M = {4, 16}.
Each experiment was repeated 30 times; each time a different
set of 100 codewords was generated randomly. We report the
average values of ζ and α over the 30 results, which are de-
noted by ζ and α, respectively. The JitterBug’s and IPTime’s
encoders use w = {40, 60}ms to transmit the same 30 sets of
codewords bit by bit in a single flow of modulated UDP pack-
ets. The size of all IP packets sent by the encoder is 1500 bytes.

EFFECTS OF PACKET LOSSES Table 1 summarizes the
average channel accuracy and goodput under different packet
loss rates (PLRs), ranging between 0% and 5%, and TE =
w = 40ms. In each cell, the two leftmost values are the 95%
confidence intervals (CIs) for ζ , whereas the values inside the
parentheses are the 95% CIs for α. All the results are obtained
without using any error correction codes. The table shows that
both TCPScript and JitterBug achieve 100% accuracy in a loss-
less environment, whereas IPTime achieves only up to 95%
accuracy due to the queueing delay introduced by the routers.
Moreover, TCPScript’s goodput is at least 1.5 times higher than
that of JitterBug for M = 4. As the PLR increases, the decod-
ing errors start increasing for all timing channels. However,
even when the PLR reaches 5%, TCPScript still maintains a
relatively low pe of at most 4%, while JitterBug’s and IPTime’s
pe are at most 7% and 8%, respectively.

EFFECTS OF PACKET REORDERING We have evaluated
the channel performance under two different packet reordering
scenarios referred to as A and B. In each scenario, we config-
ured R1 with different numbers of pipes and entrance probabil-
ities, such that the mean RTT between the encoder and decoder
was equal to 30ms. As shown in Table 2, we do not observe
decoding errors for TCPScript for both reordering scenarios. It
also achieves a higher goodput than the other two timing chan-
nels. Comparing with the results for PLR = 0% in Table 1,

Table 1. The values of ζ and α for different PLRs and TE = w = 40ms.
PLR TCPScript JitterBug IPTime

95% CIs of ζ (95% CIs of α) for 100 codewords with M = 4

0% 48.89,48.90 (1.00,1.00) 30.98,30.98 (1.00,1.00) 22.89,22.89 (0.95,0.95)
1% 46.64,49.32 (0.99,1.00) 30.49,30.49 (0.98,0.99) 22.77,22.77 (0.94,0.95)
3% 45.09,48.82 (0.98,0.99) 29.76,29.76 (0.96,0.97) 22.45,22.45 (0.93,0.94)
5% 45.82,48.58 (0.97,0.99) 29.16,29.16 (0.94,0.95) 22.19,22.19 (0.92,0.93)

we find that TCPScript still maintains similar goodputs even
under the two reordering scenarios. However, both JitterBug
and IPTime suffer from significant throughput degradation and
decoding error rates. Their measured pe can be up to 21% and
14%, and their goodputs drop by 21% and 9%, respectively.
Since both JitterBug and IPTime encode in the packet inter-
arrival times, their decoding accuracy is very sensitive to de-
lay jitter. On the other hand, TCPScript does not directly rely
on the packet inter-arrival times. Decoding errors occur only
when the packet reordering causes a packet to be clustered into
a wrong burst.

EFFECTS OF TRAFFIC SHAPING To study the effects of
traffic shaping on TCPScript, we deployed NetPath [16] in R1

to emulate a traffic shaper with different bandwidth limits B =
{0.5, 1, 2, 5, 10}Mbps and a fixed RTT of 100ms between the
encoder, and decoder and the web server. We used Iperf to
generate background TCP traffic, and the encoder used M = 4
and TE = {120, 140, 160, 180}ms to transmit the same set of
100 codewords. As shown in Table 3, no decoding errors are
observed until the bandwidth limit drops to 0.5Mbps, and in
the worst case pe is only 3.8%. Moreover, a smaller TE will
suffer more decoding errors, because the inter-burst gaps may
not be accurately identified by the decoder.

5.2. PlanetLab experiments

For the Internet experiments, we have selected eight geo-
graphically diversed PlanetLab nodes to serve as the encoders
that are listed in Table 4. The Linux Hierarchical Token Bucket
(HTB) scheduler has been implemented in each PlanetLab
node to provide the default traffic shaping function [10]. While
this function delays outgoing packets to meet certain band-
width shares, it can also smooth out bursty traffic. The web
server and the decoder, on the other hand, are located at our
campus network. The decoder extracts covert messages from
the packet flows sent from the encoders to the web server. We
have obtained a total of 3,744 samples for each encoder during
the experiment period. In Figures 5-6, the PlanetLab nodes on
the x-axis are sorted in an increasing order of their RTTs.

Figure 5 reports the average channel accuracy for the timing
channels with TE = w = {2RTT, 2.5RTT, 3RTT}. Note that
TCPScript generally attains higher channel accuracy than IP-
Time and JitterBug. Moreover, TCPScript’s channel accuracy
is consistently higher than 98% even in the presence of the
traffic shaping function in the encoders’ outgoing links. For
those paths that exhibit large jitters (i.e., TW, CN, JP, and CA),

all timing channels attain lower decoding accuracy. But TCP-
Script still enjoys higher accuracy than the other two channels.
For IPTime, Figure 5(c) shows that a larger w will generally in-
crease its decoding accuracy, because a larger timing window
could mitigate the impact of time desynchronization. However,
we do not observe this relationship for TCPScript and Jitter-
bug. An analysis of the network traces reveals that packet loss,
instead of the large delay jitter, is the main factor responsible
for their decoding errors.

Figure 6 shows the average channel goodput. Even using
M = 4, TCPScript’s goodput is around two times of the other
two channels’ goodput. TCPScript’s goodput advantage will
become even more significant for a larger M . As the path
quality deteriorates in terms of the RTT, the measured good-
puts also decrease.

6. Detecting TCPScript

TCPScript can evade the existing detection schemes de-
signed for inter-packet delay channels. Therefore, we propose
in this section three new metrics for detecting TCPScript: a de-
viation score for the burst size, entropy of burst size, and inter-
ACK-data delay. We have also employed a simple threshold-
based algorithm to evaluate their detection capabilities. We
used the LBNL’s traces [20] (around 11GB of uncompressed
header traces) to build the traffic profile and evaluate the false
positive rate (FPR). This trace set represents typical traffic
characteristics for enterprise networks, and the network setting
is also similar to our model described in §3.1.

6.1. Detection based on the burst size

Since TCPScript embeds information into the burst size, an
obvious metric is the burst size itself. The idea is that the burst
size is usually controlled by TCP congestion control algorithm;
hence, the neighboring burst sizes are expected to exhibit the
corresponding pattern. However, we do not expect the same
for the burst sizes modulated by TCPScript, because the burst
size depends only on the covert messages. Although the idea
is simple, we have to tackle two challenging issues: how to
identify the bursts and how to design criteria for distinguishing
between normal TCP bursts and the bursts modulated by TCP-
Script. Both of them are nontrivial to tackle because of a wide
range of normal network phenomena and a diversity in the im-
plementations of TCP congestion control algorithms [12].

Table 2. The values of ζ and α for two packet reordering scenarios A and B and TE = w = 40ms.
TCPScript JitterBug IPTime

95% CIs of ζ (95% CIs of α) for 100 codewords with M = 4

A 48.85,48.88(1.00,1.00) 25.05,25.05(0.80,0.82) 21.94,21.94(0.91,0.92)
B 48.87,48.88(1.00,1.00) 24.66,24.66(0.79,0.81) 20.68,20.68(0.86,0.87)

Table 3. The values of ζ and α for TCPScript with M = 4 and TE = {120, 140, 160, 180}ms under different
bandwidth limits imposed by a traffic shaper: B = {0.5, 1, 2, 5, 10}Mbps.

TE
Bandwidth Limit B

0.5Mbps 1Mbps 2Mbps 5Mbps 10Mbps
120ms 11.89,13.98 (0.90,1) 15.53,15.70(1,1) 15.52,15.71(1,1) 15.47,15.71(1,1) 16.03,16.15(1,1)
140ms 11.32,12.44(0.95,1) 13.46,13.58(1,1) 13.46,13.59(1,1) 13.51,13.64(1,1) 13.83,13.93(1,1)
160ms 10.82,11.73(0.95,1) 11.86,12.00(1,1) 12.04,12.12(1,1) 12.14,12.18(1,1) 12.18,12.19(1,1)
180ms 9.84,10.58(0.96,1) 10.61,10.73(1,1) 10.76,10.83(1,1) 10.81,10.89(1,1) 10.83,10.91(1,1)

Table 4. Path characteristics from the encoders (on PlanetLab nodes) to the decoder (on our campus).
Locations No. hops Mean RTT and the 95% CIs Locations No. hops Mean RTT and the 95% CIs

Taipei, Taiwan (TW) 10 .0525 ± .0021 Kansas, U.S. (KS) 16 .2263 ± .0003

Shenyang, China (CN) 13 .0812 ± .0026 Rhode Island, U.S. (RI) 13 .2335 ± .0003

Tokyo, Japan (JP) 16 .1165 ± .0023 Gwangju, Korea (KR) 18 .2381 ± .0018

California, U.S. (CA) 14 .2007 ± .0022 Flanders, Belgium (BE) 16 .3158 ± .0002

TW CN JP CA KS RI KR BE
0.95
0.96
0.97
0.98
0.99

1

Location

α

TE=2RTT TE=2.5RTT TE=3RTT

(a) TCPScript with M = 4.

TW CN JP CA KS RI KR BE
0.95
0.96
0.97
0.98
0.99

1

Location

α

w=2RTT w=2.5RTT w=3RTT

(b) JitterBug.

TW CN JP CA KS RI KR BE
0.95
0.96
0.97
0.98
0.99

1

Location
α

w=2RTT w=2.5RTT w=3RTT

(c) IPTime.

Figure 5. Measured average channel accuracy from the PlanetLab experiments.

TW CN JP CA KS RI KR BE
0

5

10

15

20

Location

ζ
(b

it
/s

)

TCPScript (M=4)
JitterBug
IPTime

(a) TE = w = 2RTT.

TW CN JP CA KS RI KR BE
0

5

10

15

Location

ζ
(b

it
/s

)

TCPScript (M=4)
JitterBug
IPTime

(b) TE = w = 2.5RTT.

TW CN JP CA KS RI KR BE
0

5

10

15

Location

ζ
(b

it
/s

)

TCPScript (M=4)
JItterBug
IPTime

(c) TE = w = 3RTT.

Figure 6. Measured goodput from the PlanetLab experiments.

Since the warden does not know how many bursts have been
delivered, she cannot use clustering algorithms to separate the

data bursts. Therefore, we adopt a heuristic algorithm to iden-
tify a series of bursts. We let TPi, i = 1, 2, . . ., denote the

timestamp values when the warden captures the ith data packet.
Let IPTi = TPi+1 − TPi denotes the inter-arrival time be-
tween ith and (i + 1)th packets. We consider that TPi marks
the end of a burst if the ratio of IPTi and the average inter-
arrival time exceeds a threshold.

After obtaining a sequence of bursts from a TCP data flow,
we employ two metrics for the detection. Let m̂i be the num-
ber of packets in the ith burst estimated by the warden. The
first metric is a deviation score (DS) that captures abnormal
changes from m̂i to m̂i+1. We have proposed a set of rules to
update the DS which is omitted in this paper due to the lim-
ited space. The second metric is the entropy of the burst size,
denoted by E . It is motivated by the observation that TCP-
Script’s burst size will be uniformly distributed, if the covert
messages also follow a uniform distribution. Given Nb bursts,
we then compute E as −

∑Nb

i=1 p(mi) log p(mi), where p(mi)
is the probability of observing mi. Our extensive experiments
have shown that E detects more TCPScript channels than DS
does. Therefore, we discuss only the results using E in the
remaining of this section.

Figure 7 shows the CDFs of E for the LBNL traces and
TCPScript traces. Around 95% of the entropy values for the
LBNL traces are less than 3, but almost all entropy values for
TCPScript with M = 16 are larger than 3. However, most en-
tropy values for TCPScript with M = 4 are around 2. There-
fore, E can detect TCPScript channels with a large M but may
miss others for M = 4 or an even lower M .

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Entropy of burst size

E
m

pi
ri

ca
l C

D
F

LBNL−20041004
LBNL−20041215
LBNL−20041216
LBNL−20050106
LBNL−20050107
TCPScript M=4
TCPScript M=16

Figure 7. Entropy for the LBNL traces and TCP-
Script traces.

6.2. Detection based on inter-ACK-data delay

To enhance the detection capability of the above metrics,
we propose another new metric (denoted as TAD) which is the
inter-arrival time between an ACK (PktACK) and the first data
packet (PktData) following PktACK and having a SN larger
than PktACK’s acknowledgement number. That is, the trans-
mission of PktData is very likely induced by the arrival of
PktACK . The motivation of using TAD is that if a TCP sender
has data to send and the receive window is larger than one
MSS, the sender will dispatch new data packets after receiving
a new ACK. However, since the TCPScript encoder transmits
another burst of packets only at end of TE , the resulted TAD

is expected to be larger than the normal values. Therefore, we

use TAD’s mode (i.e., the peak of its density function) to detect
TCPScript.

Figure 8 shows the CDF of TAD for the LBNL traces and
TCPScript traces. Since the same TE is adopted for TCPScript
with M = 4, 16 in our experiments, their CDFs almost over-
lap. We can see that most of the TAD values in LBNL traces are
very small; for example, around 78%−90% of the TAD values
for the LBNL traces are less than 0.02. On the contrary, TCP-
Script will often result in large TAD values; for example, more
than 94% of the TAD values for TCPScript is larger than 0.02.
Therefore, this metric is effective for detecting TCPScript for
both values of M .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

Inter−ACK−Data delay (TAD)

E
m

pi
ri

ca
l C

D
F

LBNL−20041004
LBNL−20041215
LBNL−20041216
LBNL−20050106
LBNL−20050107
TCPScript M=4
TCPScript M=16

Figure 8. The CDFs of the inter-ACK-data delay
in the LBNL traces and TCPScript traces.

6.3. Evaluating the new metrics

We have employed a simple threshold-based algorithm [3]
to evaluate the performance of the two new metrics: E and
TAD. To build the normal profiles for them, we use the samples
collected from three sets of LBNL traces (LBNL-20041004,
LBNL-20050106 and LBNL-20050107) [20]. These sample
values are less than the Q quantile values in the corresponding
training data sets in order to mitigate the impact of outliers.
Based on these two sets of data, we compute their means (θE
and θTAD

) and their standard deviations (δE and δTAD
). More-

over, we define their thresholds as ΓE = θE + d × δE and
ΓTAD

= θTAD
+ d × δTAD

, respectively, where d is a parame-
ter for controlling the thresholds.

We have used real TCPScript traces collected from the Plan-
etLab experiments to evaluate the detection rates. We have
tested different combinations based on Q ∈ [0.8 0.85 0.9 0.95]
and d ∈ [1 1.5 2 2.5]. Due to the limited space, we tabulate
only part of the experiment results in Table 5, where Q = 0.95
and d = 1.5, 2.5. We show the detection rates using only E ,
only TAD, and both of them (labeled by “Both”). The last col-
umn also gives their respective FPRs that are computed from
the remaining two sets of the LBNL traces, assuming that TCP-
Script channels do not exist in them.

From Table 5 and other experiment results that are not
shown here, we have found that when Q and d increase, the av-
erage detection rate based on a single metric may decrease, be-
cause such settings will relax the constraint on the TCPScript’s
behavior. However, the detection rate based on both metrics
may not decrease, because a union of these two orthogonal

Table 5. Detection rates and FPR using E and TAD under different parameter settings.
BE(M=4) BE(M=16) KR(M=4) KR(M=16) CA(M=4) CA(M=16) JP(M=4) JP(M=16) FPR

Q = 0.95 E 0 1 0 0.9944 0 0.9708 0 0.9663 0.0985
TAD 0.8944 0.8156 0.8389 0.8371 0.838 0.8304 0.8362 0.7921 0.1021

d = 1.5 Both 0.8944 1 0.8389 0.9944 0.838 0.9883 0.8362 0.9888 0.1947
Q = 0.95 E 0 1 0 0.9775 0 0.8012 0 0.9157 0.0245

TAD 0.8778 0.7709 0.8333 0.809 0.6704 0.6725 0.7627 0.7640 0.0662
d = 2.5 Both 0.8778 1 0.8333 0.9831 0.6704 0.9181 0.7627 0.9775 0.0901

metrics’ detection ranges does not shrink. On the other hand,
the FPR will increase along with Q and d. Moreover, compar-
ing the two metrics, TAD is more effective than E for M = 4,
because E could not effectively detect TCPScript with small
M which is already shown in Figure 7. On the other hand,
also shown in Figure 7, E is more effective than TAD when
M = 16. Combining the two metrics could therefore improve
the detection performance for some cases, but with the expense
of increasing the FPR.

7. Conclusions
In this paper, we have presented TCPScript which repre-

sents a new approach to designing effective network timing
channels. By encoding covert messages into the bursts of
TCP data packets, the modulated traffic retains TCP’s normal
burstiness patterns. Besides TCP, this approach can be eas-
ily applied to other protocols, such as SCTP, because it uses
only three fundamental mechanisms that are available in other
reliable end-to-end protocols: sliding-window algorithm, se-
quence number, and acknowledgements. Moreover, we have
performed an information-theoretic analysis to estimate the
channel capacity for TCPScript, the IP timing channel, and Jit-
terBug. The analytical results and extensive experiments show
that TCPScript achieves higher goodput and decoding accu-
racy than the two other channels under various network con-
ditions. On the countermeasure, we have proposed three new
metrics to detect TCPScript and the experiments show that they
are effective in detecting aggressive TCPScript channels.

Acknowledgments

This work was partially supported by a grant from The
Hong Kong Polytechnic University (project code U386). The
authors thank Prof. Wenke Lee, Prof. Wing-Cheong Lau and
anonymous reviewers for their useful comments.

References

[1] B. Venkatraman and R. Newman-Wolfe. Transmission sched-
ules to prevent traffic analysis. In Proc. ACSAC, 1993.

[2] V. Berk, A. Giani, and G. Cybenko. Detection of covert channel
encoding in network packet delays. Technical report, Depart-
ment of Computer Science, Dartmouth College, 2005.

[3] S. Cabuk, C. Brodley, and C. Shields. IP covert timing channels:
Design and detection. In Proc. ACM CCS, 2004.

[4] E. Casey. Next-generation cyber forensics: Investigating so-
phisticated security breaches. Comm. ACM, Feb. 2006.

[5] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil. Eliminating
steganography in Internet traffic with active wardens. In Proc.
Information Hiding Workshop, 2002.

[6] G. Shah, A. Molina, and M. Blaze. Keyboards and covert chan-
nels. In Proc. USENIX Security, 2006.

[7] C. Girling. Covert channels in LAN’s. IEEE Trans. Software
Engineering., Feb. 1987.

[8] V. Gligor. A guide to understanding covert channel analysis of
trusted systems (light pink book). Technical Report NCSC-TG-
030, National Computer Security Center, Nov. 1993.

[9] S. Golomb. The limiting behavior of the Z-Channel. IEEE
Trans. on Infor. Theory, 26(3), May 1980.

[10] M. Huang. Bandwidth limits — PlanetLab. https://www.planet-
lab.org/doc/BandwidthLimits, 2006.

[11] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker. Digi-
tal Watermarking and Steganography. Morgan Kaufmann, 2nd
edition, 2007.

[12] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.
Inferring TCP connection characteristics through passive mea-
surements. In Proc. IEEE INFOCOM, 2004.

[13] M. Kang, I. Moskowitz, and D. Lee. A network Pump. IEEE
Trans. Software Engineering, May 1996.

[14] M. Padlipsky, D. Snow, and P. Karger. Limitations of end-to-
end encryption in secure computer networks. Technical report,
The MITRE Corporation, 1978.

[15] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-
Interscience, 2000.

[16] S. Agarwal and J. Sommers and P. Barford. Scalable network
path emulation. In Proc. IEEE MASCOTS, 2005.

[17] S. Gianvecchio and H. Wang. Detecting covert timing channels:
An entropy-based approach. In Proc. ACM CCS, 2007.

[18] S. Shakkottai, N. Brownlee, and k. claffy. A study of burstiness
in TCP flows. In Proc. PAM, 2005.

[19] T. Handel and M. Stanford. Hiding data in the OSI network
model. In Proc. Information Hiding Workshop, 1996.

[20] V. Paxson. LBNL/ICSI enterprise tracing project.
http://www.icir.org/enterprise-tracing/Overview.html, 2005.

[21] B. Venkatraman and R. Newman-Wolfe. Capacity estimation
and auditability of network covert channels. In Proc. IEEE
Symp. Security and Privacy, 1995.

[22] R. Yeung. A First Course in Information Theory. Kluwer Aca-
demic, 2002.

[23] Z. Wang and R. Lee. New constructive approach to covert chan-
nel modeling and channel capacity estimation. In Proc. ISC,
2005.

