
Cloak: A Ten-Fold Way for Reliable Covert
Communications

Xiapu Luo, Edmond W.W. Chan, and Rocky K.C. Chang

Department of Computing
The Hong Kong Polytechnic University

{csxluo,cswwchan,csrchang}@comp.polyu.edu.hk

Abstract. In this paper, we propose Cloak—a new class of reliable
timing channels—which is fundamentally different from other timing
channels in several aspects. First, Cloak encodes a message by a unique
distribution of N packets over X TCP flows. The combinatorial nature of
the encoding methods increases the channel capacity largely with (N, X).
Second, Cloak offers ten different encoding and decoding methods, each
of which has a unique tradeoff among several important considerations,
such as channel capacity and the need for packet marking. Third, the
packet transmissions modulated by Cloak could be carefully crafted to
mimic the normal TCP flows in a typical TCP-based application ses-
sion. Although Cloak’s basic idea is simple, we show in this paper how
we tackle a number of challenging issues systematically. Our experiment
results collected from PlanetLab nodes and a test bed suggest that Cloak
is feasible under various network conditions and different round-trip
delays.

Keywords: covert channel analysis, network security, attack models.

1 Introduction

In this paper, we consider data hiding techniques using network protocols as
the cover. The communication channel under the cover is often referred to as a
network covert channel. Network covert channels could pose a serious threat to
the Internet security, because of their “proven” ability of stealthily exfiltrating
stolen information (a hardware was built in [1]), coordinating an Internet-wide
DDoS attacks [2] and Internet worm attack [3], coordinating a physical attack
plan (a book was written about this possibility [4]), and other subversive oper-
ations. On the other good hand, they are useful for enhancing Internet privacy
[5,6], watermarking encrypted flows in stepping stones [7], and tracking VoIP
calls [8].

Similar to the classic covert channels in trusted computer systems, network
covert channels could be classified into storage channels and timing channels
[9,10]. In a storage channel, the encoder and decoder communicate covertly
through “attributes of shared resources” [11], which could be any fields in a
packet that can be “written” by the encoder and “read” by the decoder. The

J. Biskup and J. Lopez (Eds.): ESORICS 2007, LNCS 4734, pp. 283–298, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

284 X. Luo, E.W.W. Chan, and R.K.C. Chang

covert messages are encoded directly into these fields. Most existing network
covert channels fall into this category. In a timing channel, the encoder and de-
coder communicate “through a temporal or ordering relationship of accesses to
a shared resource” [11] which could be the timing of packet arrivals that can
be modulated by the encoder and observed by the decoder. For example, an
IP packet arrival within a time interval represents bit 1 and the absence of it
represents bit 0 in an IP timing channel [12].

Existing network covert channels, however, suffer from low data rates in the
presence of dynamic network conditions and active network intermediaries (ANI)
(e.g., protocol scrubbers [13], traffic normalizer [14], and active wardens [15]).
For example, the message encoding based on inter-packet delay is very sensitive
to delay jitter, and packet losses affect the integrity of both timing and storage
channels. On the other hand, storage channels do not suffer from these problems.
Instead, their encoded messages could be altered by an ANI which modifies the
replaceable header fields in the packets that pass through them.

In this paper, we propose Cloak—a new class of timing channels which is
designed to be reliable under adverse network conditions. That is, Cloak’s de-
coding accuracy is 100% even in the presence of packet losses, delay jitters, packet
reordering, and packet duplications. The key elements responsible for this reli-
ability property are using TCP data traffic as a cover (i.e., exploiting TCP’s
reliable transmission mechanism) and employing a fixed number of TCP pack-
ets (N) for encoding/decoding a message to avoid the inherent synchronization
errors plaguing many network timing channels.

Another important deviation from other timing channels is that Cloak en-
codes a message with a unique distribution of N packets over X TCP flows,
where N, X > 1. Due to the combinatorial nature of the encoding method,
Cloak’s channel capacity increases quickly with (N, X). Besides, Cloak offers ten
different encoding and decoding methods. Each method tradeoffs among several
conflicting design goals. Although Cloak uses multiple flows for the message en-
coding, the packet distribution over the flows can be carefully crafted to match
with the normal TCP behavior in an application session. To our best knowledge,
Cloak is the first network covert channel that exploits Enumerative Combina-
torics [16] to convey hidden messages. Moreover, this original idea is generally
enough for designing new covert channels and applying to other steganography
problems.

The road map for the rest of this paper is as follows. Section 2 briefly discusses
the previously proposed network timing channels. Section 3 presents the basic
idea of message encoding in Cloak which is based on the well-known Twelvefold
Way in the field of Enumerative Combinatorics. Section 4 details how we have
resolved a number of difficult design issues for deploying Cloak in the Internet.
Section 5 reports the test-bed and PlanetLab measurement results to evaluate
Cloak’s data rate under various network conditions and parameter settings. Sec-
tion 6 summarizes this paper with a few venues of enhancing this work.

Cloak: A Ten-Fold Way for Reliable Covert Communications 285

2 Related Work

Despite that information theorists have analyzed the capacity of covert timing
channels for a long time, only recently have several practical timing channels
emerged. On the network layer and above, there are so far two practical ap-
proaches to manipulating the packet timing: ordered channels and inter-packet
delay channels. In the class of ordered channels, Kundur and Ahsan [17] pro-
pose to re-sort the original order of a flow of IPSec packets and use the out-of-
orderliness to imbed messages. Chakinala et al. [18] further extend the approach
to TCP packets and formalize various models for these ordered channels.

The class of inter-packet delay channels, on the other hand, embeds messages
in the delay period between selected packets. Cabuk et al. [12] propose an IP
timing channel, where an IP packet arrival during a timing interval is decoded
as 1 and the absence of it is decoded as 0. Shah et al. recently [1] propose
JitterBug, another timing channel to encode binary bits. Unlike the IP timing
channel, JitterBug encodes binary bits into the packet inter-arrival times, and it
does not need to inject new packets. Moreover, they have presented a convincing
threat of leaking keyboard typed secrets, such as passwords, through the timing
channel and have built a hardware to demonstrate its feasibility. Berk et al.
[19] have considered using inter-packet delay of ICMP packets to encode one
or multiple bits. For example, bit 1 is encoded by a longer inter-packet delay,
whereas bit 0 is encoded by a smaller inter-packet delay.

3 The Basic Idea

3.1 Encoding Based on Packet-Flow Distributions

The covert messages in Cloak are encoded by a class of combinatorial objects—
each covert message is encoded with a unique distribution of N TCP packets
over X TCP flows. The encoder and decoder agree on the values of N and X
beforehand. Furthermore, the encoder will transmit the next message only after
receiving the ACKs for the message just sent. On the other side of the chan-
nel, the decoder starts decoding as soon as collecting N TCP packets from the
encoder. Moreover, the encoder and decoder do not have to explicitly exchange
the “codebook”; as will show in section 4.1, the encoding and decoding can be
performed using unranking and ranking functions.

It is worthwhile to point out here that Cloak is reliable in the same sense
of reliability in TCP even when the messages experience adverse network con-
ditions. First of all, Cloak’s decoding accuracy is not affected by delay jitters,
because the encoding is not based on the actual time. Second, since the encoder
sends a covert message one at a time, it can detect whether the decoder has suc-
cessfully received the last message based on the ACKs for the N TCP packets.
Upon detecting an unsuccessful reception, the encoder could “partially” resend
the message. The decoder, on the other hand, will decode only after receiving N
in-sequenced TCP packets from the encoder. Therefore, if Cloak is implemented
using the normal TCP stack, no additional reliability mechanism is needed to
guarantee Cloak’s reliability.

286 X. Luo, E.W.W. Chan, and R.K.C. Chang

(a) The five TCP flows connect to the
same Web server.

(b) The five TCP flows connect to dif-
ferent Web servers.

Fig. 1. Two covert communication scenarios between Cloak encoder and decoder

In Figure 1, we depict two different scenarios for the Cloak encoder and de-
coder to communicate. In both cases, we assume a warden on the encoder’s
network who guards against any network covert channels initiated from inside.
The warden could be active or passive. In the first scenario (Figure 1(a)), the en-
coder establishes a “normal” HTTP session with a remote server which consists
of five TCP flows. The encoder encodes the messages into the TCP flows; the de-
coder eavesdrops at any point of the path and decodes the messages. Moreover,
the warden could not detect Cloak simply based on the presence of multiple TCP
flows to the same server, because it is not uncommon to have multiple TCP flows
in an HTTP session. Moreover, multi-thread upload or download (i.e., sending
commands) also has similar traffic patterns.

In the second scenario (Figure 1(b)), the encoder establishes normal HTTP
sessions with multiple servers which are dispersed at different locations. There-
fore, the decoder should be located on the common routing path for all the
servers. Although this approach restricts the decoder location, it can diffuse the
relationship among the TCP flows. A simple approach for relaxing this restric-
tion is to use distributed information collection, for example, through a botnet.
Each bot will observe partial information and then sends it to the commander.

3.2 The Twelvefold Way

Besides the encoding algorithm just described, Cloak could admit other encoding
methods. In fact, Cloak offers ten different encoding methods which are based on
the well-known Twelvefold Way [16] in the field of Enumerative Combinatorics.
The Twelvefold Way refers to twelve basic counting problems that count all the
possible ways of putting N balls into X urns, and their results. Let the set of balls
be N (|N| = N) and the set of urns be X (|X| = X). Each problem can be based
on whether the balls and urns are distinguishable or not (e.g., by their colors),
and three possible kinds of ball distributions over the urns: (1) no restriction, (2)
at most one ball per urn, and (3) at least one ball per urn. These three cases can
be equivalently represented by an arbitrary function fA : N → X, an injective
function fI : N → X, and a surjective function fS : N → X, respectively.

The correspondence between balls and urns, and packets and flows is obvious.
Table 1 summarizes the Twelvefold Way using flows (urns) and packets (balls)

Cloak: A Ten-Fold Way for Reliable Covert Communications 287

[16]. Each of the twelve results answers the corresponding counting problem
(i.e., the total number of unique packet-flow distributions). Cases (11) and (12)
obviously cannot be used in Cloak, therefore the ten encoding methods. In the
rest of this paper, we refer the ten cases to as Cloakc(N, X), c ∈ [1, 10]. Due to
the space limitation, we refer to [20] for the proofs of the results in Table 1.

Table 1. The Twelvefold Way and their relation to the ten (items 1-10) encoding
methods in Cloak

Elements of N Elements of X fA fI (at most fS (at least
(TCP packets) (TCP flows) (no restriction) 1 packet in a flow) 1 packet in a flow)

Distinguishable Distinguishable XN (1) N !CN
X (2) X!S(N, X) (3)

Indistinguishable Distinguishable CX−1
N+X−1 (4) CN

X (5) CX−1
N−1 (6)

Distinguishable Indistinguishable
PX

i=1 S(N, i) (7)

(
1 if N ≤ X

0 if N > X
(11) S(N, X) (8)

Indistinguishable Indistinguishable
PX

i=1 P (N, i) (9)

(
1 if N ≤ X

0 if N > X
(12) P (N, X) (10)

where
– CN

X = X!
N!(X−N)! and S(N, X) = 1

X!

PX

j=1(−1)X−jCj
XjN .

– P (N, X) is the number of partitions of N into X parts.

According to Table 1, some encoding methods require distinguishable pack-
ets and/or distinguishable flows. The correspondence between the ball and urn
distinguishability, and the flow and packet distinguishability is somewhat tricky.
First of all, all TCP flows and packets are of course distinguishable. However,
the original counting problems assume that the colors of the urns and balls do
not change, but this is not the case for Cloak. For instance, the “marking in-
formation” in the flows and packets could be altered by an ANI. Therefore, the
TCP flows (or packets) are considered distinguishable only if both encoder and
decoder are able to identify the same flow (or packet).

3.3 The Ten-Fold Way in Cloak

In this section, we discuss the differences among the ten encoding methods and
explain why we need all of them. The first important difference among them is
their channel capacity. By modeling a Cloak channel as a classical information
channel, we can obtain the capacity of a Cloakc(N, X) channel in bits/symbol
based on the mutual information [21]. Since Cloak is reliable and there is only one
set of covert messages, the channel capacity can be increased only by increasing
the size of the covert message set. By denoting the Twelvefold Way result for
Cloakc(N, X) by T c(N, X), a higher value of T c(N, X) therefore gives a higher
channel capacity. Furthermore, each unique packet-flow distribution can encode
an L-bit word, where 1 ≤ L ≤ �log2 T c(N, X)�.

In the following, we explain the relationships between the channel capacity and
the flow and packet distinguishability. First, making the flows distinguishable
increases the channel capacity (e.g., T 1(N, X) > T 7(N, X)). Similarly, making

288 X. Luo, E.W.W. Chan, and R.K.C. Chang

the packets distinguishable also increases the channel capacity (e.g., T 1(N, X) >
T 4(N, X)). Finally, for each row in Table 1, the channel capacity for fA is the
largest, e.g., T 1(N, X) > T 3(N, X), and T 7(N, X) > T 8(N, X). Based on the
channel capacity, we define data rate in bits/second as C

Ts
, where Ts is the time

for transmitting a message. The minimal time for transmitting a message in
Cloak (i.e., the N packets in X flows) is one round-trip time (RTT) between
the encoder and decoder. To achieve a reasonable channel capacity, we therefore
consider X > 1 and N > 1 in the rest of this paper.

Besides the channel capacity, the ten encoding methods differ also in three
other important aspects. The first one concerns the channels that require dis-
tinguishable packets (i.e., c = 1, 3, 7, 8). For these channels, the encoder usually
adds “markers” to the TCP packets in order to make them distinguishable. The
additional markers, however, could be “modified” when the packets traverse an
active warden, which could result in decoding errors. In other words, there is
a tradeoff between achieving a higher channel capacity by making the packets
distinguishable and the decoding accuracy. Similar problems occur also to the
channels with flow distinguishability. We have discussed how to make packet or
flow distinguishable in the full paper [20].

The second one is connected to a head-of-line blocking (HoLB) problem. To
explain the issue, consider c = 1, 2. the difference between them is that the second
method caps the number of packets distributed to a flow to one. Therefore, in
terms of the packet distribution, the flows for c = 2 differ at most by one packet,
but that for c = 1 is N (i.e., all the packets are distributed to a single flow). The
latter case may require several RTTs to complete the transmission of a message;
thus, this HoLB problem, as we shall see later, could reduce the actual data rate
significantly. The last issue is that some flows for the methods under fA and fI
may become idle for a prolonged period of time, which may cause the remote
servers to close the connection. However, those methods under fS mitigate this
problem by insisting each flow to carry at least one packet for each message.

4 Design Issues

In this section, we discuss a number of design elements that are central to a
practical deployment of Cloak in the Internet and to Cloak’s performance.

4.1 Message Encoding and Decoding

As mentioned in the last section, the encoder and decoder do not need to ex-
change a codebook explicitly. Instead, they use two special functions for encod-
ing and decoding: Rank() and Unrank(). Each Cloakc(N, X) channel has its
own function pair. The function Rank() takes in a flow-packet distribution and
returns its rank that is the index of the flow-packet distribution in the decreas-
ing lexicographically ordered array of all possible distributions, staring from 0.
Unrank() does the opposite—taking in a rank and returning the corresponding
flow-packet distribution.

Cloak: A Ten-Fold Way for Reliable Covert Communications 289

Fig. 2. The encoding and decoding processes in Cloak

Figure 2 depicts the encoding and decoding processes in Cloak. The encoder
and decoder are assumed to have agreed on (c, N, X) beforehand. They could also
dynamically change (c, N, X) by exploiting the random beacons widely available
in the Internet. The messages are encoded based on L-bit words, where 1 ≤
L ≤ �log2 T c(N, X)�. There are three major steps involved in sending a covert
message. Each L-bit word is first converted to the nonnegative decimal value
(through the Bin2Dec() function) that serves as the rank for the corresponding
packet-flow distribution. Then, Unrank() is invoked to compute the distribution.
Finally, the encoder marshals the packet-flow code into the actual TCP flows
and data packets. After sending the N packets over the X flows, the encoder
has to receive the ACKs for the N packets before sending the next N packets.
In the case of packet losses, Cloak may rely on TCP to recover them.

The three-step process above is exactly reversed for receiving a covert message.
In the first step, the decoder unmarshalls the packet-flow distribution from the
flows and packets received from the encoder. That is, the decoder collects exactly
N TCP packets from the X flows before moving to the next step. Moreover, since
the number of flows can be distinguished based on the order of the TCP three-
way handshaking performed, the decoder can count the number of data packets
in each flow. Similar as before, any TCP packet loss, duplication, or reordering
can be taken care of by TCP. As soon as N packets are collected, the decoder
feeds the distribution into Rank() which yields the corresponding rank. As a
last step, the rank is converted back to the L-bit word (through the function
Dec2Bin()). We refer the detailed ranking and unranking algorithms to the full
paper [20].

4.2 A Head-of-Line Blocking Problem

In this section, we discuss a head-of-line blocking (HoLB) problem that we
have encountered when conducting Internet experiments. The HoLB problem
degrades the data rates of all encoding methods, except for c = 2, 5. To explain
the problem, we consider an extreme scenario where most of the N packets are
distributed to a single flow, while other flows receive at most one packet. There-
fore, the total transmission time for the message is governed by the time required
to transmit the packets in the most busy flow which prevents the encoder from
transmitting the next message. Furthermore, since the TCP congestion window
usually starts with one or two packets, it will take the busy flow’s sender sev-
eral RTTs to complete the transmissions, thus leading to a low data rate. The

290 X. Luo, E.W.W. Chan, and R.K.C. Chang

problem may become worse if there are packet losses in the most busy flow that
will retransmit those packets according to the timeout mechanism or the fast
retransmission/fast recovery mechanism. This issue will also occur to the flows
that are connected to different servers which experience a wide range of RTTs.

A simple way of mitigating the HoLB problem is to aggressively transmit
every N packets. The basic idea is that the encoder will dispatch all packets
belonging to kth message after receiving ACK packets that acknowledge the
data packets for the (k − 1)th message or a timer with period TE expires. If
the encoder does not receive all the expected ACK packets before TE , it will
retransmit unacknowledged packets and reset the timer. TE is usually set to
the estimated RTT that is computed through the exponential weighted moving
average (EWMA) of RTT samples, an approach similar to the one used in normal
TCP. However, the downside is that the resulting traffic pattern will be different
from normal TCP behavior. This has prompted us to design a new codeword
scheme to be discussed next.

A D-limited codeword scheme. The D-limited codeword scheme essentially
caps the maximum number of packets assigned to a flow to D; that is, it enforces
max{ni} ≤ D, where D ≥ 1 is a constant. The choice of D should be chosen such
that it is less than the encoder’s TCP send window size in terms of packets. In
this way, all the packets can be sent out in one RTT; otherwise, multiple RTTs
would be needed for transmitting a message.

We use c = 10 (indistinguishable packets and flows) to illustrate how this
codeword scheme works. We first define the following two quantities:

1. Let Υ (N) be the total number of ways to distribute N packets into TCP
flows such that each flow is given at most D packets.

2. Let Γ (N, D) be the total number of ways to distribute N packets into D
flows such that each flow is assigned at least one packet. Note that Γ (N, D) =
P (N, D) if both packets and flows are indistinguishable (i.e., c = 10).

Theorem 1. If both packets and flows are indistinguishable, Υ (N) =
∑D

i=1
P (N, i).

Corollary 1. To generate D-limited codewords from P (N, D), we need at most
N + 1 − D flows to convey a message.

Theorem 1 computes how much information this D-limited codeword scheme
could transmit. Corollary 1, on the other hand, shows that if the upper bound
on the number of flows is X , then N ≤ X + D − 1. Their proofs are given in
[20]. We now use Proposition 1 and Corollary 1 directly to construct D-limited
codewords for c = 10:

1. Encoding. To transmit a message (a binary string), the encoder first cal-
culates its decimal value and then uses Cloak10’s unranking algorithm to
get the corresponding packet-flow distribution, denoted by ζ. After that, the
encoder computes ζ’s conjugate [16], denoted by ζ′, and transmits packets
according to ζ′.

Cloak: A Ten-Fold Way for Reliable Covert Communications 291

2. Decoding. Upon receiving a packet-flow distribution ζ′, the decoder first
computes its conjugate ζ and then uses Cloak10(N, X)’s ranking algorithm
to decode the message.

To construct D-limited codewords for other encoding methods, we could adopt
our general framework for designing new ranking and unranking algorithms [20].
That is, when the encoder receives ζ′ from Cloak9 or Cloak10, it could expand
ζ′ by considering distinguishable packets or flows. For example, if only flows are
distinguishable, we could permute the locations of flows that have different ni

and then increase the capacity in a way similar to λ! or CN
X . If only packets are

distinguishable, we could consider how to partition them into different flows and
therefore to increase the capacity in a way similar to S(N, X)!. If both flows
and packets are distinguishable, we could permute the locations of packets that
belong to different flows. The only requirement is not to change the value of ni.

5 Experimental Results

In this section we discuss how Cloak’s data rate is affected by the RTT, router
hop distance, geographical locations, and various adverse network conditions. Be-
sides, we evaluate the effect of the HoLB problem on Cloak, and its performance
with the D-limited codeword scheme. We also compare Cloak’s performance with
other timing channels: IP timing channel (IPTime) [12] and JitterBug [1], wher-
ever we find appropriate. We have conducted experiments in the real Internet
environment using the PlanetLab platform, and our test-bed which permits con-
trolled experiments configured with various network conditions. Here we present
experiment results obtained from the Planetlab platform and leave the results
from the test bed to [20].

We measure the data rate of the timing channels in terms of their goodput
defined as:

G = (1 − pe)
M × L

Td
, (1)

where Td is the total time required for delivering M L-bit covert messages, and
pe is the channel’s bit error rate (BER). The BER is computed based on the
Levenshtein distance which is given by the number of insertions, deletions, and
substitutions needed to convert a source message into a decoded message. Since
Cloak is reliable, its pe is 0.

5.1 Implementation

We have implemented Cloak’s encoder and decoder as a TCP client and a TCP
listener, respectively, including the ten Rank() and Unrank() functions. We have
implemented Bin2Dec(), Dec2Bin(), Rank(), and Unrank() as offline functions.
That is, the encoder pre-computes all the packet-flow combinations, and the
decoder starts decoding only after capturing all N packets from X flows.

292 X. Luo, E.W.W. Chan, and R.K.C. Chang

Cloak. For the Cloak’s encoder, we have implemented two types of transmis-
sion functions based on the TCP socket (Cloak(STREAM)) and the raw socket
(Cloak(RAW)). In Cloak(STREAM), the system’s TCP stack guarantees the
transmission reliability, and its traffic pattern resembles normal TCP flows’.
However, it may take several RTTs to complete a single codeword transmission,
thus limiting its data rate. Cloak(RAW), on the other hand, applies the aggres-
sive transmission mechanism discussed in section 4.2 to improve its data rate.
We have also implemented a separate capturing thread in the encoder to mon-
itor the ACK arrivals, in order to determine if the other side has received all
the N packets. We have implemented the Cloak’s decoder with libpcap v0.9.5
library to sniff TCP packets. Moreover, we use a snaplen of 96 bytes to reduce
the overhead during the packet capturing operation. We did not observe any
packet drops throughout the experiments.
IPTime and JitterBug. We have implemented both IPTime’s and Jitter-
Bug’s encoding and decoding schemes as plug-in modules in the Cloak encoder
and decoder, respectively. We employ UDP socket (i.e., SOCK DGRAM), because
the packet transmission in these two timing channels do not require reliability.
During the encoding process, the plug-ins invoke the modulation function in the
Cloak encoder to let the codeword bypass Bin2Dec() and Unrank(), and to mar-
shal the binary stream directly into a flow of modulated UDP packets. Moreover,
the encoder generates the modulated sequences complying with the specifications
of IPTime and JitterBug. Both the IPTime’s encoder and JitterBug’s encoder
use a fixed timing interval (or timing window) of w. The JitterBug’s encoder,
in addition, has a default tolerance parameter of ε = w/4. The corresponding
plug-ins in the decoder perform the reverse procedures for decoding. Moreover,
we did not implement any framing and error correction mechanism for Cloak,
IPTime, and JitterBug.

5.2 The Setup of PlanetLab Experiment Platforms

We locate the encoders in nine geographically diverse PlanetLab nodes, and the
decoders and a Web server in a campus network. The encoders send packets
to the Web server, and the decoder eavesdrops the packets and decodes them.
We have obtained a total of 17,545 RTT samples between the decoder and each
PlanetLab node during the experiment period. Table 2 shows the nine Planet-
Lab nodes with the router hop counts from the encoder to them and the RTT
statistics with a 95% confidence interval. Note that the average RTTs range be-
tween 0.0652 seconds and 0.3418 seconds. Moreover, the RTT measurements for
JP, KR, and CA have higher variations than the others.

5.3 PlanetLab Experiments

Experiment design. To observe the page limitation, we report experiment
results only for Cloak1(N, X). To study the effect of N , we fix X to 20 to give
a large enough number of flows, and N = {5, 9, 10, 11, 15, 20, 30, 40, 50} which
covers a reasonable range of channel capacity. Similarly, to study the effect of
X , we fix N to 20 and consider X = {4, 6, 8, 10, 12, 14}.

Cloak: A Ten-Fold Way for Reliable Covert Communications 293

Table 2. Measured path characteristics between each PlanetLab site and the decoder
machine

RTTLocations Hops
Means Std. Dev. 95% Conf. Intervals

Shenyang, China (CN) 13 .0652 .0060 .0651/.0653
Tokyo, Japan (JP) 16 .0992 .0244 .0988/.0996
California, U.S. (CA) 14 .1767 .0230 .1763/.1770
Kansas, U.S. (KS) 16 .2176 .0056 .2175/.2177
Rhode Island, U.S. (RI) 13 .2267 .0074 .2266/.2268
Gwangju, Korea (KR) 18 .2343 .0356 .2338/.2348
Ghent, Belgium (BE) 16 .3075 .0048 .3074/.3075
London, UK (UK) 19 .3124 .0061 .3123/.3124
Lisbon, Portugal (PT) 17 .3418 .0171 .3415/.3420

To study the adverse effects of the HoLB problem, we have generated two
sets of codewords (datasets 1 and 2) for each N in Cloak1(N, 20). Each dataset
consists of 100 L-bit (M = 100 and L = �log2 XN�) codewords. Moreover, we
assign each packet in dataset 2 to the 20 flows with equal probability; however,
we intentionally assign more packets in dataset 1 to flow 1. We measure the degree
of HoLB of a codeword by H = max0≤i<X ni. Figure 3(a) plots the values of H ,
the mean values of H for different values of N . As shown, the rate of increase
in H for dataset 1 is about 10 times higher than that for dataset 2 when N
is beyond 10. Moreover, we have generated other sets of codewords (datasets 3
and 4) for each X in Cloak1(20, X). The codewords for datasets 3 and 4 are
generated the same ways as for datasets 1 and 2, respectively. Figure 4(a) shows
that the values of H for the two datasets diverge as X increases.

Experiment results. Figures 3(b), 3(c), 4(b), and 4(c) plot the average good-
puts for the nine PlanetLab nodes with the four datasets of codewords. We
compute the average goodput for each (N ,X) tuple by performing 30 measure-
ments. For each N or X , the nine nodes in the figures are sorted in the ascending
order of their measured mean RTTs given in Table 2. We first report the results
for datasets 2 and 4 (Figure 3(c) and Figure 4(c)) for which the packets are
assigned uniformly to the 20 flows. Among all the nodes, CN achieves a maxi-
mum channel goodput of around 450 bit/s in Figure 3(c). Both figures also show
that the average goodput G for the two smallest RTTs (nodes CN and JP) are
the highest. However, the goodputs do not necessarily decrease with the RTTs.
That is, although the goodputs are inversely proportional to the RTTs, there are
other factors, such as packet losses, that could disturb the goodputs. Moreover,
the increase seems to be more drastic for the case of increasing X . For example,
the JP node’s goodput is increased by more than four times as X increases from
4 to 12. On the other hand, the rates of increases for other nodes with longer
RTTs are smaller. That is, a large RTT will reduce the gain obtained from the
increase in the channel capacity.

Next, we evaluate the effects of the biased packet distributions on the av-
erage goodput. We first compare the results for datasets 1 and 2 (Figure 3(b)

294 X. Luo, E.W.W. Chan, and R.K.C. Chang

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

N

H

Set 1 w/ Cloak1(N,20)

Set 2 w/ Cloak1(N,20)

(a) The values of H for
datasets 1 and 2 as a func-
tion of N .

5 9 10 11 15 20 30 40 50
0

50

100

150

200

250

300

N

G
 (

b
it

/s
)

CN
JP
CA
KS
RI
KR
BE
UK
PT

(b) The average goodput
for the PlanetLab nodes
with dataset 1.

5 9 10 11 15 20 30 40 50
0

50

100

150

200

250

300

350

400

450

N

G
 (

b
it

/s
)

CN
JP
CA
KS
RI
KR
BE
UK
PT

(c) The average goodput
for the PlanetLab nodes
with dataset 2.

Fig. 3. The results for the PlanetLab nodes: the average goodput verses N for
Cloak1(N, 20) with datasets 1 and 2

4 6 8 10 12 14
0

2

4

6

8

10

12

X

H

Set 3 w/ Cloak1(20,X)

Set 4 w/ Cloak1(20,X)

(a) The values of H for
datasets 3 and 4 as a func-
tion of X.

4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

X

G
 (

b
it

/s
)

CN
JP
CA
KS
RI
KR
BE
UK
PT

(b) The average goodput
for the PlanetLab nodes
with dataset 3.

4 6 8 10 12 14
0

50

100

150

200

250

300

350

400

X

G
 (

b
it

/s
)

CN
JP
CA
KS
RI
KR
BE
UK
PT

(c) The average goodput
for the PlanetLab nodes
with dataset 4.

Fig. 4. The results for the PlanetLab nodes: the average goodput verses X for
Cloak1(20, X) with datasets 3 and 4

and Figure 3(c)). The comparison reveals that they show opposite trends as
N increases: the goodput decreases with N in Figure 3(b). It is important to
point out that the scales of the two figures are actually different. Therefore, the
goodputs in Figure 3(c) are all greater than the respective cases in Figure 3(b),
except for N = 5. Since H increases with N as shown in Figure 3(a), it will take
flow 1 a longer time to complete its packet transmission as N increases. For the
comparison of datasets 3 and 4 (Figure 4(b) and Figure 4(c)), the goodputs in
Figure 4(c) are all greater than the respective cases in Figure 4(b). However,
unlike the previous cases, the goodputs in Figure 4(b) slightly improve as X in-
creases, but the goodputs stop growing as X reaches 10. An increase in X in fact
alleviates the HoLB problem, because flow 1 will become less busy; as a result,
it is not surprising to see some improvement in the goodputs as X increases.

Evaluation of the D-limited codewords. To measure the performance of
the D-limited codewords, we have selected five (JP, CA, KS, KR, and BE) out
of the nine PlanetLab nodes to measure the average goodput of Cloak. Similar
to the last section, we have generated a set of 100 L-bit binary codewords for
each (N, X) tuple for Cloak1(N, X), where X = 6 and N = {12, 16, 20}. We

Cloak: A Ten-Fold Way for Reliable Covert Communications 295

JP CA KS KR BE
0

20

40

60

80

100

120

Location

G
 (

B
it

/s
)

D−limited code words (H=3.83)

Normal code words (H=8.27)

(a) Cloak1(12, 6)

JP CA KS KR BE
0

20

40

60

80

100

120

140

160

180

Location

G
 (

b
it

/s
)

D−limited code words (H=3.53)
Normal code words (H=12.94)

(b) Cloak1(16, 6)

JP CA KS KR BE
0

20

40

60

80

100

120

140

160

180

200

Location

G
 (

b
it

/s
)

D−limited code words (H=3.1)
Normal code words (H=17.22)

(c) Cloak1(20, 6)

Fig. 5. Comparing the average goodput for the normal codewords and the 6-limited
codewords

use Cloak(STREAM) to encode them into two distinct sets of codewords: one
generated by the D-limited codewords scheme with D = 6 and the other by the
normal codewords. The average goodput is again based on 30 measurements.

Figure 5 compares the average goodputs of the two codewords for the five
nodes. The figures show that the D-limited codeword always gives a higher good-
put than the normal scheme for all nodes and for all three (N, X) tuples. Each
figure also gives the average degrees of HoLB for the two codewords. The average
degrees for the D-limited codewords are quite stable in all three cases, whereas
the degree for the normal codewords is the highest in Figure 5(c), followed by
Figure 5(b) and then by Figure 5(a). As a result, the percent of improvement of
using the D-limited codewords also follows the same decreasing order for nodes
JP, CA, and BE in Figures 5(a)-5(c). In particular, we have noticed a maximum
gain of 77% from the JP node with Cloak1(20, 6). On the other hand, the nodes
KS and KR attain much less gains; for example, the gain is only 1.6% for the
KR node with Cloak1(12, 6). By examining the traffic traces, we have found
that the packet loss rates at these two nodes are much lower than the others.
Therefore, the normal scheme has already achieved a very high goodput; the
additional benefit of adopting the D-limited scheme becomes marginal. We have
also evaluated the performance of the aggressive transmission scheme and found
that it could significantly increase Cloak’s goodput [20].

Comparing Cloak, JitterBug, and IPTime. We have also conducted ex-
periments on JitterBug and IPTime in the five PlanetLab nodes. In this set of
experiments, we have generated another 100 packet-flow codewords using the
normal Cloak1(20, 4) encoder with H = 5.86. Each node uses both Cloak(RAW)

296 X. Luo, E.W.W. Chan, and R.K.C. Chang

Table 3. The average goodput and average BER for Cloak, IPTime, and JitterBug
obtained from five PlanetLab nodes

95% confidence intervals of average goodput (average BER)
Cloak(RAW) Cloak(STREAM) JitterBug(RTT)

JP 203.86/216.28 (0) 55.17/58.57 (0) 13.01/13.04 (.0155)
CA 85.66/88.49 (0) 68.75/71.75 (0) 7.33/7.35 (.0265)
KS 90.77/91.00 (0) 66.57/69.26 (0) 6.13/6.14 (.0018)
KR 106.52/107.90 (0) 68.68/71.51 (0) 5.67/5.68 (.0012)
BE 63.88/64.20 (0) 44.69/45.61 (0) 4.36/4.36 (.0011)

JitterBug(1.5RTT) IPTime(RTT) IPTime(1.5RTT)

JP 8.77/8.78 (.0164) 9.48/9.50 (.0363) 6.49/6.51 (.0209)
CA 4.76/4.81 (.0521) 5.43/5.47 (.0282) 3.68/3.69 (.0158)
KS 4.10/4.10 (.0010) 4.50/4.51 (.0112) 3.02/3.02 (.0088)
KR 3.81/3.81 (.0010) 4.17/4.18 (.0126) 2.80/2.81 (.0081)
BE 2.91/2.91 (.0007) 3.21/3.21 (.0076) 2.14/2.15 (.0066)

and Cloak(STREAM) to transmit the codewords. We set Cloak(RAW)’s TE to
the measured mean RTTs. For the JitterBug and IPTime experiments, the en-
coder marshals each respective binary codeword directly into a flow of modulated
UDP packets with w = {RTT, 1.5RTT}. Both the average goodput and average
BER are computed based on 30 samples.

We summarize the experiment results in Table 3. In each cell, the two left-
most values correspond to the lower limit of and the upper limit of the 95%
confidence intervals for the same average goodput, and the rightmost value in-
side the parentheses corresponds to the measured average BER. We first point
out that it is difficult to conduct a fair comparison among the three channels,
because, for example, Cloak uses multiple flows whereas the other two use only
one. Therefore, the comparison is based on how their goodputs are affected by
the RTTs. Recall that the five nodes are sorted in an ascending order of their
mean RTTs. For both Cloak channels, we do not find any general relationship
between their goodputs and the RTTs, except that the lowest goodputs for both
cases are given by the highest RTT (i.e., BE). On the other hand, the goodputs
for JitterBug and IPTime show downward trends as the RTT increases. The
magnitude of the goodput degradation is rather significant, which is between
three to four times when comparing the goodputs for JP and BE. Their average
BERs also show similar downward trends except for a couple points.

6 Conclusions and Future Work

In this paper, we propose Cloak, a new class of timing channels. The major
design choices responsible for Cloak’s attractive properties are the use of TCP

Cloak: A Ten-Fold Way for Reliable Covert Communications 297

as the cloaking medium, and the exploitation of Enumerative Combinatorics to
encode a message into multiple TCP flows and a fixed number of TCP packets.
The former provides the needed reliability for free, whereas the latter facilitates
the use of the Twelvefold Way to increase the channel data rate and avoid decod-
ing problems inherent in other network timing channels. We have implemented
the Cloak encoder and decoder, and evaluated its goodput under controlled en-
vironment and in the wild. Moreover, we have in fact designed and evaluated
a two-step detection algorithm for Cloak which, due to the space limit, could
not be accommodated in this paper. Interested readers may refer to [20] for the
algorithm and evaluation.

In a broader sense, our contribution in this work is to provide a new frame-
work for designing more effective network covert channels. The ten encoding
methods represent some of the design points in this framework. Based on this
perspective, we should not rule out that there are other design points that pos-
sess other attractive properties. Therefore, one of the future work directions is to
explore novel covert channel design with an even higher data rate than Cloak, for
example. The other direction is on the detection aspect. Although the detection
problem seems notoriously difficult, an active detection method is a promising
approach. Another approach is to design more intelligent intermediaries that
could reduce the channel data rate significantly.

Acknowledgment

The work described in this paper was partially supported by a grant from the
Research Grant Council of the Hong Kong Special Administrative Region, China
(Project No. PolyU 5080/02E) and a grant from the Cisco University Research
Program Fund at Community Foundation Silicon Valley. The authors would like
to thank the reviewers for their useful comments.

References

1. Shah, G., Molina, A., Blaze, M.: Keyboards and covert channels. In: Proc. USENIX
Security (2006)

2. Singh, A., Nordstro, O., Lu, C., Santos, A.: Malicious ICMP tunneling: Defense
against the vulnerability. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003.
LNCS, vol. 2727, Springer, Heidelberg (2003)

3. Schechter, S., Smith, M.: Access for sale: A new class of worm. In: Proc. ACM
Workshop on Rapid Malcode (WORM), ACM Press, New York (2003)

4. Rogers, R., Devost, M.: Hacking a Terror Network: The Silence Threat of Covert
Channels. Syngress (2005)

5. Borders, K., Prakash, A.: Web Tap: Detecting covert Web traffic. In: Proc. ACM
CCS, ACM Press, New York (2004)

6. Feamster, N., Balazinska, M., Harfst, G., Balakrishnan, H., Karger, D.: Infranet:
Circumventing censorship and surveillance. In: Proc. USENIX Security (2002)

7. Wang, X., Reeves, D.: Robust correlation of encrypted attack traffic through step-
ping stones by watermarking the interpacket timing. In: Proc. ACM CCS, ACM
Press, New York (2003)

298 X. Luo, E.W.W. Chan, and R.K.C. Chang

8. Wang, X., Chen, S., Jajodia, S.: Tracking anonymous peer-to-peer VoIP calls on
the Internet. In: Proc. ACM CCS, ACM Press, New York (2005)

9. Gligor, V.: A guide to understanding covert channel analysis of trusted systems
(light pink book). Technical Report NCSC-TG-030, National Computer Security
Center (1993)

10. DoD US: Department of defense trusted computer system evaluation criteria (or-
ange book). Technical Report DoD 5200.28-STD, National Computer Security Cen-
ter (1985)

11. Bishop, M.: Introduction to Computer Security. Addison-Wesley, Reading (2005)
12. Cabuk, S., Brodley, C., Shields, C.: IP covert timing channels: Design and detec-

tion. In: Proc. ACM CCS, ACM Press, New York (2004)
13. Watson, D., Smart, M., Malan, G., Jahanian, F.: Protocol scrubbing: Network

security through transparent flow modification. In: IEEE/ACM Trans. Networking
(2004)

14. Handley, M., Kreibich, C., Paxson, V.: Network intrusion detection: Evasion, traf-
fic normalization, and end-to-end protocol semantics. In: Proc. USENIX Security
Symp (2001)

15. Fisk, G., Fisk, M., Papadopoulos, C., Neil, J.: Eliminating steganography in Inter-
net traffic with active wardens. In: Proc. Information Hiding Workshop (2002)

16. Stanley, R.: Enumerative Combinatorics. Cambridge University Press, Cambridge
(1997)

17. Ahsan, K., Kundur, D.: Practical data hiding in TCP/IP. In: Proc. Workshop on
Multimedia Security (2002)

18. Chakinala, R., Kumarasubramanian, A., Manokaran, R., Noubir, G., Rangan, C.,
Sundaram, R.: Steganographic communication in ordered channels. In: Proc. In-
formation Hiding Workshop (2006)

19. Berk, V., Giani, A., Cybenko, G.: Detection of covert channel encoding in network
packet delays. Technical Report TR2005536, Department of Computer Science,
Dartmouth College (2005)

20. Luo, X., Chan, E., Chang, R.: Cloak: A ten-fold way for reliable covert communi-
cations (full version) (2007),
http://www.comp.polyu.edu.hk/∼csrchang/CloakFull07.pdf

21. Yeung, R.: A First Course in Information Theory. Kluwer Academic, Dordrecht
(2002)

http://www.comp.polyu.edu.hk/~csrchang/CloakFull07.pdf

	Cloak: A Ten-Fold Way for Reliable Covert Communications
	Introduction
	Related Work
	The Basic Idea
	Encoding Based on Packet-Flow Distributions
	The Twelvefold Way
	The Ten-Fold Way in Cloak

	Design Issues
	Message Encoding and Decoding
	A Head-of-Line Blocking Problem

	Experimental Results
	Implementation
	The Setup of PlanetLab Experiment Platforms
	PlanetLab Experiments

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

