
pDCS: Security and Privacy Support for Data-Centric
Sensor Networks

Min Shao, Sencun Zhu, Wensheng Zhang, and Guohong Cao
Department of Computer Science & Engineering

The Pennsylvania State University
University Park, PA 16802

Email: {mshao,szhu,wezhang,gcao}@cse.psu.edu

Abstract
The demand for efficient data dissemination/access tech-

niques to find the relevant data from within a sensor network
has led to the development of data-centric sensor networks
(DCS), where the sensor data as contrast to sensor nodes are
named based on attributes such as event type or geographic
location. However, saving data inside a network also cre-
ates security problems due to the lack of tamper-resistance
of the sensor nodes and the unattended nature of the sensor
network. For example, an attacker may simply locate and
compromise the node storing the event of his interest. To ad-
dress these security problems, we presentpDCS, a privacy-
enhanced DCS network which offers different levels of data
privacy based on different cryptographic keys.pDCS also
includes an efficient key management scheme to facilitate the
management of multiple keys in the system. In addition, we
propose several query optimization techniques based on Eu-
clidean Steiner Tree and Keyed Bloom Filter to minimize the
query overhead while providing certain query privacy. Fi-
nally, detailed analysis and simulations show that the Keyed
Bloom Filter scheme can significantly reduce the message
overhead with the same level of query delay and maintain a
very high level of query privacy.

1 Introduction
Sensor networks are envisioned to be extremely useful

for a broad spectrum of emerging civil and military appli-
cations [1], such as remote surveillance, habitat monitor-
ing, and collaborative target tracking. As sensor networks
scale in size, so will the amount of sensing data gener-
ated. The large volume of data coupled with the fact that
the data are spread across the entire network creates a de-
mand for efficient data dissemination/access techniques to
find the relevant data from within the network. This demand
has led to the development of data centric sensor networks

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

(DCS) [2, 3, 4].
DCS exploits the notion that the nature of the data is

more important than the identities of the nodes that collect
the data. Thus, sensor data as contrasted to sensor nodes
are “named”, based on attributes such as event-type (e.g.,
elephant-sightings) or geographic location. According to
their names, the sensing data are passed to and stored at cor-
responding sensor nodes determined by a mapping function
such as Geographic Hash Table (GHT) [2]. As the sensing
data with the same name are stored in the same location,
queries for data of a particular name can be sent directly to
the storing nodes using geographic routing protocols such
as GPSR [5], rather than flooding the query throughout the
network. Figure 1 shows an example of using a DCS-based
sensor network to monitor the activities or presence of ani-
mals in a wild animal habitat. The sensed data can be used
by zoologists to study the animals, and may also be used to
assist an authorized hunter to locate certain types of animals
(e.g., boars and deers) for hunting. With DCS, all the sens-
ing data regarding one type of animals are forwarded to and
stored in one location. As a result, a zoologist only needs
to send one query to the right location to find out the infor-
mation about that type of animals. Similarly, a soldier can
easily obtain enemy tank information through a DCS-based
sensor network in the battlefield.

Figure 1. A DCS-based sensor network which can be
used by zoologists (who are authorized to know the loca-
tions of all animals) and hunters (who should only know
the locations of boars and deers, but not elephants).

In many cases, DCS-based data dissemination offers a
significant advantage over previous external storage-based
data dissemination approaches, where an external base sta-
tion (BS) is used for collecting and storing the sensing data.
If many queries are issued from nodes within the network
[6, 4], external storage-based scheme is very inefficient since
data must be sent back and forth between the sensors and the
BS, thus causing the nodes close to the BS to die rapidly due
to energy depletion. Further, for sensor networks deployedin
hostile environments such as a battlefield, external BS may
not be available because the BS is very attractive for phys-
ical destroy and compromise, thus becoming a single point
of failure from both security and operation perspectives. In
contrast, the operation of a DCS system does not assume the
availability of a persistent BS; instead, mobile sinks (MSs)
such as mobile sensors, users or soldiers, may be dispatched
on-demand to collect the stored data (or perform other tasks)
in appropriate times.

The previous DCS systems however were not designed
with security in mind. All data of the same event type are
stored at the same node [7, 2] or several nodes [3, 4] based
on a publicly-known mapping function. As long as the map-
ping function and the types of events monitored in the system
are known, one can easily determine the locations of the sen-
sors storing different types of data. In our previous example,
a zoologist can use the DCS system to locate any animals
of interest. A non-authorized person may also use the DCS
system to discover the locations of the animals for hunting.
However, we may only permit a hunter to hunt some ani-
mals (e.g., boars and deers) but not the protected ones (e.g.,
elephants). A non-conforming hunter however may acquire
the locations of the protected animals for hunting purpose.
As such, security and privacy should be provided for DCS
system.

Securing DCS systems however is complicated by the net-
work scale, the highly constrained system resource, the dif-
ficulty of dealing with node compromises, and the fact that
sensor networks are often deployed inunattendedandhos-
tile environments. The low cost of sensor nodes (e.g., less
than $1 as envisioned for smart dust [8]) precludes the built-
in tamper-resistance capability of sensor nodes. Thus, the
lack of tamper-resistance coupled with the unattended nature
gives an adversary the opportunity to break into the captured
sensor nodes to read out sensor data and cryptographic keys.

We presentpDCS, a privacy enhanced DCS system for
unattendedsensor networks. To the best of our knowledge,
pDCS is the first one to provide security and privacy to data-
centric sensor networks. Specifically,pDCS provides the
following features. First, even if an attacker can compro-
mise a sensor node and obtain all its keys, he cannot decrypt
the data stored in the compromised node. Second, after an
attacker has compromised a sensor node, he cannot know
where this compromised node stored its data detected in the
previous time intervals. Third,pDCS includes very efficient
key management schemes for revoking a compromised node
once its compromise has been detected, thus preventing an
attacker from knowing the future storage location for par-
ticular events. Finally,pDCS provides a novel query opti-
mization scheme called Keyed Bloom Filter scheme to sig-

nificantly reduce the message overhead without losing any
query privacy.

The rest of the paper is organized as follows. We first
describe the related work in Section 2 and then discuss the
assumptions and design goal in Section 3. Section 4 presents
several secure mapping functions, followed by a key man-
agement scheme and optimization techniques for sending
queries. In Section 5, we compare the performance of several
query methods. Finally, we conclude this paper in Section 6.

2 Related Work
We introduce the related work in three categories: pri-

vacy and anonymity, key management, and location-based
forwarding.

2.1 Location Privacy and Communication
Anonymity

There are mainly two approaches for restricting mobile
sink (MS) access to sensor data: policy enforcement and
data perturbation. In the spirit of the first approach, Myleset
al. [9], Hengartner and Steenkiste [10], and Snekkenes [11]
studied the issue of specifying location privacy policies on
which access control decisions are based. Alternatively,
anonymity mechanisms could also be employed to provide
the required level of privacy by properly perturbing the sen-
sor data before its release. Gruteser et al. [12] proposed tech-
niques such as data cloaking and hierarchical data aggrega-
tion to prevent an attacker from tracking the precise location
of an individual monitored by sensors. The main difference
between our work and the previous work is that we achieve
sensor data privacy in an unattended environment by encryp-
tion and random location mapping, not by policy enforce-
ment or data perturbation. These techniques are complemen-
tary to each other and can be applied jointly if needed.

2.2 Key Management for Sensor Networks
Key management for sensor networks has been exten-

sively studied recently. There are pairwise key establishment
schemes using a trusted third party (BS) [13], exploiting
the initial trustworthiness of newly deployed sensors [14],
and based on the framework of probabilistic key predeploy-
ment [15, 16, 17, 18, 19, 20].pDCS may adopt one of these
pairwise key establishment schemes based on the security
requirements and resource constraints.

A few schemes also discussed the management of group
keys in sensor networks. In [14], an updated group key is
distributed in a network through hop-by-hop encryption by
trading computation for communication. In [21] geographi-
cal information is exploited to map a logical key tree [22] to
the physical tree structure so as to optimize the energy expen-
diture of a group rekeying operation. There are mainly two
differences between our key management scheme and the
above. First, in addition to group key updating, inpDCS row
keys and cell keys also need to be updated upon a node revo-
cation. Second, inpDCS, the key encryption keys (KEKs)
in a logical key tree are also location-dependent keys and our
cell-based network partition allows our scheme to further re-
duce rekeying overhead.

2.3 Location-based Forwarding
Location-based forwarding has been studied for both mo-

bile ad hoc networks and sensor networks. The location-
aided routing [23] was proposed to reduce the cost of discov-
ery by restricted area flooding when the uncertainty about a
destination is limited. Greedy routing schemes, e.g., GPSR
[5], choose the next hop that provides most progress to-
wards the destination. In these schemes, the delivery of
packets is guaranteed by planarizing the network graph and
applying detour algorithms which avoid obstacles using the
“right hand rule” strategy. Niculescu and Nath [24] proposed
trajectory-based routing, in which the source encodes trajec-
tory to traverse and embeds it into each packet. Upon the
arrival of each packet, intermediate nodes employ greedy
forwarding techniques such that the packet follows its trajec-
tory as much as possible. With this scheme, routing becomes
source-based while there is no need for maintaining routing
tables at intermediate nodes. We note that the scheme in [24]
is suitable for a regular shape trajectory, not for totally ran-
dom shape trajectory, which is the case inpDCS.

pDCS employs two approaches for forwarding query
packets to randomly distributed locations. One is trajectory-
based routing, in which the trajectory is explicitly encoded
in each packet using Euclidean Steiner Tree. In another ap-
proach, a novel keyed bloom filter technique is applied to
encode the trajectory implicitly, which can achieve destina-
tion anonymity while guaranteeing that each query packet
reaches its destination.

3 Models and Design Goal
3.1 Network Model

As in other DCS systems [7, 2, 3], ourpDCSsystem also
assumes that a sensor network is divided into cells (or grids)
where each pair of nodes in neighboring cells can communi-
cate directly with each other. Cell is the minimum unit for
detecting events (referred to asdetection cell) and for stor-
ing sensor data (referred to asstorage cell); for example, a
cell head coordinates all the actions inside a cell. Each cell
has a unique id and every sensor node knows in which cell it
is located through its GPS or an attack-resilient localization
scheme [25].

We assume the events of interest to the MSs are classified
into multiple types. For example, when a sensor network
is deployed for monitoring the activities and locations of the
animals in a wild animal habitat, each activity of each animal
may be considered as one event type.

We do not assume a fixed BS in the network. Instead,
a trusted MS may enter the network at an appropriate time
and work as the network controller for collecting data or per-
forming key management. We also assume the clocks of sen-
sor nodes in a network are loosely synchronized due to an
attack-resilient time synchronization protocol [26, 27].

3.2 Attack Model
Given the unattended nature of a sensor network, an at-

tacker may launch various security attacks against the net-
work at all layers of the protocol stack [28, 29, 30]. Due
to the lack of a one-for-all solution, in the literature these

attacks are studied separately and the proposed defense tech-
niques are also attack-specific. As such, we will focus on the
specific security problems in ourpDCS network instead of
solving all attacks. We assume that in apDCS network the
(ultimate) goal of an attacker is to obtain the event data of
his interest. To achieve this goal, an attacker may launch the
following attacks.

• Passive AttackAn attacker may passively eavesdrop
on the message transmissions in the network.

• Query Attack An attacker may simply send a query
into the network to obtain the sensor data of interest to
him.

• Readout Attack An attacker may capture some sensor
nodes and read out the stored sensor data directly. It
is not hard to download data from both the RAM and
ROM spaces of sensor nodes (e.g., Mica motes [31]).

• Mapping Attack In this attack, the goal of an attacker
is to identify the mapping relation between two cells.
Specifically, he may either identify the storage cell for a
specific detection cell or figure out the detection cell for
a storage cell of his interest. Mapping attack is normally
followed by a readout attack.

The passive attack can be relatively easily addressed by
message encryption with keys of sufficient length, and the
query attack can be addressed by source authentication [13]
so that a node only answers queries from authorized entity.
Given that compromising nodes is much easier than to break
the underlying encryption/authentication algorithm, we con-
sider the readout attack and the mapping attack are more
preferable to the attacker. Note that letting detection cells
encrypt sensor data and store the encrypted datalocally can-
not address the readout attack because an attacker can read
out the encryption keys from the captured sensor nodes as
well.

3.3 Security Assumption
We assume that an authorized mobile sink (MS) has a

mechanism to authenticate broadcast messages (e.g., based
on µTESLA [13]), and every node can verify the broadcast
messages. We also assume that when an attacker compro-
mises a node he can obtain all the sensitive keying mate-
rial possessed by the compromised node. Note that although
technically an attacker can compromise an arbitrary num-
ber of current generation of sensor nodes without much ef-
fort, we assume that only nodes in a small number (s) of
cells have been compromised. For example, it may not be
very easy for sensor nodes to be captured because of their
locations. Also, the attacker needs to spend longer time on
compromising more sensor nodes, which may increase the
chance of being identified. For simplicity, we say a cell is
compromised when at least one node in the cell is compro-
mised. To deal with the worst scenario, we allow an attacker
to selectivelycompromisescells.

We assume the existence of anti-traffic analysis tech-
niques if so required. If an attacker is capable of monitoring
and collecting all the traffic in the network, he may be able
to correlate the detection cells and the storage cells without
knowing the mapping functions. Therefore, we assume one

of the existing schemes [32, 33, 34, 35] may be applied to
counter traffic analysis if the attacker is assumed to be capa-
ble of traffic analysis.

3.4 Design Goal
Our goal is to address the types of attacks that are specific

to pDCS, i.e., passive attack, query attack, readout attack,
and mapping attack. As passive attack and query attack are
easy to address, below we mainly discuss the requirements
to be met for addressing the readout attack and the mapping
attack.
• Event Data Confidentiality Even if an attacker can

compromise a sensor node and obtain all its keys, he
should be prevented from knowing the event data stored
in the compromised node.

• Backward Event Privacy An attacker should be pre-
vented from obtaining the previous sensor data for an
event of his interest even if he has compromised some
nodes.

• Forward Event Privacy We should also thwart (if not
completely prevent) an attacker from obtaining the sen-
sor data regarding an event in the future even if he has
compromised some nodes.

• Query Efficiency Although security is not free, the
scheme should not be too costly for sensor networks.
Especially, it should be convenient and efficient for a
legitimate MS to issue his query without relying on
network-wide flooding.

• Query Privacy A MS query should reveal as little lo-
cation information of the sensor data as possible. For
example, if multiple events are mapped and stored in
the same storage cell, a query for one of the events will
also reveal the storage cell of the other events. As such,
an attacker may eavesdrop on MS queries to minimize
his efforts in launching a mapping attack.

4 pDCS: Privacy Enhanced Data-Centric
Sensor Networks

In this section, we first give an overview of the operations
in pDCS. Then we present several schemes to randomize the
mapping function and propose efficient protocols to manage
various keys involved in the system. Finally, we describe
optimization techniques for issuing queries.

4.1 The Overview ofpDCS
Our solution involves six basic steps in handling sensed

data: determine the storage cell, encrypt, forward, store,
query, and decrypt. We demonstrate the whole process
through an example in which a cellu detects an eventE.

1. Cellu first determines the location of the storage cellv
through a keyed hash function.

2. u encrypts the recorded information (Me) with its cell
key. To enable MS queries, either the event typeE or
the detection time intervalT is in its plain text format,
subject to the requirement of the application.

3. u then forwards the message towards the destination
storage cell. Here, techniques [33] should be applied to

prevent traffic analysis and to prevent an attacker from
injecting false packets.

4. On receiving the message,v stores it locally.

5. If an authorized mobile sink (MS) is interested in the
eventE occurred in cellu, it determines the storage cell
v and sends a query there (optimized query schemes are
discussed in Section 4.4).

6. After it retrieves the message of interest, the MS de-
crypts it with the proper cell key (more details are dis-
cussed in Section 4.5).

The first step is for defending against the mapping attack.
Without the mapping key, an attacker cannot determine the
mapping from the detection cell to the storage cell. The sec-
ond step is for preventing the readout attack. Since the stor-
age cellv does not possess the decryption key forMe, an
attacker is prevented from decipheringMe after he has com-
promised a node inv. Step 3 and Step 4 deal with forwarding
and storing the sensing data, Step 5 shows the basic opera-
tion for issuing a MS query, and Step 6 describes the local
processing of retrieved data.

The following subsections focus on the performance and
security issues related to Step 1, Step 2, Step 5, and Step 6.
Currently we assume some existing schemes [33, 4, 36] for
Step 3 and Step 4; we believe research in these areas bears
its own importance and deserves independent study.

4.2 Privacy Enhanced Data-Location Map-
ping

From the system overview, we can see that an attacker
can launch various attacks if he can find the correct mapping
relation between a detection cell and a storage cell. This mo-
tivates our design of secure mapping to randomize the map-
ping relation among cells. Below we present three repre-
sentative secure mapping schemes in the order of increasing
privacy. The following notations are used during the discus-
sion. LetN be the number of cells in the field,Nr andNc be
the number of rows and the number of columns, respectively.
Every cell is uniquely identified with(i, j), 0≤ i ≤ Nr − 1
and 0≤ j ≤ Nc−1.

To quantify and compare the privacy levels of different
schemes, we assume that an attacker is capable of compro-
mising totallys cells of his choice. To simplify the analysis,
we assume that there arem detection cells for the event of
interest to the attacker, and the locations of thesem cells are
independent and identically distributed (iid) overN cells (In
real applications, the locations of thesemdetection cells may
correlate). We further introduce the concept ofevent privacy
level.

DEFINITION 1. Event Privacy Level (EPL)is the probabil-
ity that an attackercannotobtain both the sensor data and
the encryption keys for an event of his interest

According to this definition, the larger the EPL, the higher
the privacy. This definition can be easily extended to the con-
cepts of backward event privacy level (BEPL) and forward
event privacy level (FEPL).

4.2.1 Scheme I: Group-key–based Mapping
In this scheme, all nodes store the same type of eventE in

the same location(Lr ,Lc) based on a group-wide shared key
K. Here

Lr = H(0|K|E) Mod(Nr), Lc = H(1|K|E) Mod(Nc) (1)

To prevent the stand-alone readout attack, a cell should not
store its data in its own cell. Hence, if a cell(x,y) finds out
its storage cell is the same, i.e.,Lr = x andLc = y, it applies
H onLr andLc until eitherLr 6= x or Lc 6= y. To simplify the
presentation, however, we will not mention this special case
again during the following discussions.
Type I Query: A MS can answer the following query with
one message:what is the information about an event E?This
is because all the information about eventE is stored in one
location. A MS first determines the location based on the
key K andE, then sends a query to it directly to fetch the
data using for example the GPSR protocol [5] (we will dis-
cuss several query methods with optimized performance and
higher query privacy shortly).
Security and Performance Analysis: In this scheme, all
m detection cells are mapped to one storage cell. An at-
tacker first randomly compromises a node to read out the
group key, based on which he locates the storage cell for the
event. Because the data stored in the compromised node are
encrypted by individual cell keys and the detection cell ids
are encrypted as well, the attacker has to randomly guess
them detection cells. Assume that an attacker can compro-
mise up tos cells. If the first compromised cell is the stor-
age cell1 (with probability 1/N), the attacker will randomly
compromise(s−1) cells from the rest(N−1) cells. There
are totally

(N−1
s−1

)

combinations, among which
(N−1−m

s−1−i

)(m
i

)

combinations correspond to the case wherei out of m detec-
tion cells are all compromised. On the other hand, in the case
when the first compromised node is not the storage cell (with
probability (N − 1)/N), the attacker first compromise the
storage cell, then randomly compromise(s− 2) cells from
the rest(N−2) cells. There are totally

(N−2
s−2

)

combinations,

among which
(N−2−m

s−2−i

)(m
i

)

combinations correspond to the
case wherei out of m detection cells are all compromised.
Also note that an attacker can only obtainim of the event
data wheni out of m detection cells are compromised. Let
B1 = min(s−1,m) andB2 = min(s−2,m), then the BEPL
of this scheme is

p1
b(m,s) = 1−

1
N

B1

∑
i=1

(
i
m

)

(

N−1−m
s−1− i

)(

m
i

)

/

(

N−1
s−1

)

−
N−1

N

B2

∑
i=1

(
i
m

)

(

N−2−m
s−2− i

)(

m
i

)

/

(

N−2
s−2

)

Figure 2 shows the analytical result of BEPL as a func-
tion of m and s for a network size ofN = 20∗ 20 = 400
cells, from which we can make two observations. First, with-
out surprise, BEPL decreases withs. Second, BEPL does

1For simplicity, we ignore the case when the first compromised
cell is a detection cell. Our study shows that the error introduced
by this simplification is negligible.

0
10

20
30

400

10

20

30

40

50

0.9

0.92

0.94

0.96

0.98

1

m
s

BEPL

Figure 2. The BEPL as a function ofm and s, wherem is
the number of detection cells ands the number of com-
promised cells

not change withm. This is due to the tradeoff between the
number of detection cells and storage cells that are probably
compromised and the fraction of event data possessed by the
compromised storage cells.

Suppose the attacker compromisess cells including the
storage cell at timet0. He takes over these cells and can
come back at a timet1 in the future to obtain the event data
from the storage cell and then simply decrypt all the data that
are detected by theses cells duringt0 andt1. Assume thatm
cells will detect the event duringt0 andt1 and the locations
of thesem cells are independent and identically distributed
over N cells. On average,ms

N out of s compromised nodes
are detection cells and they will provide the encryption keys.
Hence, the FEPL of this scheme is simply

p1
f (m,s) = 1− (ms/N)/m= 1−s/N

Note that this formulae holds after the attacker has compro-
miseds cells and cannot compromise any more cells. We do
not consider the FEPL during the process of compromisings
cells.

Because all information about one event is stored in one
location, Scheme I is subject to single point of failure. Fur-
thermore, both the traffic load and resources for storing
the information are not uniformly distributed among all the
nodes.

4.2.2 Scheme II: Time-based Mapping
In this scheme, all nodes store the eventE occurring in

the same time intervalT (including a start time and an end
time, the duration is denoted as|T|) into the same location
(Lr ,Lc) based on a group-wide shared keyKT .

Lr = H(0|KT |E|T) Mod(Nr). (2)

Similarly, Lc = H(1|KT |E|T) Mod(Nc). In addition, every
sensor node maintains a timer which fires periodically with
time period|T|. When its timer fires, a node derives the next
group keyKT = H(KT). Finally, it erases the previous key
KT .
Type II Query : A MS can answer the the following query
with one message:what is about the event E during the time
interval T? This is because the information aboutE in T is

stored in one location. A MS first determines the location
based onKT ,E,T, and then sends a query to it to fetch the
data.
Security and Performance Analysis: Due to the use of the
one-way hash function, an attacker cannot derive old group
keys from the current group key of a captured node. Hence,
the locations for storing the events occurred during the past
time periods are not derivable. An attacker has to randomly
guess the previous storage cells and detection cells for the
event of his interest. The BEPLp2

b(m,s) of the previous data
is very complicated to derive because it depends on the spa-
tial and temporal distribution ofm detection cells, the num-
ber of previous storage cells for the event, which in turn de-
pends on the number of previous key updating periods and
the probability of hash collisions. For ease of analysis, we
ignore the case where a cell serves as both a detection cell
and a storage cell. Under this assumption, on average an at-
tacker can correctly guesss/N fraction of detection cells and
s/N fraction of storage cells. Only when these detection cells
are mapped to these storage cells can the attacker decrypt the
encrypted data. As such,

p2
b(m,s) = 1− (s/N)(s/N) = 1− (

s
N

)2

Consider the cases= 40 andN = 400, the BEPL of Scheme
II is 99%. From Fig. 2 we can see the BEPL of scheme I
under the same condition is slightly over 90%. Thus, Scheme
II provides higher BEPL (i.e., higher backward privacy) than
Scheme I.

There are two cases for the FEPL. If the attacker changes
the code of the compromised nodes such that in the future
these nodes keep their detected event data locally, the FEPL
p2

f (m,s) of this scheme is simply 1− s/N. However, if the
compromised nodes follow our protocol and hence do not
keep a local copy of their data, the FEPL will increase. This
is because in the future the event data might be forwarded
to new storage cells that are not controlled by the attacker
(who is assumed not to be able to compromise more than
s cells). Consider that every storage cell used in the fu-
ture might have been compromised with probabilitys/N, in
this case the FEPLp2

f (m,s) is the same as the BEFL, i.e.,

p2
f (m,s) = p2

b(m,s) = 1− (s
N)2.

Compared to Scheme I, both the traffic load and resources
for storing the information in Scheme II are more uniformly
distributed in all the cells.

4.2.3 Scheme III: Cell-based Mapping
In this scheme, all the nodes in the same cell(i, j) of the

gridded sensor field store in the same location(Lr ,Lc) the
same type of eventE occurring during a time intervalT,
based on a cell keyKi j shared among all the nodes in the
cell (i, j). Here

Lr = H(0|i| j|E|Ki j |T) Mod(Nr), (3)

andLc is computed similarly. This scheme differs from the
previous schemes in two aspects. First, in this scheme every
node in cell(i, j) updates the cell keyKi j periodically based
on H such asKi j = H(Ki j), and then erases the old cell key
to achieve backward event privacy. Second, since cell keys

are also used for encryption, the updating of cell keys leads
to the change of encryption key for the same event detected
by the same cell but in different time periods.
Type III Query : A MS can answer the following query with
one message:has event E happened in cell(i, j) during the
time interval T?A MS first determines the location based on
the keyKi j ,T,E, and the detection cell(i, j) of interest, then
sends a query to the cell to fetch the data.
Security and Performance Analysis: The updating of cell
keys prevents an attacker from deriving old cell keys based
on the current cell key of a compromised cell. Hence, the
event data recorded in the previous periods are indecipher-
able irrespective of the number of compromised cells (how-
ever, the network controller still keeps the older keys to de-
crypt previous event data). In other words, the BEFL of this
scheme is

p3
b(m,s) = 1

Clearly, Scheme III provides the highest BEFL.
The FEPLp3

f (m,s) of this scheme is the same as in the
Scheme II. It can also be seen that this scheme is the least
subject to the single point of failure problem compared to
the previous schemes. Moreover, both the traffic load and
resources for storing the information are the most uniformly
distributed among all the nodes.
Summary of Mapping SchemesAbove we have presented
three sensor data-to-location mapping schemes with increas-
ing privacy and complexity. These three mapping schemes
certainly do not exhaust the design space, because we have
three dimensions (time, space, and key) to manipulate. In
Appendix A we further introduce a row-based mapping
scheme. In general, the higher the event privacy, the larger
the message overhead for query. However, theoretically the
average communication overhead for the detection cells to
forward sensor data to the storage cells should be the same
in all the four schemes as well as in the non-secure DCS
systems, owing to the randomness of the storage locations
determined by the hash functionH. On the other hand, these
schemes may be used simultaneously based on the levels of
privacy required by different types of data. We will exploit
the design space and examine the tradeoff in more details in
our future work.
4.3 Key Management

So far we have seen several types of symmetric keys in-
volved inpDCS. Now we are ready to show the complete list
of keys that are used inpDCS and discuss their purposes as
well as efficient ways for management of these keys.

• Master Key Every node,u, has a master keyKu shared
only with MS. This key is used (i) when the node wants
to report the misbehavior of another node in the same
cell to MS, or (ii) when MS distributes a new cell key
to the cell.

• Pairwise Key Every pair of neighboring nodes share a
pairwise key. This key is used for (i) secure distribution
of keying material such as a new cell key among a cell,
or (ii) hop-by-hop authentication of data messages be-
tween neighboring cells for preventing packet injection
attacks.

• Cell Key A cell key can be used (i) for encrypting
sensed data to be stored in a storage cell, (ii) for pri-
vate cell-to-cell mapping, or (iii) as a key encryption
key (KEK) for secure delivery of a row key.

• Row Key A row key can be used (i) for private row-to-
cell mapping, or (ii) as a KEK for secure delivery of a
group key.

• Group Key A group key is used (i) for secure group-to-
cell mapping or (ii) when MS broadcasts a secure query
or command to all the nodes.

Of these five keys, four keys (except pairwise keys) can
be organized into a logical key tree (LKH) [22] data structure
maintained by MS, as shown in Figure 3. The first level key
(i.e., root key) is the group key; the second level of keys are
row keys; the third level of keys are cell keys; the fourth level
are master keys. The out-degree of a key node isNr , Nc, Ni j ,
respectively whereNi j is the number of nodes in cell(i, j).
Like in LKH, every node only knows the keys on the path
from its leaf key to the root key. Unlike in LKH where group
members do not share pairwise keys, in our scheme a node
shares a pairwise key with every neighbor node. We will
show shortly that pairwise keys help reduce the bandwidth
overhead of a group rekeying operation for revoking a node.
Initial Key Setup:
Next we show how nodes establish all these types of keys
initially. Pairwise keys can be established by an existing
scheme introduced in Section 2.2. Group key and master
keys are easy to establish by loading every node with them
before network deployment. However, it might not be fea-
sible to set up row keys and cell keys by pre-loading ev-
ery node with the corresponding keys for large-scale sen-
sor networks. For massive deployment of sensor nodes (e.g.,
through aerial scattering), it is hard to guarantee the precise
locations of sensor nodes. If a node does not have the cell
key for the actual cell it falls in, it will not be able to com-
municate with the other nodes in the same cell. To address
this key setup issue, we need to establish row/cell keys after
deployment.

In our scheme, we assume that during the initial network
deployment phase, a node will not be compromised before it
discovers its location based on a secure location scheme [25].
This could be because the time for location discovery is usu-
ally short [37] or because the initial deployment is moni-
tored. Our scheme works by preloading every node with the
same initial network keyKI . For a node located in cell(i, j),
it can derive its cell key as follows:

Ki j = H(KI , i| j) (4)

After this, it erasesK from its memory completely. A row
key can be established similarly asKi = H(KI , i).
Key Updating upon Node Revocations
pDCS does not include a mechanism for detecting com-
promised nodes although its key updating operation intro-
duced below is triggered by the detection of node compro-
mises. Instead,pDCS assumes the employment of such
schemes [29, 28, 38, 39, 40].

Suppose nodeu in cell L(2,2) is compromised and its
cell reports its compromise toMS. For example, a major-

ity of the other nodes in the cell each computes a MAC over
the report using its master key. Since nodeu knows keys
K22,K2,Kg, these keys will need to be updated to their new
versions, sayK′

22,K
′
2,K

′
g. Based on LKH, MS will need to

encrypt each updated key with its child keys (new version if
updated) and then broadcast all the encryptions. For exam-
ple, the new group keyK′

g is encrypted byK0, K1, K′
2, and

K3, respectively,K′
2 is encrypted byK20, K21, K′

22, andK32,
respectively, andK′

22 is encrypted byKv0, Kv1, Kv2, Kv3, re-
spectively. In general,Nr +Nc +Ni j −1 encrypted keys will
be broadcast and flooded in the network.

Next we present a variant of the above scheme, which in-
corporates two techniques to further improve the rekeying
efficiency. The first technique is based on network topology.
Instead of flooding all the keys in the network, MS sends
them separately to different sets of nodes. This is based on
the observation that nodes in different locations should re-
ceive different sets of encrypted keys. Suppose the node to
be revoked is in cell(i, j). For nodes in rowm (r 6= i), they
only need to receive the new group keyK′

g encrypted by its
row key Km. Hence, MS only needs to send one encrypted
key to the cell(m,0), and the key is then propagated to the
other cells in rowm. For nodes in rowi, there are two sce-
narios. If the nodes are in columnn (n 6= j), they only need
to receiveK′

g encrypted withK′
i andK′

i encrypted with the
cell keyKin. Otherwise if they are located in the same cell as
nodeu, each of them needs to receiveK′

i j encrypted with its
own master key. In these scenarios, MS sendsNc + Ni j −1
keys to the cell(i,0), and the keys are then propagated in
row i. Note that a cell can remove from the keying message
the encrypted keys that are of only interest to itself before
forwarding the message to the next cell. As such, the size of
a keying message decreases during its being forwarded.

Our second technique trades computation for communi-
cation because communication is more energy consuming
than computation in sensor networks. It has been shown
in [18, 37] that the energy consumption for encrypting or
computing a MAC over a 8-byte packet based on RC5 is
equivalent to that for transmitting one byte. As such, in-
stead of sending theNi j − 1 encryptions ofK′

i j to the cell
(i, j) across multiple hops, MS may send only one of the en-
cryptions to a specific node (e.g.,v0 in Figure 3) and then
request that node to propagateK′

i j to the other nodes except
u securely using their pairwise keys for encryption.

Key Management Performance Analysis
Now we analyze the performance of our rekeying scheme
upon a node revocation. For simplicity, we define the per-
formance overheadC as the average number of keys that tra-
verse each cell during a rekeying event. That is,

C =
Nr−1

∑
i=0

Nc−1

∑
j=0

si j /(NrNc) (5)

wheresi j is the number of keys that have traversed cell(i, j).
Here we do not count theNi j −1 unicast transmission cost in-
side the cell(i, j) because this cost is relatively small when
amortized overN cells. Without loss of generality, we as-
sume MS is in cellL(0,0) when distributing rekeying mes-

0 1 2 3

1

2

3

0

(0,1) (3,1)

(2,3)

u

Row
Key

K3K2
K1

K0

Group
Key

Cell
Key K20 K23K22K21

v2

Pairwise
Key

Sharing

v1

v0

v3

Master
Key

v1

v2

v0

v3

u

(2,2)

KuKv0 Kv1 Kv2 Kv3

(a) a sensor network divided into cells (b) a logical key tree (each dot denotes a key)

Kg

0 1 2 3

(c) Demonstration of rekeying packet flows

0

1

2

3

Enc(K0,K’g)

Enc(K1,K’g)

Enc(K3,K’g)

Enc(K23,K’3)
Enc(K’3,K’g)

Enc(K’3,K’g)
Enc(K2j,K’3)

(j=0,1,3)
Enc(K’ 22,K’3)
Enc(K’v0,K’22)

Enc(K’3,K’g)
Enc(K23,K’3)
Enc(K’ 22,K’3)
Enc(K’v0,K’22)

…
…
…
…

Figure 3. The mapping between physical network into a logical key tree and the rekeying packet flows for revoking node
u

sages. From Figure 3(c) we can deriveC as follows.

C = 1.5+(N2
c +N2

r +2Nc +2)/(2NrNc) (6)

For a sensor network deployed in a square field, i.e.,Nc = Nr ,
C≈ 2.5 keys whenNr > 2. Compared to the intuitive scheme
that has the per cell overhead ofNr +Nc +Ni j −1 keys, our
rekeying scheme is far more efficient.

4.4 Improving the Query Efficiency
We have shown that the proposed mapping schemes are

capable of answering queries of different granularity and can
achieve different levels of privacy. Better privacy is normally
achieved at the cost of larger query message overhead. For
example, to answer a query like“Where were the elephants
in the last three days”, one query message is enough in the
group-key–based mapping; however, this may take multiple
query messages in the cell-based mapping as the data are
stored at multiple places. Next we propose techniques to
reduce the query message overhead.

4.4.1 The Basic Scheme
Suppose a mobile sink(MS) needs to send multiple query

messages to multiple storage cells to serve a query. Due to
the randomness of the mapping function, these storage cells
may be separated by other cells. In the basic scheme, as
shown in Figure 4(a), the MS sends one query message to
each cell using a routing protocol such as GPSR [5]. Since
each query message contains the query information and the
id of the destination storage cell, these query messages are
different and have to be sent out separately. It is easy to see
that this scheme has very high message overhead.

Another weakness of the basic scheme is its lack ofquery
privacy. Query privacy is measured by the probability that an
attackercannotfind the ids of the storage cells from eaves-
dropped MS query messages. In the basic scheme, since the
MS has to specify theids of the destination storage cells, the
query privacy of this scheme, denoted byP1, is P1 = 0.

4.4.2 The Euclidean Steiner Tree (EST) Scheme
A natural solution to reduce the message overhead of the

basic scheme is to organize the storage cells as a minimum
spanning tree. In this way, the MS can first generates on-the-
fly the minimum spanning tree which includes all the storage

cells, and then send the query message to these cells follow-
ing this minimum spanning tree. Although this solution in-
creases the message size, it greatly reduces the number of
query messages. Because a message includes many redun-
dant header information, combining multiple messages can
significantly reduce the overall message overhead. Similar
to the basic scheme, the MS has to include theids of the des-
tination storage cells in his query messages. Thus, the query
privacy of this solution is still 0.

To further reduce the message overhead, we can use Eu-
clidean Steiner Tree (EST) [41, 42], which has been shown
to have better performance than minimum spanning tree and
is widely used in network multicasting. Figure 4(b) shows an
EST, which includes some cells other than the storage cells,
called Steiner cells. Note that these Steiner cells can also
help improve the query privacy because they add noise into
the set of storage cells.

With EST, the cell that the MS resides will be the root cell.
The MS constructs a query message, which contains theids
of the cells in the EST, and sends it to its children cells using
routing protocols such as GPSR. When a cell head receives a
query message, it reconstructs an EST subtree by removing
some information such as its ownid and theids of its sibling
nodes, and only keeping the information about the subtree
rooted at itself. Then it forwards the query message with
the EST subtree to its child cell. This recursive process con-
tinues until each storage cell in the EST receives the query
message.

To construct an EST, we use a technique proposed by
Winter and Zachariasen [41]. Since their solution may return
a non-integer Steiner cell, we use the nearest integer Steiner
cell to replace the non-integer steiner cell. Letn denote the
number of storage cells. With this solution, an EST span-
ning k (2 ≤ k ≤ n) cells, has at mostk− 2 integer Steiner
cells, which means that at most 2k−2 cells are included in
the Steiner tree. The use of Steiner cells can improve the
query privacy to at most 1− n

2n−2 = n−2
2n−2. That is,

P1 = 0≤ P2 ≤
n−2
2n−2

(7)

����������� �������������� ����������� �������������� ������������� ����������� ����������������
(a) Basic Scheme (b) EST Scheme (c) BF Scheme

Figure 4. Three schemes for delivering a query to the storagecells

4.4.3 The Keyed Bloom Filter Scheme
Bloom Filter: A Bloom Filter [43] is a popular data
structure used for membership queries. It represents a
set S = s1,s2, · · · ,sn using k independent hash functions
h1,h2, · · · ,hk and a string ofmbits, each of which is initially
set to 0. For eachs∈ S, we hash it with all thek hash func-
tions and obtain their valueshi(s)(1≤ i ≤ k). The bits cor-
responding to these values are then set to 1 in the string. To
determine whether an items′ is in S, bitshi(s′) are checked.
If all these bits are 1s,s′ is considered to be inS.

1

1

1

m bits

BloomFilter

...........

Element s

H (s) = P

H (s) = P

H (s) = P

1 1

2 2

k k

Figure 5. A Bloom Filter with k hash functions

Since multiple hash values may map to the same bit,
Bloom Filter may yield false positives. That is, an element is
not inSbut its bitshi(s) are collectively marked by elements
in S. If the hash is uniformly random overmvalues, the prob-
ability that a bit is 0 after all then elements are hashed and
their bits marked is(1− 1

m)kn ≈ e−
kn
m . Therefore, the prob-

ability for a false positive is(1− (1− 1
m)kn)k ≈ (1−e−

kn
m)k.

The right hand side is minimized when

k = ln2×m/n, (8)

in which case it becomes(1
2)k = (0.6185)m/n.

A Bloom Filter can be used to construct query messages.
A basic approach is as follows: After an MS determines the
location information of all the storage cells, it builds a Eu-
clidean Steiner tree (EST) and gathers the ids ofall the cells
covered by the tree. The MS then inserts the ids into a Bloom

Filter, which is sent with other query information to the root
cell of the EST using the GPSR algorithm (as shown in Fig-
ure 4 (c)). When a query message arrives at a cell, the cell
checks the embedded Bloom Filter to determine if its neigh-
bors are in the Bloom Filter, and then forwards the message
to them. Recursively, every storage cell receives one query
message.

Using Bloom Filter for directed forwarding provides
higher query privacy than EST. This is because Bloom Filter
introduces some additional noise cells, including the non-
storage cells connecting the steiner cells in the EST and a
small number of noise cells caused by the false positive rate.
Keyed Bloom Filter: In the Bloom Filter-based scheme,
an attacker can freely check if a cell is one of the storage
cells although there could be a high false positive rate. To
further improve the query privacy, we should disable the
attacker’s capability in performing membership verification
over a Bloom Filter. This motivates our design of a keyed
Bloom Filter (KBF) scheme, which uses cell keys to “en-
crypt” the cell ids before they are inserted. In this way, an
attacker can derive none or only a small number of cell ids
from a query message. This ensures that the attacker has
negligible probability to identify the storage cells otherthan
randomly guessing.

In the KBF scheme, each cell id is concatenated with the
cell key of its parent node in the EST before it is inserted into
the Bloom Filter. Specifically, to insert cell idx, the bits cor-
responding toHi(x|kp) (i = 1, · · · ,k) are set to 1, wherekp is
the cell key of the parent of cellx. When a query message ar-
rives at a cell, the cell concatenates its own cell key with the
id of each neighboring cell that is not a neighbor of its own
parent node (to avoid redundant computations and forward-
ing), and determines whether the neighbor is in the Bloom
Filter. If it is, the message is forwarded to the neighbor. Al-
gorithm 1 and Algorithm 2 formally describe the ways to
create a Bloom Filter and to forward a query message, re-
spectively.
Query Privacy: In this scheme, cell ids are “encrypted” with
cell keys before being inserted into the Bloom Filter. If an
attacker has not compromised any cells in the EST, he will
not know any cell keys. In this case, he cannot obtain any
information about storage cells from an eavesdropped query
message. Next we consider the case that the attacker has
compromised some cells in the EST. If a compromised cell

Algorithm 1 Create a Bloom Filter
Input: an array of storage-cell Cartesian coordinatesc[];
Output: Bloom FilterBF;
Procedure:
1: initialize a Bloom FilterBF;
2: build Steiner tree based onc[];
3: for each cellu in the Steiner treedo
4: p = parent ofu; kp = cell key ofp;
5: map(u|kp) into BF;
6: end for
7: returnBF;

Algorithm 2 Forward a Query Message
Input: a query message received by cellu, which includes a

Bloom FilterBF.
Procedure:
1: ku = cell key ofu;
2: for for each neighboring cellu′ of u do
3: if u′ 6= parent ofu ∧ u′ 6= neighbor of the parent ofu ∧ BF

containsu′ then
4: forward the query message tou′

5: end if
6: end for

is contained in the EST, from the received query message it
can find out which of its neighboring cells also belong to the
EST. However, it cannot verify the membership of the other
cells. In fact, this is one prominent advantage of the KBF
scheme over the EST scheme. To make the EST scheme
more secure, a straightforward extension would be to encrypt
the EST tree. To enable every cell in the tree to access the in-
formation for correct forwarding of a query message, a group
key will need to be used to encrypt the EST tree. Thus, an
attacker can decrypt the entire EST as long as he can compro-
mise one cell. Clearly, the KBF scheme offers much better
query privacy than the EST scheme. The query privacy of
the KBF scheme and other schemes are compared in Section
5, and the results show that the KBF scheme has the highest
privacy.

4.4.4 Plane Partition
The EST scheme reduces the number of query messages

at the price of larger message size. The limited packet size,
e.g., 29 bytes in TinyOS [44] may prevent the MS to piggy-
back all the storage cellids together with the query informa-
tion in a single packet. A Bloom Filter may be designed to fit
in a packet, but to maintain a low false positive rate, only a
limited number of cellids should be included in a packet. To
address this problem, we use multiple Steiner trees, each of
which is encoded into a single packet. Because partitioning
a Steiner tree into multiple Steiner trees, known as the mini-
mum forest partition problem, is NP-hard ([45]), we propose
heuristics to perform the partition.

In Figure 6 (a), the solid lines are used to represent the
EST tree, and the shaded areas along these solid lines are
used by Bloom Filters to encode the EST tree. An intuitive
partition method is to first cluster the storage cells in a top-
down and left-right fashion, and then build a sub-EST within
each partition. We can let the EST scheme and the KBF

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

����
����
����
����

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���Path Cell

���
���
���
�����

��
��
��

Steiner Cell

Storage Cell

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
��
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

�������
�������
�������

�������
�������
�������

����
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

Path Cell

Steiner Cell

Storage Cell

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

��

��
��
��
��

�
�
�
�

��
��
��

��
��
���
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
������
����
����
����

���
���
���

���
���
���

�������
�������
�������
�������

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���
��
��
��

��
��
��

��
��
��
������

����
����
����

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��
��

��

(a) Intuitive partition (b) Fanlike partition
Figure 6. 17storage cells are partitioned into three parts

scheme have the same partitions and build the same sub-EST
trees. After the partition, the MS sends a query to each par-
tition at the same time. In this way, the message size can be
reduced. Further, since multiple queries are sent out at the
same time, the average query delay is also reduced.
Fanlike Partition Method: With the intuitive partition, the
query message from the MS has to go through some redun-
dant cells. For example, in Figure 6 (a), the query message
of the MS has to go through many cells before reaching the
top partition. To address this problem, we change the Carte-
sian coordinates into Polar coordinates. In this new coordi-
nation system, storage cells are within[−π,π]. The partition
algorithm scans the plane from−π to π and collects enough
storage cells into each partition. Figure 6 (b) shows one ex-
ample of dividing the plane into three partitions using the
Fanlike partition method. The detailed description is shown
in Algorithm 3.

Algorithm 3 Fanlike Partition Method
Input: an array of Cartesian coordinatesc[], wheres is the size of

the array andc[0] is the cell that the MS resides;
Output: Partition Sets;
Procedure:
1: initiate an arraydegree[] to store the degree of each cell;
2: for i = 1 tos do
3: degree[i] = tan−1(

c[i].y−c[0].y
c[i].x−c[0].x);

4: if c[i] is in the 2nd quadrantthen
5: degree[i]− = π;
6: end if
7: if c[i] is in the 3th quadrantthen
8: degree[i]+ = π;
9: end if

10: end for
11: Sort all the cells according to their degrees, and then uniformly

divide the cells into the specified number of partitions and put
them into a set arrayA[].

12: return A;

4.5 MS Data Processing
Through the above query process an MS can retrieve the

message of his interest, which is encrypted by the cell key
of the detection cell. To process the event, the MS needs to
decrypt the message first. However, for preventing selective
compromise attacks, in our design the id of a detection cell
is also encrypted. As such, the MS will try all the cell keys

until the decrypted message is meaningful (e.g., includinga
source cell id and following a certain format). The average
number of decryptions isN/2. Though this may not be a
big issue for a laptop-class MS, which can perform about 4
million en/decryptions per second [46], we will continue to
design more efficient ways in our future work.

Another concern inpDCS is the number of keys that have
to be possessed by an MS when the MS needs to decrypt
data from many cells. If we assume that the MS could not
be compromised, we can simply load it with a single key,
which is the initial group keyKI . From this initial key the
MS can derive the cell keyKi j of each cell(i, j) as Ki j =
H(KI , i| j). This is however dangerous if the MS could be
compromised, because all the cell keys would be exposed.
This problem can be relieved in the following way. Instead
of applying its cell key for encryption directly, every node
may first derive some variances of its cell key for specific
events or time intervals using a hash function. The variance
keys are then used to encrypt event messages. The MS will
be loaded withN variance keys for the event of his interest.
In case that the MS is compromised, the other variance keys
are still secure.

5 Performance Evaluations
In this section, we evaluate and compare the performance

of three query schemes: the Basic scheme, the Euclidean
Steiner Tree (EST) scheme and the Keyed Bloom Filter
(KBF) scheme. In our simulation setup, each query message
contains the query information and the encoded query path.
The query information occupies 4 bytes which are used to
represent time and event2, and 25 bytes are used to represent
the query path. For evaluation purpose, we do not consider
the overhead of source authentication.

In the EST scheme, the query path is encoded as a Steiner
tree. Each nodeid is presented by two byes, so only 12 cell
ids can be encoded in each packet. In the KBF scheme, 25
bytes are used to encode the query path with Bloom Filter,
and it is expected to achieve an acceptable false positive rate,
say 0.1. Considering these limitations, we choose(n,k) =
(20,5).

These schemes are evaluated under various storage cell
densities, ranging from1

40 to 1
2.5. The storage cell density

is defined as the ratio of the number of storage cells to the
number of total cells in the plane. For example, with our
setting of 20×20 cells, a density of110 means that there are
about 400∗ 1

10 = 40 storage cells.
Four metrics are used to evaluate the performance of the

proposed schemes: the number of query messages, the aver-
age query delay, the maximum query delay and the message
overhead. The number of query messages is the total num-
ber of messages sent out by the MS for a query. The average
query delay is the average of the query delays for different
storage cells. The maximum query delay is the maximum

2Some applications may require more bytes; nevertheless, since
we are interested in the comparative results of multiple schemes,
normally the payload size will not affect much. Note that in real ap-
plications time should be in hour/minute level instead of microsec-
ond level, and hence less bits are needed to encode it.

among all the query delays. The message overhead is defined
as the total number of transmitted hops of all the messages
sent out by the MS to serve a query. In the KBF scheme,
the message overhead also includes the extra messages due
to false positive.

5.1 Choosing the Partition Method
In this subsection, we evaluate the performance of EST

with intuitive partition and EST with Fanlike partition. As
shown in Figure 7, the Fanlike partition method outperforms
the intuitive method in terms of average query delay, maxi-
mum query delay, and message overhead. We did not show
the number of messages, since both schemes have the same
number of messages determined by the packet size.

As discussed earlier, in the intuitive partition method,
each query message is sent from the MS to the partition,
which may go through many redundant cells and hence in-
crease the message overhead. However, in the Fanlike par-
tition, less redundant cells are involved, and hence the mes-
sage overhead is lower. This also explains why the Fanlike
partition has lower average and maximum query delay when
compared to the intuitive partition.

In Figure 7 (a), with Fanlike partition, the average query
delay drops as the storage cell density increases. This can
be explained as follows. When the storage cell density is
high, each partition is small. Therefore, the Steiner tree is
limited within a small range and the zig-zag paths from MS
to storage cells tend to be shorter. This results in smaller
average query delays.

The aforementioned reason also explains the phenomenon
that the maximum query delay decreases as the storage cell
density increases for the Fanlike partition in Figure 7 (b).
However, when the density is very low (1

40), the intuitive
partition has a little bit lower maximum query delay than
the Fanlike partition. We checked the simulation trace and
found the following reason. When the density is1

40, there
are about 10 storage cells. Due to the use of Steiner cells
and that each packet is limited to 12 cellids, there are a
very small number (one or two) of cells left into the sec-
ond packet. These leftover cells tend to be faraway in the
intuitive partition method but not in the Fanlike partition. As
a result, the intuitive partition can achieve a slightly shorter
maximum delay than the Fanlike partition method when the
storage cell density is very low.

We also evaluated the performance of the KBF scheme
under both partition methods. The results are similar to EST
where the Fanlike partition performs better. Thus, we use the
Fanlike partition method in the following comparisons.

5.2 Performance Comparisons of Different
Schemes

This subsection compares the performance of three
schemes: the Basic scheme, the EST scheme and the KBF
scheme.

Figure 8 compares the number of messages and the mes-
sage overhead of the three schemes. As can be seen, both
optimization schemes (EST and KBF) outperform the ba-
sic scheme since the optimization schemes combine several
messages into one. We can also see that the message over-
head of the KBF scheme is higher than the EST scheme al-

8.5

9

9.5

10

10.5

11

11.5

12

1/40 1/20 1/10 1/5 1/2.5

A
v

er
a

g
e

Q
u

er
y

 D
el

a
y

Storage-cell Density

EST with Intuitive Partition
EST with Fan-like Partition

19

20

21

22

23

24

25

26

27

1/40 1/20 1/10 1/5 1/2.5

M
a

x
im

u
m

 Q
u

er
y

 D
el

a
y

Storage-cell Density

EST with Intuitive Partition
EST with Fan-like Partition

0

50

100

150

200

250

1/40 1/20 1/10 1/5 1/2.5

M
sg

 O
v

er
h

ea
d

Storage-cell Density

EST with Intuitive Partition
EST with Fan-like Partition

(a) Average Query Delay (b) Maximum Query Delay (c) Msg Overhead
Figure 7. Performance Comparisons between different partitions

 0

 20

 40

 60

 80

 100

 120

1/40 1/20 1/10 1/5 1/2.5

N
u

m
b

er
 o

f
M

sg
s

Storage-cell Density

Basic
EST
KBF

 0

 200

 400

 600

 800

 1000

 1200

1/40 1/20 1/10 1/5 1/2.5

M
sg

 O
v

er
h

ea
d

Storage-cell Density

Basic
EST
KBF

(a) Number of Msgs (b) Msg Overhead
Figure 8. The message overhead of different schemes

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

1/40 1/20 1/10 1/5 1/2.5

A
v

er
a

g
e

Q
u

er
y

 D
el

a
y

Storage-cell Density

Basic
EST
KBF

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

1/40 1/20 1/10 1/5 1/2.5

M
a

x
im

u
m

 Q
u

er
y

 D
el

a
y

Storage-cell Density

Basic
EST
KBF

0

0.2

0.4

0.6

0.8

1

1/40 1/20 1/10 1/5 1/2.5

Q
u

er
y

 P
ri

v
a

cy

Storage-cell Density

Basic
EST

KBF(s=5)
KBF(s=10)
KBF(s=20)

(a) Average Query Delay (b) Maximum Query Delay (c) Privacy
Figure 9. Comparisons among different schemes

though both schemes have similar number of messages. This
is due to the fact that the query messages in the KBF scheme
may go through some redundant cells due to false positive.

Figure 9 (a) (b) compares the average delay and the max-
imum delay of the three schemes. As can be seen, the basic
scheme outperforms the other two. This is because in the ba-
sic scheme, the query messages are sent directly to the stor-
age cells in parallel along shortest paths, resulting in a lower
query delay. Although EST and KBF can reduce the message
overhead, the query delay is increased since the message has
to go through many intermediate cells sequentially.

As shown in Figure 9(a) and (b), when the storage cell
density is low, KBF outperforms EST in terms of query de-
lay. To explain this, we need to understand the effects of
the number of partitions. When the number of partitions
is small and hence each partition is large, the path to each
storage cell is more zig-zag like, which may result in long
delay. As shown in Figure 8 (a), when the density is low,
EST has less number of messages and hence less number of
partitions, which means that EST will have large partitions
and long delay. Similarly, when the density is high, EST has
more partitions and shorter delay.

In addition, as shown in Figure 9(c), the KBF scheme has
the highest query privacy. Even afters= 20 cells have been
compromised, the query privacy level is still above 83%.

In summary, there is a tradeoff among query delay, mes-
sage overhead, and query privacy. The Basic scheme has the
lowest delay but the highest message overhead and the low-
est query privacy. The EST scheme and the KBF scheme can
significantly reduce the number of messages and the mes-
sage overhead with the same level of query delay. Especially
the query privacy level of KBF is far higher than the other
schemes.

6 Conclusions and Future Work
In this paper, we proposed solutions on privacy sup-

port for data centric sensor networks (pDCS). The proposed
schemes offer different levels of location privacy and allow
a tradeoff between privacy and query efficiency.pDCS also
includes an efficient key management scheme that makes a
seamless mapping between location keys and logical keys,
and several query optimization techniques based on Eu-
clidean Steiner Tree and Bloom Filter to minimize the query
message overhead and increase the query privacy. Simula-
tion results verified that the KBF scheme can significantly
reduce the message overhead with the same level of query
delay. More importantly, the KBF scheme can achieve these
benefits without losing any query privacy.

To the best of our knowledge, this is the first paper to
address privacy issues in data-centric sensor networks. As
the initial work, we do not expect to solve all the prob-
lems. In the future, we will address other issues such as
source anonymity, and look into other query techniques to
balance the tradeoff between query delay and message over-
head. Techniques for initial key setup without relying on a
short safe time period are also needed.

7 References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E.Cayirci,“Wireless
Sensor Networks: A Survey,”Computer Networks, vol. 38, no. 4,
March 2002.

[2] S. RatNasamy, B. karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and
S. Shenker, “GHT: A Geographic Hash Table for Data-Centric Stor-
age,” ACM International Workshop on Wireless Sensor Networks and
Applications, September 2002.

[3] A. Ghose, J. Grobklags and J. Chuang, “Resilient data-centric storage
in wireless ad-hoc sensor networks,”Proceedings the 4th Interna-
tional Conference on Mobile Data Management (MDM’03), pp. 45–
62, 2003.

[4] W. Zhang, G. Cao, and T. La Porta, “Data Dissemination withRing-
Based Index for Wireless Sensor Networks,”IEEE International Con-
ference on Network Protocols (ICNP), pp. 305–314, November 2003.

[5] B. Karp and H. Kung, “GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks,”The Sixth Aunual ACM/IEEE International
Conference on Mobile Computing and Networking (Mobicom 2000),
Aug. 2000.

[6] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A Two-Tier Data
Dissemination Model for Large-scale Wireless Sensor Networks,”
ACM International Conference on Mobile Computing and Network-
ing (MOBICOM’02), pp. 148–159, September 2002.

[7] S. Ratnasamy, D. Estrin, R. Govindan, B. Karp, L. Yin, S. Shenker,
and F. Yu, “Data-centric storage in sensornets,” inProceedings of
ACM First Workshop on Hot Topics in Networks, 2001.

[8] “The smartdust project,” http://robotics.eecs.berkeley.edu/ pis-
ter/SmartDust/.

[9] G. Myles, A. Friday, and N. Davies, “Preserving privacy in environ-
ments with location-based applications,” inIEEE Pervasive Comput-
ing, 2003.

[10] U. Hengartner and P. Steenkiste, “Protecting access topeople location
information.,” inProceedings of the First International Conference on
Security in Pervasive Computing, 2003.

[11] Einar Snekkenes, “Concepts for personal location privacy policies,”
in Proceedings of the 3rd ACM conference on Electronic Commerce,
2001.

[12] M. Gruteser, G. Schelle, A. Jain, R. Han, and D. Grunwald, “Privacy-
aware location sensor networks,” inProceedings of 9th USENIX Work-
shop on Hot Topics in Operating Systems (HotOS IX), 2003.

[13] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar, “Spins: se-
curity protocols for sensor netowrks,” inProceedings of ACM Mobile
Computing and Networking (Mobicom’01), 2001, pp. 189–199.

[14] S. Zhu, S. Setia, and S. Jajodia, “Leap: Efficient security mecha-
nisms for large-scale distributed sensor networks,” inProceedings of
the 10th ACM Conference on Computer and Communications Security
(CCS ’03), 2003, pp. 62–72.

[15] H. Chan, A. Perrig, and D. Song, “Random key predistribution
schemes for sensor networks,” inProceedings of IEEE Security and
Privacy Symposim’03, 2003.

[16] W. Du, J. Deng, Y. Han, and P. Varshney, “A pairwise key pre-
distribution scheme for wireless sensor networks,” inProceedings of
the 10th ACM Conference on Computer and Communications Security
(CCS’03), 2003, pp. 42–51.

[17] L. Eschenauer and V. Gligor, “A key-management scheme for dis-
tributed sensor networks,” inProceedings of ACM CCS’02, 2002.

[18] D. Liu and P. Ning, “Establishing pairwise keys in distributed sensor
networks,” inProceedings of the 10th ACM Conference on Computer
and Communications Security (CCS ’03), 2003, pp. 52–61.

[19] H. Chan and A. Perrig, “PIKE: Peer intermediaries for keyestab-
lishment in sensor networks,” inProceedings of IEEE Infocom, Mar.
2005.

[20] Arno Wacker, Mirko Knoll, Timo Heiber, and Kurt Rothermel, “A new
approach for establishing pairwise keys for securing wireless sensor
networks,” inProceedings of ACM Sensys, 2005.

[21] L. Lazos and R. Poovendran, “Energy-aware secure multicast commu-
nication in ad-hoc networks using geographic location information,”
in Proceedings of IEEE ICASSP’03, 2003.

[22] C. K. Wong, M. Gouda, and Simon Lam, “Secure group communi-
cation using key graphs,” inProceedings of ACM SIGCOMM 1998,
1998.

[23] Y. Ko and N. Vaidya, “Location-aided Routing in Mobile Ad Hoc
Networks,” ACM Mobicom, pp. 66–75, 1998.

[24] D. Niculescu and B. Nath, “Trajectory Based Forwardingand Its Ap-
plications,” ACM MOBICOM’03, 2003.

[25] S. Capkun and J. Hubaux, “Secure positioning of wireless devices
with application to sensor networks,”Proceedings of IEEE INFO-
COM’05, 2005.

[26] Kun Sun, Peng Ning, and Cliff Wang, “Secure and resilient clock syn-
chronization in wireless sensor networks,”IEEE Journal on Selected
Areas in Communications, vol. 24, no. 2, pp. 395–408, 2006.

[27] H. Song, S. Zhu, and G. Cao, “Attack-Resilient Time Synchronization
for Wireless Sensor Networks,”IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (MASS’05), 2005.

[28] C. Karlof and D. Wagner, “Secure routing in sensor networks: Attacks
and countermeasures,” inProceedings of First IEEE Workshop on
Sensor Network Protocols and Applications, 2003.

[29] A. Cardenas, S. Radosavac, and J. Baras, “Detection andprevention of
mac layer misbehavior for ad hoc networks,” inProceedings of ACM
Workshop on Security of Ad hoc and Sensor Networks (SASN’04),
2004.

[30] W. Xu, T. Wood, W. Trappe, and Y. Zhang, “Channel surfing and
spatial retreats: defenses against wireless denial of service,” in Pro-
ceedings of ACM Workshop on Wireless Security (WiSe), 2004.

[31] “Crossbow technology inc,” http://www.xbow.com 2004.

[32] D. Chaum, “The dining cryptographers problem: Unconditional
sender and recipient untraceability,”Journal of Cryptology, vol. 1,
no. 1, pp. 65–75, 1988.

[33] J. Deng, R. Han, and S. Mishra, “Intrusion tolerance andanti-traffic
analysis strategies for wireless sensor networks,”International Con-
ference on Dependable Systems and Networks (DSN’04), June 2004.

[34] C. Ozturk, Y. Zhang, and W. Trappe, “Source-location privacy in
energy-constrained sensor networks routing,”ACM Workshop on Se-
curity of Ad Hoc and Sensor Networks (SASN’04), October 2004.

[35] M. Reiter and A. Rubin, “Crowds: Anonymity for web transactions,”
ACM Transactions on Information and System Security, vol. 1, no. 1,
pp. 66–92, 1998.

[36] P. Desnoyers, D. Ganesan, and P. Shenoy, “Tsar: A two tier storage ar-
chitecture using interval skip graphs,”Proceedings of the Third ACM
Conference on Embedded Networked Sensor Systems (SenSys), 2005.

[37] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical en-routedetection and
filtering of injected false data in sensor networks,” inProceedings of
IEEE Infocom’04, 2004.

[38] T. Park and K. Shin, “Soft tamper-proofing via program integrity ver-
ification in wireless sensor networks,”IEEE Transactions on Mobile
Computing, vol. 4(3), 2005.

[39] A. Seshadri, A. Perrig, L. Doorn, and P. Khosla, “Swatt:Software-
based attestation for embedded devices,” inProceedings of the IEEE
Symposium on Security and Privacy, May 2004.

[40] Y. Zhang and W. Lee, “Intrusion detection in wireless ad-hoc net-
works,” in Proceedings of ACM MOBICOM, 2000.

[41] Pawel Winter and Martin Zachariasen, “Euclidean steiner minimum
trees: An improved exact algorithm.,”Networks, vol. 30, no. 3, pp.
149–166, 1997.

[42] M. Cagalj, J. Hubaux, and C. Enz, “Minimum-Energy Broadcast in
All wireless Networks: NP-Completeness and Distribution,”ACM
MOBICOM’02, 2002.

[43] B. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, 1970.

[44] “The tinydb project,” http://telegraph.cs.berkeley.edu/tinydb/.

[45] Roberto Cordone and Francesco Maffioli, “On the complexity of
graph tree partition problems,”Discrete Appl. Math., vol. 134, no.
1-3, pp. 51–65, 2004.

[46] “Weidai’s crypto++ (visited in jul. 2005),”

http://www.eskimo.com/ weidai/benchmarks.html.

APPENDIX A: Row-based Mapping
In this scheme all the nodes in the same rowi (or column)
of the gridded sensor field store the same type of eventE
occurring duringT in the same location(Lr ,Lc) based on a
key Ki shared only among all the nodes in rowi. Here,

Lr = H(0|i|E|Ki |T) Mod(Nr), (9)

andLc is computed in the similar way. Instead of updating a
group key as in Scheme II, in this scheme every node updates
its row key periodically based onH and then erases the old
row key to achieve backward event privacy.
Type IV Query : a MS can answer the following query with
one message:has event E happened in row i during the time
interval T? This is because all the information about the
eventE happened in rowi duringT is stored in one location.
An authorized MS first determines the location based onKi ,
T, E and rowi of interest, then sends a query to it to fetch
the data.
Security and Performance Analysis: The updating of row
keys prevents an attacker from deriving old row keys based
on the row key of a currently compromised node. Hence, as
in Scheme II, the past detection cells and storage cells cannot
be derived by an attacker. An attacker has to randomly guess
the previous storage cells and detection cells for the eventof
his interest. On average an attacker can correctly guesss/N
fraction of detection cells ands/N fraction of storage cells.
As in Scheme II,

p4
b(m,s) = 1− (s/N)(s/N) = 1− (

s
N

)2

It is easy to see that the FEPLp4
f (m,s) of this scheme is

also the same as in the Scheme II. However, it can also be
seen that this scheme is less subject to the single point of
failure problem compared to the Scheme II but worse than
Scheme III. Both the traffic load and resources for storing
the information are more uniformly distributed among all the
nodes than Scheme II.

