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Abstract— Anonymous message transmission systems are the
building blocks of several high-level anonymity services (e.g. e-
payment, e-voting). Therefore, it is essential to give a theoretically
based but also practically usable objective numerical measure
for the provided level of anonymity. In this paper two entropy-
based anonymity measures will be analyzed and some shortcom-
ings of these methods will be highlighted. Finally, source- and
destination-hiding properties will be introduced for so called local

anonymity, an aspect reflecting the point of view of the users.

Index Terms— anonymity measure, local anonymity

I. INTRODUCTION

Anonymous message sending techniques define a rapidlyn

evolving area in privacy research. Such methods are required

for many applications ranging from simple untracable e-mail

communication to anonymous electronic voting and payment

systems. The goal is to transport messages from senders to

recipients, so that an attacker (ranging from simple observers

to traffic shaping adversaries) can only guess the user-message

relations with a small probability.

The aim of this paper is to draw attention to so called local

anonymity. Recent papers have proposed entropy as a means

of measuring the performance of different systems. Although

global anonymity (i.e. how many potential candidates the

adversary has to consider and what is their general distribution

) can be quantified this way, the user’s point of view is

somewhat different: “I am only interested in my own messages

and they should not be linked to me under any circumstances

with a probability greater than a given treshhold”. In response

to this we should rather focus on the worst case scenario for

a given message.

Another key issue is the aspect of the user-defined treshhold.

This is a calibration metric, like Quality-of-Service that a

system should satisfy when providing anonymity services. The

aim in this paper is to clearly highlight the problem – the

difference between local and global anonymity – and give

some example solutions.

Although one can find several systems in the literature ([1],

[2], [3]), each year newer and newer solutions are published

([4], [5]). In order to objectively compare them, appropriate

theoretical measures are required. Another important require-

ment of the practical usability of such measures is that the

measure should be easy to understand, not only by experts

but also by users. The goal of the authors is to introduce

source-hiding property for measuring sender anonymity and

destination-hiding property for recipient anonymity and to

compare them with existing measures.

A. Local vs. Global Anonymity

Serjantov & Danezis [6] and Dı́az et al [7] proposed

two similar information theory-based anonymity measures. By

using the entropy of the attacker’s probability distribution, they

quantified how many bits of information an adversary needs

in order to perfectly match a message to the respective user.

This approach (later referred to as as global measure) aims

to quantify the effort that is needed to totally compromize

messages. (In the worst case missing bits of information can

be substituted with brute force, where the required number of

steps is the power of two.)

On the other hand, in this paper we argue that another

approach – using the maximal probability as a measure –

focuses better on the local aspect of anonymity. From the

users’ point of view this is more important, because they are

interested only in their own messages and the probability of

being compromized.

B. Outline of the Paper

In Section II. we briefly introduce previous work in the field

of anonymity measures and then analyze the shortcomings of

these approaches in Section III. In Section IV. the proposed

source- and destination-hiding properties will be introduced.

We will show that they represent worst-case anonymity mea-

sures, mainly focusing on the local aspect of the user’s view.

Finally the analysis of a continuous time system (the PROB-

channel) closes the paper with the calculations for the different

anonymity metrics, which have been introduced.

II. BACKGROUND

This section gives a short introduction to the background

of measuring anonymity. First let the informal summary of

an anonymous message transmission system follow. This will

define the terms and expressions we are going to use in

this paper. Later in this section different previously published

entropy-based anonymity measures will be described.

A. Anonymous Message-sending Scenario

In an anonymous message-sending scenario we have the

following setting: senders send messages to recipients using

the intermediate anonymous message transmission system.

This anonymous message transmission system cyptographi-

cally transforms, delays and mixes the messages sent by the



senders according to the implemented algorithm and eventu-

ally delivers them to the recipients.

On the other hand there is an adversary, who may see

messages sent by the senders and also those delivered to the

recipients. His aim is to match the delivered ones to the senders

(accoring to [8] in this case sender anonymity is compromized)

or the sent messages to the recipients (recipient anonymity).

In order to render the effors of the adversary more difficult,

the parties use diffent encryption algorithms, uniformly sized

messages and dummy traffic [9].

Considering the adversary different attacker models can

be taken into account: mighty ones may perceive the whole

network at all times, whereas a less pessimistic approach

may consider attackers with limited access to a fraction of

the whole network. Another important aspect is whether the

adversary is active (i.e. may delay, create, delete or alter

messages) or only passive (i.e. can only eavesdrop). When

calculating the level of anonymity provided by a system it is

an important aspect to note against what kind of adversary the

metrics hold.

Furthermore we assume that the adversary performs a

probabilistic attack: he computes probabilities that indicate,

to what extent messages correspond to senders or recipients

according to his knowledge. Finally the adversary marks the

most probable sender/recipient as his guessed user for a certain

message.

B. Anonymity Measures

Based on the model of an anonymous message transmission

system the definition of anonymity was given by Pfitzmann

and Köhntopp [8]:

Anonymity is the state of being not identifiable

within a set of subjects, the anonymity set.

[...]

Anonymity may be defined as the unlinkability of

an IOI1 and an identifier of a subject.

The first publications aiming to quantify the level of

anonymity provided by the described systems used the size

of the anonymity set as the measure (e.g. [3]). Since the

probabilities might not be uniformly distributed, the size of

the set does not perfectly reflect the achieved anonymity as it

was pointed out with the practical example of the pool mix in

[10].

Based on the above observation Serjantov & Danezis in-

troduced entropy for measuring anonymity [6]. They used the

following model:

Definition 1: Given a model of the attacker and a

finite set of all users Ψ, let r ∈ R be a role for a user

(R={sender, recipient}) with respect to a message

M. Let U bet the attacker’s a-posteriori probability

of users u ∈ Ψ having the role r with respect to M.

With this in mind the measure for both sender and recipient

anonymity was defined as follows:

1Item Of Interest, i.e. a message

Definition 2: The effective size S of an r anonymity

probability distribution U is equal to the entropy of

the distribution. In other words

S = −
∑

u∈Ψ

pu log2 pu (1)

where pu = U(u, r).

In the rest of the paper this anonymity measure will be

referred to as the simple entropy measure.

Dı́az et al. followed a slightly different (extended) approach

[7], whereas they only considered sender anonymity. Let A
represent the anonymity set of a certain message M, i.e. A =
{u|(u ∈ Ψ)∧ (pu > 0)}. Furthermore let N be the size of the

anonymity set, i.e. N = |A|. Their defintion was the following:

Definition 3: The degree of anonymity provided by

a system is defined by

d =
H(X)

HM

(2)

For the particular case of one user we assume d to

be zero.

With the symbols defined above H(X) = S and HM =
log2 N . We will refer to this measure as the normalized

entropy measure.

In both cases 0 means absolutely no anonymity (i.e. the

attacker knows with 100% the sender of a message). In the

simple entropy case maximal anonymity is achieved when S =
log2 N and with normalized entropy when d = 1.

III. SHORTCOMINGS OF EXISTING ANONYMITY

MEASURES

In the following the previously introduced entropy based

measures will be evaluated and some shortcomings will be

pointed out:

• For both measures two probability distributions will be

given that have the same level of anonymity according

to the respective measure, but practically provide very

different anonymity considering the local aspect, i.e. the

worst case for one particular user.

• It will be shown that non-desirable systems can approach

optimal systems according to the entropy based measures.

A. Simple Entropy

Recall that accoring to the measure of simple entropy the

level of anonymity is given by S, see (1). First, two distribu-

tions will be shown that have the same entropy but behave

remarkably differently considering the provided anonymity

from one user’s point of view.

Now let’s define the following two anonymity systems:

1) In the first system the probability distribution (D1) is

uniform among m users, i.e. D1 : pu = 1
m

.

2) In the second system we have a different distribution

(D2) among n users: for the sake of the example for the



TABLE I

CORRESPONDING n-m VALUES YIELDING THE SAME AMOUNT OF SIMPLE

ENTROPY

m n S

10 26 3.3219

20 101 4.3219

50 626 5.6439

100 2501 6.6439

actual sender the probability is 50% and the others are

uniformly distributed 2. This yields the following:

D2 : pu =

{

0.5 for the actual sender,
0.5

n−1 otherwise.

Now let’s choose m and n so that the resulting entropy is

the same. For this we have to solve Sm
D1

= Sn
D2

, which is

expanded in the following equation:

−
[

m
1

m
log2

1

m

]

=

−
[

(n − 1)
0.5

n − 1
log2

0.5

n − 1
+ 0.5 log2 0.5

]

(3)

The result can be seen in (4):

n =
m2

4
+ 1 (4)

Some example numerical values are shown in Table I. In

order to visualize the problem, let’s have a look at the example

with m = 20. According to the definitions in such a system

with uniformly distributed probabilities (D1) the attacker has

5% (i.e. pu = 1
20 = 0.05) chance to guess the sender of a

message. This system provides anonymity with S = 4.3219
bits.

On the other hand, let’s have a look at the second system

(D2). Here for each delivered message the attacker knows that

a particular sender sent the message with 50% certainty and

another 100 senders could have sent it with 0.5%.

The two systems clearly perform differently considering the

local aspect of anonymity, but have the same value with simple

entropy. With D1 distribution statistically seen on the long

term an attacker can guess the sender of a message every 20th

time correctly, whereas with D2 distribution he is going to

successfully guess the sender of every second message.

The second point to show is that non-desirable systems can

achieve an arbitrarily high entropy. From (1) and (4) it is clear

that for an arbitrary value of S a corresponding D2 distribution

can be constructed, where n = 4S−1 + 1.

Summarized, the main problem with this entropy based

measure is that it tries to quantify the amount of information

that is required to break totally the anonymity of a message,

i.e. to definitely identify actual sender of a message. However

in practice we have to consider an attacker successful, if he

can guess the sender of some selected messages with a good

2The concrete probability of 0.5 was chosen in order to simplify the
resulting equations.

probability, in specific cases significantly greater than in the

case of the uniform distribution (i.e. pu � 1
N

).

B. Normalized Entropy

To demonstrate similar shortcomings of the normalized

entropy measure first we show two systems with the same

value of d, however with remarkably different local anonymity.

Due to the normalization we have to notice that following

from the definition of d in order to obtain the same results for

the two constructions the quotient of the entropy and the the

logarithm of the anonymity set size should remain the same.

This can be achieved in the easiest way by having the same

entropy as well as the same anonymity set size.

For demonstration purposes let’s consider the following two

systems:

1) In the first system we have the distribution (D2) known

from the previous example: n users are involved; for

the actual sender the probability is 50% and the others

are uniformly distributed. This yields the following

distribution:

D2 : pu =

{

0.5 for the actual sender,
0.5

n−1 otherwise.

2) In the second case we have a new distribution (D3):

there are n users as well, x of them having a probability

PA and n − x of them with probability PB . The

characteristic parameters for such a distribution are x

and PS , being the sum of the PA probabilities of the x

users. The following distribution is given this way:

D3 : pu =

{

PA = PS

x
for the x users,

PB = 1−PS

n−x
otherwise.

This second distribution can be explained as follows:

with PS probability the sender of the message is the

member of a sub-anonymity-set AA with x members

and uniformly distributed probabilities PA. On the other

hand with 1−PS probability the sender of the message is

the member of the other sub-anonymity-set AB with n−
x members and also uniformly distributed probabilities

PB .

In order to find suitable distributions the equation below has

to be solved (notice that for the distribution D2 the entropy

was caluclated in (3)):

−
[

(n − 1) 0.5
n−1 log2

0.5
n−1 + 0.5 log2 0.5

]

log2 n
=

− [xPA log2 PA + (n − x)PB log2 PB ]

−log2n
(5)

It is clear that for this scenario we have three variables:

n, x and PS . For a concrete example, x was chosed to be

x = m
2 , where m =

√
4n − 4 (see (4)) and the respective PS

was calculated (see Table II).

To imagine the two systems, let’s look at the case m = 20.

With this we get an anonymity set A with n = 101 users. For



TABLE II

CORRESPONDING n-x-PS VALUES YIELDING THE SAME NORMALIZED

ENTROPY

m n x PS PA PB d

10 25 5 0.832213 0.166442 0.007989 0.706727

20 101 10 0.865184 0.086518 0.001481 0.649112

50 626 25 0.890594 0.035623 0.000182 0.607518

100 2501 50 0.903463 0.018069 0.000039 0.588561

Fig. 1. d as a function of n with distribution D′

2

both systems the normalized entropy gives d = 0.649112 as a

measure for the anonymity.

In case of the first system (D2) for the actual sender of the

message pu = 0.5, thus the attacker knows with 50% certainty

of the sender, for the other 50% he has 100 possible users with

0.5% certainty uniformly distributed.

On the other hand for the second system (D3) we have

two sub-anonymity-sets. For AA we have 10 users with

probabilities PA of roughly 8.7%, yielding together PS of

87%. Furthermore we have the other sub-anonymity-set AB ,

consisting of 91 users with an overall probability of about 13%

uniformly distributed in quantities of 0.15% as PB .

Another important point is to show that non-desirable sys-

tems exist in arbitrarily small vicinity of the optimal d = 1.

For this let’s consider a slightly modified version of the D2

distribution that we will refer to as D′
2. In this distribution n

users are involved; for the actual sender the probability is z and

the others are uniformly distributed. This yields the following:

D′
2 : pu =

{

z for the actual sender,
1−z
n−1 otherwise.

The degree of anonymity provided according to the normal-

ized entropy is as follows:

d =
−

(

z log2 z + (n − 1) 1−z
n−1 log2

1−z
n−1

)

log2 n
(6)

After analyzing d as a function of n (as seen on Fig. 1) we

can determine the following:

• With one user d = 0 is trivial.

• With 1
z

users d = 1 is maximal. This is evident as in this

case we have uniform distribution.

• Finally it can be proven that limn→∞ d = 1− z and that

on the interval
(

1
z
,∞

)

d > 1 − z.

Fig. 2. Message sending with the anonymous message transmission system

With the above in mind we can see that even with a system,

where n � 1
z

the degree of anonymity is above the treshhold,

i.e. d > 1 − z, thus systems can get arbitrarily close to the

optimal d = 1 and yet they are non-desirable in the sense that

there are users whose level of local anonymity is above an

acceptable probability.

IV. LOCAL ANONYMITY MEASURE

In the previous section shortcomings of the information

theory based global anonymity metrics were evaluated. In

those cases it was quantified, how much additional information

an attacker needs in order to definitely identify the user

corresponding to the message (i.e. its sender or recipient).

On the contrary our argument is that an attacker is already

successful if he can guess these links with a good probability

(that is over a certain acceptable treshhold).

Before defining local anonymity measures, the used terms

will be introduced. In the analyzed system senders (sl ∈ S)

transmit encrypted sent messages (αj ∈ εS) to the anonymous

transmission system. After transforming (re-encoding) and

delaying them the delivered messages (βk ∈ εR) reach the

recipients (see Fig. 2.). Time of sending is indicated by tS(αj),
similarly time of receipt is tR(βk). Sender of a sent message

is denoted by S(αj) and the recipient by R(βk).
The adversary has two aims: to break sender anonymity by

computing the probabilities Pβk ,sl
(i.e. what is the probability

that βk was sent by sl) and to break recipient anonymity by

computing Pαj ,rl
(i.e. rl received αj).

For this scenario in [5] the destination- and source-

hiding properties were defined for sender and recipient local

anonymity.

Definition 4: A system is source-hiding with parameter Θ
if the adversary cannot assign a sender to a delivered message

with a probability greater than Θ, i.e. if

∀βk
∀sl

(Pβk,sl
≤ Θ) (7)

holds.

Definition 5: A system is destination-hiding with parameter

Ω if the adversary cannot assign a recipient to a sent message

with a probability greater than Ω, i.e. if

∀αj
∀rl

(

Pαj ,rl
≤ Ω

)

(8)

holds.

It is important to note that one cannot draw grounded

conclusions about the local anonymity from global anonymity

measures as it was shown in the previous section (i.e. for



arbitrarily high global anonymity systems with non-desirable

local anonymity exist, where in the worst case the identity

of some users can be guessed with an unacceptably big

probability).

On the contrary we will show that from the local anonymity

measures we can draw conclusions for the global anonymity

meausres as well. In the following we will deduce results

for the sender anonymity from the source-hiding property

but since it is symmetric for the destination-hiding property,

similar equations can be stated as well for the recipient

anonymity.

Theorem 1: For a system with source hiding property with

parameter Θ the inequality below holds:

S ≥ − log2 Θ (9)

Informally this theorem means that a system of source-hiding

property with parameter Θ is in the global sense at least as

strong as a system with 1
Θ users and uniformly distrbuted

probabilities.

Proof: First from the definition (7) it follows

that ∀u∈Ψ(0 < pu ≤ Θ ≤ 1). Therefore since the loga-

rithm function is monotonic in the interval (0,∞) ⇒
∀u∈Ψ(log2 pu ≤ log2 Θ) ⇒ ∀u∈Ψ(− log2 pu ≥ − log2 Θ).

With this (1) can be rewritten:

S = −
∑

u∈Ψ

pu log2 pu

≥ −
∑

u∈Ψ

pu log2 Θ

= − log2 Θ
∑

u∈Ψ

pu

= − log2 Θ.

With the combination of (2) and (9) a lower limit to d can

be given as well:

d ≥ − logN Θ (10)

as d = S
log

2
N

≥ − log
2
Θ

log
2

N
= − logN Θ.

V. ANALYSIS OF THE PROB-CHANNEL

The PROB-channel is an example for an anonymous mes-

sage transmission system introduced in [5]. In order to show

how the introduced anonymity metrics work with practical

anonymity systems in this section the PROB-channel will be

introduced and its anonymioty level will be analyzed.

A. Brief Defintion of the PROB-channel

The PROB-channel is a continuous time system, where

messages are processed independently. Once a message enters

the channel, a delay will be calculated for it and after that time

has passed the message leaves. This delay δ in the system is

a probability variable with a given density function f(δ) (i.e.
∫ ∞

0
f(δ)dδ = 1). In order to guarantee real-time probabilities,

the delay in the PROB-channel has a pre-defined maximum

(δmax). On the other hand considering real systems a minimal

delay (δmin) was also defined:

∀δ 6∈(δmin,δmax)f(δ) = 0 (11)

In order to simplify further equations first two sets need to

be defined. With µβk
the set of sent messages is meant that

might have left the channel as βk (12), whereas ηβk,sl
denotes

the subset of µβk
, which was sent by the specific sender sl

(13).

µβk
= {αj | (tR(βk) − δmax) < tS(αj) <

(tR(βk) − δmin)} (12)

ηβk,sl
= {αj |(αj ∈ µβk

) ∧ (S(αj) = sl)} (13)

B. The Attacker Model – A Passive Observer

As an attacker model let’s consider a passive observer: he

can eavesdrop on all connections but does not alter, delete or

delay messgaes.

Aim of the passive observer is to link delivered messages to

the senders by computing the probabilities Pβk,sl
. The most

effective solution is summarized in (14):

Pβk ,sl
=

∑

αj∈ηβk,sl

f (tR(βk) − tS(αj))
∑

αj∈µβk

f (tR(βk) − tS(αj))
(14)

Of course the attacker chooses si as the sender for βk where

si = maxsl
Pβk,sl

.

C. Methods to Ensure Local Anonymity

It it clear from (14) that in the general case no hard

guarantee can be given about Pβk,sl
. The main problem comes

from the real-time requirement: even if only one message is

in the channel, it has to be delivered before the maximal delay

expires. Thus in unfortunate cases the adversary has an easy

task.

In order to ensure that there are enough messages to

form a sufficiently large anonymity set for each message the

only solution is to enforce continuous message sending. The

MIX/MAX property was defined for this purpose.

Definition 6: A system fulfills the criteria of the MIX/MAX

property with parameters τmin and τmax (τmin < τmax < δmax) if

all senders send at least one message in every τmax interval but

no sender sends more than one message in any τmin interval.

With the above definiton the amount of messages can be

fine-tuned and also the fraction, a specific user reaches from

the whole amount of messages, can be set. It was shown in

[5] that with the MIX/MAX property local anonymity can be

ensured, see (15) for the source-hiding property.

Θ =

∑∆min

i=1 max(i−1)·τmin≤q≤i·τmin
f(q)

N · ∑∆max

i=1 min(i−1)·τmax≤q≤i·τmax
f(q)

(15)

where ∆max = b δmax−δmin

τmax
c and ∆min = d δmax−δmin

τmin
e.



D. The Optimal System

Sticking to the real-time guarantee if was proven that the

optimal delay characteristics is achieved if the channel uses

the uniform density function (16).

f(δ) =
1

δmax − δmin

(16)

It is interesting to note that by changing the guaranteed

maximal delay to a softer mean delay of a and enabling even

infinite delays (of course with small probability) another den-

sity function proves to be the optimal, namely the exponential

one (17) as first proposed by Kesdogan et al. for the SG-MIX

[11] and then proven to be optimal by Danezis [12].

f(δ) =
1

a
e−

1

a
δ (17)

E. Quantified Anonymity of the PROB-channel

In the optimal case of uniform delay density (16) and

MIX/MAX property (15) the local anonymity can be guar-

anteed efficiently. If N ≥ τmax

τmin
then the following equation

gives a good approximation:

Θ ≈ τmax

N · τmin

(18)

Using results (9) and (10) from the previous section the

following guarantees can be given for the global anonymity:

S ≥ − log2 Θ

= log2 N − log2

τmax

τmin

(19)

d ≥ − logN Θ

= 1 − logN

τmax

τmin

(20)

From these results it is clear that the main calibration

possibility of the PROB-channel is the fraction τmax

τmin
. It is

obvious that if τmax = τmin then an overall optimum can be

reached where the anonymity set of each message is maximal

and the probabilities Pβk,sl
are uniformly distributed among

all possible senders:

Pβk,sl
=

1

N
(21)

VI. CONCLUSION

The main focus of this paper was to introduce the term

local anonymity and appropriate metrics for measuring it: the

source- and destination-hiding properties. Previous informa-

tion theory based anonymity measures aimed to quantify the

number of bits required by an adversary to completely trace

back a message. On the contrary we argue that an attacker

is already successful if he can compromize messages with a

probability above a certain treshhold for some of the users

– which from the local aspect of the users is unacceptable,

however possible in unfortunate cases of entropy-based global

anonymity measures.

With this paper the importance of the local aspect was

underlined and via a practical example of the PROB-channel

enlightend. Future work should be carried out in order to

analyze other practical solutions as well from this local point

of view.
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