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1. INTRODUCTION

A variety of methods have been proposed to provide anonymous communication
over the Internet. Previous protocols include DC-Net [Chaum 1988], Crowds [Reiter
and Rubin 1998], Hordes [Shields and Levine 2000], APFS [Scarlatta et al. 2001],
Onion Routing [Reed et al. 1998; Syverson et al. 2000], and Web Mixes [Berthold
et al. 2000]. Each of these works include insightful analysis of possible attacks
against their protocol. In their paper on Crowds, Reiter and Rubin describe an
attack that allows an attacker to guess the initiator of an anonymous connection.
The guess can be made based on information about the predecessor on the path of
proxies. The presence of the attack caused the designers of Crowds to modify their
protocol, which helped to ward off, but failed to eliminate, the threat. Syverson,
et al. [2000] later examined a related attack that worked successfully against some
configurations of Onion Routing and required timing analysis.

In this paper, we define the predecessor attack, a generalized version of these
attacks. In this attack, the attacker tracks an identifiable stream of communications
over a number of rounds (e.g., path reformations in Crowds). In each round, the
attacker simply logs any node that sends a message that is part of the tracked
stream. The attack does not always require analysis of the timing or size of packets
(although that can speed up the attack), but instead exploits the process of path
initialization. We look more carefully at the implications of the attack and its
variations on protocols for anonymity.

In constructing the attack and analysis, we make several simplifying assumptions
about protocol operation. Specifically, our major assumptions are:

(1) The subset of nodes that forward an initiator’s messages are chosen uniformly
at random;

(2) Initiators make repeated connections to specific responders, which are nodes
outside the group performing the protocol.

In order to determine the length of time required for the attack, we also assume
that initiators do not leave the group until the attackers are successful.

These assumptions are necessary for the proof we provide that shows that the
attack works in all cases, and they are also critical to our analysis of the bounds on
the time required for a successful attack. After describing the attack, we examine
our assumptions and the effect that relaxing those assumptions has on the effec-
tiveness of the attack. This includes examining defenses protocol designers might
use to improve resistance to the predecessor attack.

Specifically, we make the following contributions:

—We define a class of anonymous protocols in which all currently proposed proto-
cols may be placed and prove that the entire class is subject to the predecessor
attack.

—We derive upper bounds on the amount of resources an attacker requires to
significantly degrade the anonymity of users of the DC-Net, Onion Routing, and
Mix-Net (e.g., Webmixes) protocols, extending Reiter and Rubin’s analysis of
Crowds.

—We show for the first time an attack on DC-Net based on a ring-topology that
proves it is weaker than all other protocols. We use simulation to show how
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adding neighbors in the topology greatly improves the robustness of DC-Net.
This robustness can be achieved without resorted to the fully-interconnected
topology that is easily subject to denial-of-service attacks if only one node chooses
to not participate.

—We show that modifying path lengths in Mix-Net systems has limited value and
exposes users to attacks that work faster than would be possible with fixed path
lengths.

This work has implications not only for anonymous users with recurring Internet
connections, but also for protocols that provide responder anonymity [Goldberg
and Wagner 1998; Scarlatta et al. 2001] that want to support servers that remain
available for long periods of time.

The next two sections overview related work. We prove a theorem in Section 3
stating a generalized attack undermines anonymous protocols. We analyze attacks
against specific protocols in Section 4, and we focus more specifically on DC-Nets in
Section 6. Section 5 discusses the merits of these protocols in light of these attacks,
and Section 7 concludes.

2. BACKGROUND

Previous work on anonymous communication over the Internet has been extensive
(e.g., [Chaum 1988; Reed et al. 1998; Reiter and Rubin 1998; Shields and Levine
2000]). A good survey of previous work is presented by Martin [1999]. There have
been efforts to directly compare or analyze those techniques, or analyze the variety
of attacks that may reduce the anonymity of a protocol’s user over time [Shields and
Levine 2000; Berthold et al. 2000; Syverson et al. 2000]. Reiter and Rubin [1998]
have described an attack in the context of Crowds by which sufficiently powerful
attackers can degrade the anonymity of a user. A related attack has been described
by Syverson, et al. [Syverson et al. 2000] for Onion Routing. These attacks form
the basis of our analysis in this paper. We distinguish our work from those analyses
at the end of this section.

Anonymous protocols route messages from the initiator of a connection that
wishes to remain anonymous to an overt responder, which is a node that does
not participate in the protocol. A common feature of all proposed protocols for
anonymity, some of which we review here, is the selection of a path through which
messages are routed or the selection of a group of nodes that work together to send
messages.

2.1 Crowds

Reiter and Rubin developed Crowds [1998], which uses a group of nodes that serve
as proxies for a given initiator from the group. An initialization message is routed
from the initiator to a series of proxies, forming a path for all future messages
from the initiator. Upon receiving this message, each proxy decides, based on a
probability of forwarding (pf ), whether to extend the path through another proxy
chosen at random with uniform probability or to become the last node on the
path and communicate with the responder directly. This path is maintained for
a limited period of time, after which all paths must be reformed. The time limit
allows nodes that join the protocol to add their paths at the same time as all other
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nodes; otherwise new paths may be easily attributed to recently joined nodes.

2.2 Onion Routing

Onion Routing, by Reed, et al. [1998], is similar to Crowds in that an initial message
forms a path of proxies through which the initiator sends its future messages. The
protocol gets its name from its method of encrypting the initial packet and the
address of the proxies at each hop on the path with the public key of the previous
step. This scheme results in layers of encryption that are peeled off at each step
in order to determine the next address to send to on the path. This requires the
initiator to predetermine the entire path. We will explore the benefits of initiator-
determined paths and layered encryption in Section 4.

2.3 Mix-Net

A number of protocols for anonymity, Webmixes [Berthold et al. 2000], ISDN-
Mixes [Pfitzmann et al. 1991], Stop-and-Go-Mixes [Kesdogan et al. 1998], Onion
Routing, and others, have been based on David Chaum’s anonymous email solution:
a network of mixes [Chaum 1981]. We refer to a Mix-Net as protocol that uses Onion
Routing’s layered encryption and also employs mixing techniques to thwart timing
analysis. Such mixing techniques include sending messages in reordered batches,
sending dummy messages, and introducing random delays. It is beyond the scope
of this paper to study which protocols effectively stop timing attacks, or, more
generally, the effectiveness of the various mixing techniques. Instead, we consider
an idealized Mix-Net protocol that guarantees that timing analysis will be effectively
stopped. Onion Routing provides no defenses against timing analysis, and we show
the difference that this makes against the predecessor attack in Section 4.

2.4 DC-Net

Another solution for anonymous communication, called DC-Net [Chaum 1988], has
each participant share secret coin flips with other participants in pairs. The parity
of the flips a participant has seen is then announced to all other participants. Since
each flip is announced twice, the total parity should be even. To send a message, a
participant incorrectly states the parity seen. This causes the total parity to be odd,
which indicates transmission of a bit. No one except the initiator knows who sent
the message, unless all of the nodes who flipped coins with the sender reveal their
coin flips among themselves. Various techniques are available to handle collisions
similar to media access control protocols for link layer networking [Bertsekas and
Gallager 1987].

Any node may launch a denial-of-service attack by choosing to send a message
every round of coin flips. Such a node is as anonymous as any initiator, and therefore
cannot be simply detected and denied access. Strategies have been developed by
Waidner and Pfitzmann [1989a] to detect such an attacker, but at the cost of a
constant multiple of an already high message overhead.

Our work shows that attacks against DC-Net are extremely low-cost when par-
ticipants are arranged in a logical ring (see [Schneier 1996]). Attacking a DC-Net
with fully connected participants is much harder, requiring unreasonable resources
on the part of the attacker. However, we argue that this arrangement creates sub-
stantial overhead that scales poorly with the number of participants. Moreover,
ACM Journal Name, Vol. V, No. N, Month 20YY.
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DC-Net suffers from easily performed denial-of-service attacks that require even
more overhead to avoid effectively. Our approach is probabilistic, and contrasts
with epistemic approaches to understanding anonymity taken in the past [Syverson
and Stubblebine 1999].

2.5 Comparison with Related Work

Reiter and Rubin were the first to identify the predecessor attack [1998]. In their
initial analysis, they provide analysis that could be used to derive a bound on the
number of rounds (i.e., path reformations) required for the attack to work with
high likelihood for crowds.

Syverson, et al. identified a related attack for Onion Routing [2000]. Their anal-
ysis determined that the attack, complemented with timing analysis, succeeds with
probability (c/n)2, where c is the number of attackers, and n is the total number
of nodes. They also recognized that the attack fails when the first onion router on
the path is a trusted node.

Berthold, et al. discuss an intersection attack against the anonymity groups
that arise when multiple mix routes are chosen [2000]. In this attack, the different
anonymity groups are intersected with each other to shrink the number of possible
initiators.

Raymond also discusses an intersection attack based on observations of user
activity [2001]. Only the active users can be the initiator, and the set of active
users changes over time. Intersecting the sets of active users reduces the set of
possible initiators. We explore this idea further in Section 4.

More recently, Shmatikov used formal analysis and model checking to verify the
efficacy of the predecessor attack against Crowds [2002]. Due to the high processing
requirements of model checking, he was only able to demonstrate probabilities of
attacker success for small numbers of nodes, i.e., twenty or fewer. In this paper,
we use simulation to extend these results to thousands of nodes with an acceptable
loss of precision.

This work differs from previous work in several ways. In this paper, we for-
mally prove the attack Reiter and Rubin identified is successful against all existing
anonymous protocols. Furthermore, we extend their analysis to calculate resources
required to attack other protocols, which allows a quantitative comparison of the
robustness of the protocols.

We extend the analysis of Onion Routing to show how long the attack will take.
Additionally, we show how Mix-Nets hold a substantial advantage over Onion Rout-
ing in defending against this attack. We show the same for Onion Routing over
Crowds.

Additionally, we analyze Mix-Nets in several different scenarios, including vari-
able and fixed path lengths. Varying path lengths, which may seem like a good
method of confusing attackers, fails to significantly increase the security against
the predecessor attack. In fact, we show that using a Crowds-like approach of
varying path lengths, as proposed by Syverson, et al. [2000], exposes users to much
greater security risk.

We also show that the ring-based version of DC-Net described by Chaum (and
later by Schneier [1996]) is easily attacked. Only one known variation on DC-Net
is safe from the attack, though it is the most expensive protocol and subject to
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simple and anonymous denial-of-service attacks.
Since the preliminary version of this work appeared [Wright et al. 2002], we have

added to our study of the predecessor attack.
In this article, we include a deeper examination of the topology of peers using

DC-Net than just rings and fully-interconnected meshes. (See Section 6.)
Our APFS protocol presents a solution to the predecessor attack for responder-

anonymous an mutually-anonymous applications. In that work, peers cooperate to
provide a service (such as a file-sharing index or web server); the exact peer that
provides the service changes before the predecessor attack is likely to be successful.
The service remains in place, but the exact peer providing it does not.

We examined the assumptions of this work in a followup paper [Wright et al.
2003]. In that work we described a possible defense that comes from breaking
the assumption of uniformly random path selection. Our analysis shows that the
defense improves anonymity in the static model, where nodes stay in the system,
but fails in a dynamic model, in which nodes leave and join. Additionally, we
use the dynamic model to show that the intersection attack creates a vulnerability
in certain anonymous communciations. We also presented simulation results that
show that attack times are significantly lower in practice than the upper bounds
given by this work. To determine whether users’ web traffic has communication
patterns required by the attacks, we collected and analyzed the web requests of
users. We found that, for our study, frequent and repeated communication to the
same web site is common.

Finally, in later work [Levine et al. 2004] we further examined the robustness
of mix systems again timing attacks to clarify the threat they pose. We proposed
defensive dropping as a technique to thwart timing attacks. Through simulations
and analysis, we show that defensive dropping can be effective against attackers
who employ timing analysis.

3. A GENERAL ANALYSIS

In this section, we define a model of anonymous protocols and an attack on such
protocols. We then prove a theorem stating that the generic attack works on all
protocols in the model when specific conditions are met.

There are two major assumptions that the attack requires to succeed.

—First, that there is a recurring connection between some party that initiates the
sending of a message and the receiver of that message.

—Second, that there is information available to the attacker in the transported
packets that uniquely identifies this recurring connection.

To justify the assumption that the connection recurs frequently, note that in
the case of web browsing (which was the main intended use of Crowds), users often
return to the same site [Harmon 1998]. We further support this claim in our related
work [Wright et al. 2003]. Onion Routing was designed to support a wider variety
of Internet connections (including HTTP, FTP, NNTP, and raw sockets) [Syverson
et al. 2000], a number of which encourage types of recurring activity from users
other than web browsing: USENET news-reading, ssh or telnet connections to
remote accounts, on-going email correspondence, and IRC or other chat programs.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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In many of these applications, the user may typically provide some identifying
information with each transaction or session. For example, login names, user IDs,
web cookies, and email addresses all provide unique identifiers at the application
layer. While a user that is attempting to be anonymous would probably be care-
ful to avoid these in many circumstances, she may allow such identifiers for some
applications where it is needed or where there is trust. A user of an anonymous
protocol may hope that the protocol itself will provide privacy while taking advan-
tage of such identifiers (e.g., a Hotmail email account). We show that such a user
is vulnerable to tracking.

Even without these identifiers, a user might still be tracked if the tracked con-
nections are with unique responders. Attackers might even find a distinct pattern
in the user’s communications that could make the session trackable.

3.1 Model

A protocol is a series of instructions that a set of nodes (i.e., hosts) on a network
can follow to hide the origin of their users’ communications. A participant is a
node that follows the protocol to send messages anonymously and to assist others
in sending their messages anonymously. An attacker is a participant that collects
data from its interactions with other participants in the protocol and may share
its data with other attackers. We only consider peer-to-peer systems for simplicity,
but attackers need not act as full participants to be effective. The attack works as
long as attackers can send and receive messages in the protocol.

A participant that initiates the sending of a message is known as an initiator.
The intended receiver is known as a responder and is not a participant. We refer
to a session as continuing communications between an initiator and a responder.
We use the term sender to refer strictly to a node that sends a packet directly to
another node or to the responder; the term receiver strictly refers to a node that
accepts packets from a sender as part of the protocol. The receiver of any packet
can determine the identity of the sender and the sender of a packet knows the
identity of the receiver; we equate IP addresses with identity.

We will show that sufficient attackers can collect enough information over time
to compromise the anonymity of an initiator. Specifically, we show that, with time,
attackers can indefinitely increase the probability that they can identify the initiator
for a given session.

When a single message is transmitted from the initiator, participants send packets
to each other. We refer to the active set for a given message as the set of all
participants that send or receive any of these packets. Note that this means that
the initiator is always in the active set. We denote the active set by A. In addition,
there is some total order, Π, on the packets used in sending a message from the
initiator to the responder; Π represents the global order of peers based on when
the packets are received. This total order may be influenced by both the protocol,
as well as the behavior of the network, since the network may deliver some packets
faster than others.

Let Πi be the ith position within the ordering of packets received. There is
always some position ΠI where the initiator first sends a message. In our analysis,
we assume that the protocol and the network combine to give A and Π the following
property: given that the initiator sends a packet in position ΠI , the participants
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Table I. Table of variables.

I Initiator of a connection.

R Responder to a connection.

A Set of participants used by I to forward I’s messages.
Amin Minimal number of participants in A needed to determine I and R.

n Total number of participants.

c Number of attackers.
T Number of rounds.

Π Total ordering of the packets used in sending a message.
l Mix-Net or Onion Routing fixed path length.

pf Crowds probability of forwarding.

seen sending in the remainder of the positions are chosen uniformly at random,
either with or without replacement. For simplicity, we only consider one packet
at a time, but multiple packets can be sent with the same or similar orderings Π
before a new random ordering is used.

Let Amin be the minimum of the number of attackers, over all active sets A
and total orders Π, that occur with non-zero probability required to determine
the initiator and the responder. For example, in Onion Routing, Amin = 2 when
a timing attack can be mounted (see Section 4.2), since it is sufficient for one
attacker to be the first participant on the path and another attacker to be the last
participant on the path. Note that the attackers might not know that they have
correctly identified the initiator in this case, as a peer cannot determine if it is the
first node on the path. This is not a problem for the attack, as we will show. For the
case of the ring-based implementation of a DC-Net, Amin = 2, since it is sufficient
for the attackers to occupy the two positions on either side of the attacker.

Nodes do not have indefinitely stable connections to the network. When a node
disconnects, any active sets that it was a part of become disconnected. We call
this event a reset and assume that resets occurs repeatedly without end in the
operation of any protocol. We call the period between resets a round. Partial
resets are possible in some cases, but nodes joining the network cause full resets
due to the creation of an entirely new path. Note that all active sets must be reset
at the same time if any are reset, as it will otherwise be obvious who the initiator
of the reset stream must be. If the nodes reset their active sets immediately when
a new node joins or an existing node leaves, an attacker could then hasten the
predecessor attack by increasing the rate of resets [Reiter and Rubin 1998]. The
protocol cannot, however, make the rounds indefinitely long, as users would be
without the service until the next reset. Since attackers can leave and join to force
resets, and protocols are constrained from long delays between resets, we can expect
that rounds occur with short, regular intervals. For our analysis, we only require
that resets occur repeatedly.

We say that a protocol that satisfies all these constraints is a Uniform Active
Set Protocol for anonymous communications. In the rest of this section, we only
concern ourselves with such protocols.

The attack can identify all initiators that keep a session active with the responder
R. In the case that multiple initiators contact a single responder, attackers will not
be able to link specific data streams to each initiator unless there is information in
at least one packet per round that distinguishes the sessions from each other. Even
ACM Journal Name, Vol. V, No. N, Month 20YY.



· 9

if such information is not available, the attack can, in some cases, be considered
successful if an initiator is linked to a particular responder. This case, however,
is more difficult to analyze, so we will assume that only one initiator maintains
a session with a given responder. We shall refer to a single initiator of interest
to the attackers, node I, who is communicating with responder R. Note that if
information is available that distinguishes sessions with the same responder from
each other, that is an equivalent case.

We assume that I contacts R in every round. If I does not contact R in every
round, we only use the rounds where R is contacted. The duration of the attack
will be increased by a factor equal to the ratio of total rounds to rounds in which
I contacts R.

In summary, we consider three assumptions to be key to our later discussion:

—I maintains the session, using the protocol, without end. It may leave the proto-
col or temporarily halt communications with R, but it must always resume the
session using the protocol.

—An attacker must be able to distinguish the messages corresponding to a given
session.

—For each Πi within a total order Π, a node must be selected uniformly at random.
( We know of only one protocol that does not operate this way: the local config-
uration of Onion Routing, in which the first node is trusted; For a discussion of
non-uniform path selection, see our related work [Wright et al. 2003].)

3.2 The Attack

The attack depends on the assumption that an initiator might choose to remain in
contact with a responder for an extended period of time. In that case, the session
between the initiator and responder is subject to a number of resets. With each
reset, a new active set is constructed between the initiator and responder. For
each active set, there must be some participant that forwards the message outside
the anonymous group to the responder. When this happens, we assume that this
participant is able to associate the message sent with a specific session. The basic
idea is that whenever the attackers are able to determine the specific session, there
is some first attacker that sees the message. Our attack rests on the fact that the
initiator is more likely to send the message to that first attacker than any other
participant.

We define G(n, c, T ) as the probability of correctly guessing the initiator after T
rounds with n participants and c attackers working cooperatively.

Theorem 3.2.1. No Uniform Active Set Protocol for anonymous communca-
tions can maintain G(n, c, T ) ≤ ε for any ε < 1, for all T ≥ 0 when c ≥ Amin and
c ≥ 2.

Proof . Consider a protocol P . The attackers attempt to determine the identity
of initiator I, who is the only participant communicating with responder R.

We now show that the attackers will be able to increase G(n, c, T ) to be arbitrarily
close to 1, and therefore larger than ε, given sufficient T . We consider two cases:
nodes in the active set chosen with replacement and without replacement.
Case 1:
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Given that nodes are choosen with replacement, we will see how the attackers log
I more than any other node. In any round where the attackers can determine R
(which occurs with positive probability) and where the configuration is such that
they might correctly identify I, they log the participant who first sent a message
to the attackers in that round. At any step, the attackers identify the participant
that has been logged the largest number of times as the initiator.

In the case where an attacker receives the message ΠI , the attacker logs I as
the predecessor. This occurs with positive probability. In the remaining cases, due
to the uniformity assumption, all participants are logged with equal probability.
Thus, the expected number of times that I is logged by the attackers is greater
than the expected number of times that any other node is logged by the attackers.
By the law of large numbers, as T → ∞, I will appear more often than any other
node. The probability that I is identified as the initiator will grow larger than any
value of ε < 1.
Case 2:

When nodes are chosen without replacement, there is a corresponding attack
based on the fact that the initiator cannot appear in any other positions in its
active set. There is a positive probability that the attackers will be in position to
determine R and will send a message to another node in the active set. This occurs,
for example, when an attacker receives ΠI from the initator and other attackers are
in position to determine R (When |A| = 2, this will not occur, but there is only
the initiator and one other node in the active set, and the attackers easily identify
the initiator). When the attackers are in such a position, they can log the receiver
of any message from an attacker. This node is guaranteed to not be the initiator.
Every node, except the initiator, is selected to receive such a message with equal
probability. Thus, as T → ∞, all nodes except the initiator will be logged with
probability p → 1. Thus, the attackers can determine I by waiting until all other
nodes are logged as not being the initiator.

Note that the attackers need not determine apriori whether they must apply the
attack from Case 1 or from Case 2. The attackers may run both attacks simulta-
neously, logging both their predecessors and receivers. Either the predecessor log
will identify the initiator, or the receiver log will identify every node that is not the
initiator, given enough rounds, with high probability.

3.2.1 Degrading Unlinkability. Instead of determining both the initiator and the
responder in the communication, the attackers may only attempt to determine the
initiator without linking her to any communication to a responder. The success
of this attack, which is easier in some cases for the attackers, means that the ini-
tiators will no longer be anonymous and only the unlinkability of the initiators is
maintained. That is, it is known to the attackers that the initiators are commu-
nicating, but the identity of the responders are not known. This information can
be particularly useful when few initiators are communicating. It is an advantage
for anonymous protocols wishing to maintain more than unlinkability to have a
requirement that all participants form active sets in all rounds (and possibly fill
them with null traffic under threat of monitoring by attackers). Proofs of these
statements exist that are similar in construction to the above proof. In general,
any non-uniformity in anonymous protocols can be exploited for attack.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Protocol Rounds
to attack,
with high
probability

Rounds
to attack,
expectation

Work
required of
participants

Latency
from I
to R

Crowds O
(

n
c

log n
)

O
(

n
c

)
O

(
1+1/n

(1−p)2

) (
p

1−p
+ 2

)
Onion Routing O

((
n
c

)2
ln n

)
O

((
n
c

)2
)

O(l) O(l)

Mix-Net

•fixed path length l O
(

nl

cl ln n
)

O
(

nl

cl

)
O(l) O(l)

•variable path length O
(

nlmin

clmin
ln n

)
O

(
nlmin

clmin

)
O(lave) O(lave)

DC-Net
•fully connected,

c = (n− 1)
1 1 O(n) O(lg n)

•fully connected,
c < (n− 1)

(see § 6) (see § 6) O(n) O(lg n)

•ring connection Θ(n) Θ(n) O(n) O(lg n)

Table II. A summary of the analysis for variations on each of four protocols.

4. SPECIFIC ATTACKS

In this section, we detail specific versions of the generic attack given in the previous
section. We provide upper bounds on the time required for the degradation of an
initiator’s anonymity when faced with such an attack. We bound the time in terms
of rounds, as defined above. Table II summarizes our results.

The two resources spent by the attackers are the number of nodes working co-
operatively on the attack and the amount of time available to attack; memory and
processing resources are generally not significant. Attackers handle no more traffic
than normal participants in the protocols. We will explore how these resources can
be used to effectively attack and undermine anonymity in systems running these
protocols.

Some of the results in this section suggest either very long attacking times or a
high proportion of attackers. However, the predecessor attack is passive and would
draw no attention to itself — this means that it could continue for long periods of
time without interruption and that the proportion of attackers could be very high.
We do not suggest that an unsophisticated attacker with very limited resources
could learn very much with this attack. It is important, however, to understand
the limitations of current protocols and to be aware of the applications for which a
given protocol is appropriate.

4.1 Crowds

To attack Crowds, a number of attackers may simply join the crowd and wait for
paths to be reformed — a periodic occurrence, usually hourly [Reiter and Rubin
1998]. Each attacker can log its predecessor after each path reformation. Since
the initiator I is far more likely than any other node to appear on the path, the
attackers will log I much more often than any other node. After a large number
of path reformations, it will become clear that the initiator is I. This attack was
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described by Reiter and Rubin earlier [1998]. They all but stated the number of
rounds required to break Crowds; we show the analysis that follows directly from
their results.

In terms of our generic proof from Section 3, only one attacker is required, i.e.,
Amin = 1. The attacker can appear directly after I and may then easily recover
the responder R’s address, which is in plain view, and other session-identifying
information. Multiple attackers can perform this attack in parallel. They must
simply communicate their results between each other, combining them to get larger
samples.

It is helpful for attackers in Crowds to determine whether they are the first
attacker on the path. This allows an attacker that appears after another attacker
in the path to disregard its predecessor, as that predecessor is no more likely to
be the initiator as any other node. This may be coordinated by a master attacker
that can collect predecessor information from all the other attackers. Another
method is for attackers to always submit requests from the session directly to the
responder, thereby ending the path. Or the attacker may covertly tag messages
before forwarding along the route. In any case, we can assume that only the first
attacker on any path will log its predecessor.

Our goal is to give the number of rounds such that the initiator is seen as a
predecessor more often than any other node with high probability. To accomplish
this, we first calculate a number of rounds T that is sufficient to say that the
initiator is seen in at least f · T of the rounds, where f is some significant fraction.
We then calculate how many rounds are required such that no other node is seen
in as many as f ·T of the rounds. If these two conditions are satisfied, the initiator
is clearly seen more than any other node, with high probability.

First, we get the number of rounds needed to lower bound how often the initiator
is seen. An attacker appears first in the path with probabilty c

n . Applying Chernoff
bounds [Motawani and Raghavan 1995] to this probability and we see that as long
as the number of rounds is at least T = 8n

c lnn, the initiator will appear to attackers
at least f · T = 1

2
c
nT times with high probability.

To say that all other nodes are seen fewer times than f · T , we need consider the
probability of a particular node N being on the path just before the first attacker
on the path, if there is one. Let us call this probability σ. We can write σ as the
probability that the attacker is on the path not directly after the initiator, and that
N appears just before the first such attacker. The latter is 1

n−c .
For our purposes, we need only know that the former is no more than one, so

that σ ≤ 1
n−c .

We can now use σ to bound the probability that any non-initiator appears more
than f ·T times. We choose δ such that (1+ δ)Tσ = 1

2
c
nT . This yields δ = c

2nσ −1.
The number of times that a particular non-initiator is seen, B(T, σ), is a binomial
random variable that depends on the number of rounds and the probability of seeing
it, σ.

We will use a Chernoff bound which holds as long as δ > 2e − 1. Given that
σ < 1

n−c , we know that δ > c(n−c)
2n −1. Thus, as long as c(n−c)

n > 4e (which occurs,
for example, when c = n/8 and n > 37e), then δ > 2e− 1. Applying the Chernoff
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bound:

Pr{B(T, σ) ≥ (1 + δ)Tσ} < 2−(1+δ)Tσ

< 2−T c
2n (1)

we see that if T ≥ 2 2n
c log2 n, which we simplify to T ≥ 6n

c lnn, then with proba-
bility 1/n2, we know that a given non-initiator node shows up to the attacker less
than 1

2
c
nT times. And since we have n nodes, there is less than a 1

n chance that
any node other than the initiator appears to the attackers more than f · T = 1

2
c
nT

times.
Set the number of rounds at 8n

c lnn. Then the attackers can use the following
algorithm. If exactly one node is seen more than 1

2
c
nT times, then the attackers

believe that node is the initiator. If more than one, or no nodes are over the
threshold, the attackers cannot yet determine the initiator. For this algorithm to
fail — either by not answering or by answering incorrectly — either the initiator
did not appear sufficiently often, or some non-initiator appeared too frequently.
Any given non-initiator fails with probability 1/n2, and the initiator fails with
probability 1/n, so the total probability of failure is at most 2/n. The probability
that the initiator appeared too few times and some non-initiator appeared too often,
leading to an incorrect initiator identification, is at most 1/n2.

The results for Crowds also hold for the Hordes protocol [Shields and Levine
2000] — which uses multicast paths from the responder to the initiator — because
the attack takes place on the forward path to the responder.

4.2 Onion Routing

The use of layered encryption in Onion Routing results in a substantial advantage:
only the last node in the path can recognize a particular data stream. An attacker
must compromise the first and last node on the path, and even then must use timing
analysis to know that both compromised nodes are on the path. There are several
possible scenarios, depending on the ability of the attackers to gain information
from timing analysis.

In one scenario, the Onion Routers see very consistent latencies between nodes.
This might be possible if packet decryption and encryption dominated the message
latency, and if nodes were essentially homogeneous in computing power. Per-hop
delay might also be very consistent in some LANs. Timing analysis in this scenario
would reveal to the two attacker nodes that they were on the same path and reveal
the number of hops between them. Given that the path length is known (see
Section 4.3.1 for discussion of this assumption), the attacker will know if the first
attacker node follows the initiator directly. In this way, if the attackers compromise
both the first and last node on the path, they will immediately identify the initiator.

This attack, as reported by Syverson, et al. has a single-round probability of
success of c2

n2 for path lengths greater than two, and c(c−1)
n2 for path lengths of

exactly two [Syverson et al. 2000]. By applying a Chernoff bound, we see that
with probability n−1

n , the initiator of the communication will be discovered in T =
2

(
n
c

)2 lnn rounds for path lengths greater than two. With path length set to two,
the attackers do not need a timing attack and will be sucessful with high probability
in T = 2 n2

c(c−1) lnn rounds.
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Another scenario involves networks with varying latencies between nodes, but
no mixing. This may be the most likely scenario when nodes are connected by
the Internet. In this case, two attackers are able to determine that they are on
the same path by a simple timing analysis on the initiator’s traffic. If the path
length is set to three or less, the attackers will know whether they are in position
to see the initiator, and the attack from the above scenario applies. Otherwise, if
two attackers are on the same path, with the second attacker in the last position
on the path, they log the predecessor to the first attacker. This leads to an attack
similar to that used against Crowds. The probability of an attacker being in the last
position and an attacker being directly after the initiator is c2

n2 . Using a Chernoff
bound, we see that the initiator is logged at least 1

2T c2

n2 times in T ≥ 8n2

c2 lnn
rounds.

As we did with Crowds, let us define σ as the probability that any other node, N ,
is logged by the attackers. We need not find an expression for σ, but we should know
that it can be written as the product of three probabilities: that the first attacker
appears after the first proxy but before the second to last one, that an attacker
appears last on the path, and that N appears just before the first attacker. The
first term requires some explanation, but the second term is just c

n , and the third
term is 1

n−c . Thus we know that σ ≤ c
n(n−c) .

Choosing δ such that (1 + δ)Tσ = 1
2

c2

n2 T , we get δ = c2

2n2
1
σ − 1. As with Crowds,

the number of times that node N is seen, B(T, σ), is a binomial random variable
that depends on the number of rounds and the probability of seeing it, σ.

The Chernoff bound we want to use requires that δ > 2e − 1. Since we know
σ ≤ c

n(n−c) , it follows that δ ≥ c
2 − 1. So if c(n− c)/n > 4e, δ > 2e− 1, and we can

apply the Chernoff bound as follows:

Pr{B(T, σ) ≥ (1 + δ)Tσ} < 2−(1+δ)Tσ

< 2−
(
1+( c2

2n2
1
σ−1)

)
Tσ (2)

< 2−
c2

2n2 T (3)

So by setting T ≥ 2 2n2

c2 log2 n, which we simplify to 6n2

c2 lnn, we get that N is
seen 1

2T c2

n2 times with low probability 1
n2 . This means that no node except for the

initiator will be seen 1
2T c2

n2 or more times with high probability n−1
n . Given the

above number of rounds for seeing the initiator enough times, then the initiator will
be seen more than any other node with high probability n−2

n as long as T ≥ 8n2

c2 lnn
rounds.

The final scenario is when timing attacks are not possible against the Onion
Routing system. In this case, Onion Routing becomes a Mix-Net and the analysis
from the next section applies.

4.3 Mix-Net

When no timing attacks are possible, initiators have an even more substantial
advantage against the attack. Specifically, an attacker must compromise every
node in the path between the initiator and responder to identify the initiator. In
terms of our proof from Section 3, the number of attackers must be equal to the
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size of the active set, which is the path length. If there is a fixed path length of
l for the network, then the probability of the attacker determining the initiator
of a particular message is c(c−1)l−1

nl . Again, we use a Chernoff bound and observe
that this will happen at least once, with probability n−1

n , given T = 2 nl

c(c−1)l−1 lnn

rounds.

4.3.1 Variable Path Lengths. Attackers know, with certainty, when they have
found the initiator in a Mix-Net or Onion Routing system with fixed path lengths
given that they own every node on the path. It would seem beneficial, therefore,
to vary the path length. Unfortunately, the benefits of this approach are limited.

As we show below, the security of the system against the predecessor attack is
only slightly better than the security of a system with the path length fixed to
the shortest length value. This means that the proposal in [Syverson et al. 2000]
to have Crowds-like path length selection for Onion-Routing, via a probability of
forwarding, would only offer the security of a system with only a single possible
path length (times a constant factor of slowdown in the attack).

At the same time, the cost of varying path lenghts, in terms of delays in the user
experience, can be relatively high. One might think that the costs could be modeled
as a weighted average over the costs for each possible path length. However, users
may not notice reduced delays for shorter than average path lengths as a significant
benefit, while finding longer than average path lengths to be unacceptable. A
fixed path length at the average of the variable path length should always have an
acceptable performance.

We now show how the security of a Mix-Net with variable path lengths is limited
in light of the predecessor attack. Let us suppose that the path length is varied by
the initiator, and that the path length is chosen randomly from a range. Let ls be
the shortest path length that is chosen with a probability of at least p > 1

n . If no
such path length exists, then the predecessor attack becomes much slower at the
cost of most paths having length n

2 or greater. If such a path length does exist,

the attackers will see the initiator in 1
2Tp c(c−1)ls−1

nls
rounds with high probability,

as long as T ≥ 16
p

nls

c(c−1)ls−1 lnn.
Other nodes will be seen by attackers that get ls nodes in a row when the actual

path length is longer. The probability, P , of the attackers seeing a non-initiating
node this way is at most 1−p

n−c
c(c−1)ls−1

nls
. Letting δ = 1

2
p

1−p (n− c)− 1 and B(T, P )
be a binomial random variable representing be the number of times a node is seen,
we apply the following Chernoff Bound:

Pr

{
B(T, P ) ≥ 1

2
Tp

c

n

}
≤ 2−(1+δ)TP

≤ 2−( 1
2

p
1−p (n−c))T 1−p

n−c
c(c−1)ls−1

nls

≤ 2−
1
2 Tp

c(c−1)ls−1

nls (4)

Thus, if T ≥ 4
p

nls

c(c−1)ls−1 log2 n, this node will be seen 1
2Tp

(
c
n

)
or more times with

probability of only 1
n2 . The total probability, then, of any such node being seen

1
2Tp

(
c
n

)
times is less than 1

n . So if T is larger than both 16
1−p

nls

c(c−1)ls−1 lnn and
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4
p

nls

c(c−1)ls−1 log2 n, the initiator will be seen at least 1
2Tp

(
c
n

)
times and will be the

only node seen that many times, with probability greater than n−2
n .

Note that the number of rounds has the same order of complexity, in terms of
n and c, as the attack against the fixed path length of l = ls. Thus, the variable
path lengths increase the average and maximum delay but provide approximately
the strength of the smallest path length against attackers using this attack.

The primary advantage of variable path lengths is in reducing the certainty of
attackers in the result. With a fixed path length, the attackers may determine the
initiator’s identity with certainty in any single round, including the first round of
the attack. However, if there is a non-trivial probability that the path length will
be l + 1, then a set of attackers that make up a path length of l cannot be certain
that they have identified the initiator correctly.

In general, to prevent the predecessor attack, the greatest path length with ac-
ceptable performance characteristics should be used. It may, however, be reasonable
to select a path length with a good balance of performance and security and then
vary path lengths to higher values for greater security against attacker certainty.
Of course, against Onion Routing, timing attacks may work independently of path
length with the same result [Syverson et al. 2000]. The security of longer paths
depends on good general security that leaves attackers without easier attacking
options.

4.3.2 Unknown Path Lengths. Hiding a fixed path length in Mix-Nets also pro-
vides little additional protection. One reason is that for most interactive applica-
tions, the typical user can practically stand performance no worse than using 10 or
20 nodes in a path. Only an exceptionally protective user might have a path length
outside this range. However, even if the range of possible path lengths is large, the
path length can still be determined as quickly as the predecessor attack will work
against that path length.

Suppose the initiator uses paths with hidden length l. Given that the path length
is fixed, the attackers know that when they comprise the full path length, only the
initiator will be seen. They will get paths of length l − 1 every nl−1

c(c−1)l−2 turns, on
expectation. After only two such times, the attackers will have seen two different
nodes at the beginning with high probability. With two different nodes, it is clear
that the path length is greater than l − 1. Getting the same node multiple times
at a given path length suggests that the node seen is the initiator.

However, if the attackers wanted strong proof that a node was indeed the initiator,
they might wait until the number of turns is high enough to show that a longer
path would have been found with high probability. This would require the amount
of work necessary to attack a one-step longer path length. Clearly, it is desirable
to hide the path length whenever possible, as more information can be useful to
attackers. One should not, however, rely on an assumption that the attackers do
not have path length information while using such a system.

4.4 DC-Net

In DC-Net, a graph can be constructed by viewing each shared secret as an edge
between nodes. To defeat DC-Net and expose the messages of a node N , attackers
can surround N by corrupting all nodes that share an edge with N and share
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their secret coin flips with each other. By doing this, they know all the coin flips
that N shared and therefore know what N ’s bit parity should be and can detect
any messages. To determine the initiator in a particular session, the attackers can
surround each node in turn until the initiator is found.

Because data exchange with all participants can become prohibitive, DC-Net as
a ring (i.e., DC-Ring) is described by Chaum [Chaum 1988] and others [Schneier
1996]. In his Ph.D. Thesis, David Martin implemented ring-based DC-Net within
the context of a local network [Martin 1999]. In the ring version of DC-Net each
participant shares two secret coin flips, one with each of her neighbors.

In this section, we show how the attack detailed in Section 3 can be applied to
DC-net to find the initiator of communications that all nodes can see. Only a fully
connected DC-Net (i.e., DC-Clique), is impervious to attackers because the active
set is the entire group, and all nodes are successors to the initiator; in the terms
of the proof, Amin = n − 1. For ring-based DC-net, where the topology can be
partitioned with just two attackers, Amin = 2. In Section 6, we describe how more
dense topologies can be used to prevent attackers from gaining much information,
while not resorting to the prohibitive expense of DC-Clique.

4.4.1 Ring-based DC-Net. The anonymity of a ring-based DC-Net degrades to
zero and the initiator’s identity can be proven by only two attackers after an
average-case of Θ(n) rounds. A round only requires each attacker to leave the
Chaum ring and rejoin it — we assume that joining nodes are placed randomly
in the ring. If nodes are placed deterministically based on a piece of information
about the nodes, such as a node’s IP address, an attacker can forge that information
before joining or corrupt nodes in known, static positions. This allows the attacker
to effectively choose the best positions in the ring to perform the attack, which
then works much faster. We also assume that all nodes hear all outgoing messages.
This is a requirement of DC-Net, because the sender must hear the message to
know whether it was sent correctly or if a collision occurred. Even with a system
to prevent collisions and denial-of-service attacks, such as found in [Waidner and
Pfitzmann 1989a], the sender must be able to see its message to know whether a
trap was set off.

During a round, two nonadjacent attackers A and B may share their coin flips
with each other. This effectively creates a new edge in the DC-Net graph seen only
by the attackers. This new edge creates two sub-rings: one new ring consists of
the edges from A to B and the new edge; while the other ring consists of the edges
from B to A and the new edge. As per Chaum’s protocol, the announced parities
in the sub-ring without the initiator will sum to zero, and the nodes in that ring
may be eliminated as possible initiators. The attackers will be able to identify the
initiator immediately if it is the only node present in one of the sub-rings.

Suppose that both attackers leave and join the ring each round. Each round, the
two attackers can identify a subset of nodes that are possible initiators. After T
rounds, the set of possible initiators is the intersection of the set of possibilities for
each round. Thus, the initiator has been determined when this intersection is a set
of size one.

The intersection has size one if the following two events have occurred:
1) Attacker 1 is directly to the right of the initiator, and attacker 2 is at most
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bn/2c steps to the left of the initiator.
2) Attacker 1 is directly to the left of the initiator, and attacker 2 is at most

bn/2c steps to the right of the initiator.
Each of these has a probability of 1/2n of occurring. Thus, the expected number

of rounds until we find the initiator is O(n).
The expected number of rounds is Ω(n) as well, since both the position to the left

and the position to the right of the initiator must be chosen to isolate him. This
gives us an expected Θ(n) rounds for the attack to reduce the initiator’s anonymity
to zero. Note that with just a few rounds, an initiator’s degree of anonymity will
often be substantially reduced. Also, it is possible that the initiator’s anonymity
may be reduced to zero in any single round.

Two attackers can also determine what communications a particular node N is
sending by surrounding it in an average case Θ(n) rounds. As soon as there is a
round where the attackers obtain the position directly to the right of N as well
as a round where the attackers obtain the position directly to the left of N , N ’s
communications are exposed. Note that these two events don’t have to happen at
the same time, and can happen in either order. The probability of either of these
events is 2

n , and so the expected time until the attackers expose N is Θ(n).

5. DISCUSSION

The amount of work required to establish and maintain anonymity can be very high,
and can vary greatly with different protocols. In this section, we discuss picking
the best protocol based on network performance requirements as well as security,
including resistance to the predecessor attack.

Figure II summarizes the results of two performance metrics. The fourth column
shows the upper bounds on the number of active sets in which each participant will
appear, which we refer to simply as work. The fifth column shows the length of the
active set between the initiator and the responder, which directly affects network
latency. We discuss these results further in this section.

5.1 Crowds, Onion Routing, and Mix-Nets

The network performance of Crowds largely depends on the path length resulting
from the chosen probability of forwarding. Larger path lengths lead to a linear in-
crease in delay and result in greater work for participants in the Crowd on behalf of
others, as calculated by Reiter and Rubin [Reiter and Rubin 1998]. Unfortunately,
an increase in the probability of forwarding does not significantly increase the num-
ber of rounds required for a successful attack, as shown by examining the analysis
of Section 4. The primary advantage of a longer path in Crowds is to thwart attack
by traceback [Yoda and Etoh 2000; Staniford-Chen and Heberlein 1995; Zhang and
Paxson 1999]. The intuition for this is that the initiator will be seen by a collabo-
rating attacker in the first path position with probability c

n , regardless of the path
length.

Crowds and Onion Routing have equivalent work and latency characteristics for
equal path lengths (see Figure II). Onion Routing requires more work for encryp-
tion and decryption, but has a more consistent performance over time. Crowds, and
Onion Routing with Crowds-based variable path lengths, have inconsistent perfor-
mance which may be a significant problem. Suppose that l∗ is the path length at
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which the latency becomes too high for interactive applications. The path will have
length l∗ or greater with probability P ∗ = pl∗ . Of course, if l∗ is large, then P ∗ will
be quite small. In any case, it will occur given enough users and enough rounds.
This means that the user will be unable to use the system for the duration of the
round. Even if average-case performance is good, this bad case may happen often
enough to significantly degrade the user’s overall experience.

Mix-Nets face increased work and latency costs due to the costs of effective mix-
ing. Nodes may have to introduce dummy messages, queue received messages while
waiting for additional traffic, randomly delay messages, or apply other techniques.
All of these introduce a work cost, a latency increase, or both. We note that the
work and latency costs should continue to be linear with respect to the path length.

5.2 DC-Net

DC-Net requires substantial work from all participants at all times. First, for every
participant with which secret coin flips are shared, a substantial amount of data
must be shared. Chaum suggests that large quantities of random data might be
shipped on a CD [Chaum 1988]. A more efficient alternative would be to use
identical random number generators and share a seed from which future numbers
could be generated. However, even in this scenario, when coin flips need not be
communicated between the nodes that share the coin, every message sent requires
that every node send a message. When n is only moderately large, this linear
communication overhead becomes a very high cost.

Latency in DC-Nets can also be high. Nodes must announce the parities of
their coin flips. Log-reduction message collection methods could be used to collect
parities, followed by a broadcast to let everyone see the results. This introduces a
latency of O(lg n) for each set of bits that is sent. The latency cost is similar to
that of Crowds or Onion Routing when O(lg n) is the same as the expected path
length. As n grows, however, DC-Net latency could be much higher than most
Crowds or Onion Routing systems. Synchronization also introduces delays in this
process, similar to a Mix-Net system.

Another complication of DC-Net is collision resolution. Discussion of this issue
and efficient solutions are available elsewhere [Waidner and Pfitzmann 1989b]. De-
nial of service attacks are the cause of further inefficiencies in DC-Net. Denial of
service attacks on other users are simple to perform — attackers need only send a
constant stream of bits — and they can be performed under the cloak of nearly un-
breakable anonymity. A modification of DC-net exists that isolates nodes launching
a denial of service attack [Waidner and Pfitzmann 1989a]; however, it cannot pre-
vent the attack and requires several steps of message exchange prior to a message
being sent. It also requires each node to send “traps,” rather than messages, some
constant fraction of the time.

Despite the resistance of fully-connected DC-net to the attack we described,
with all of these difficulties, DC-Net may only be usable between small groups of
trusted parties. David Martin has shown that the costs become manageable in a
locally-run system [Martin 1999]. The cost involved with using fully-connected
DC-Net should be more thoroughly examined, as the ring-based approach has the
substantial pitfalls we describe in Section 4.4.1. For large or dynamic groups, the
additional work required appears prohibitive for real-time and bandwidth-intensive
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applications.
As both Crowds and Onion routing do not use the entire set of participants to

route messages, they are resilient against denial-of-service attacks, whereas DC-Net
is not. Conversely, because fully-connected DC-Nets use all nodes in the active set,
they are not subject to degradation of anonymity due to the predecessor attack.
Crowds and Onion routing are not.

5.3 The Predecessor Attack on Recent Protocols

Recently, several significant protocols for anonymous communications have been
published. In this section, we discuss some of these protocols and their resistance
to the predecessor attack.

One of these is P5, by Sherwood, et al. [Sherwood et al. 2002]. This protocol
is designed for anonymity between peers connecting to each other, rather than
outside responders. It could, however, be adapted to outside communication by
using destination peers as the final proxy to the rest of the Internet. P5 uses a
tree-based broadcast protocol, where a user’s anonymity is based on the sizes of
the different broadcast groups in which she is in.

The authors assume that “users do not leave once they join” to prevent a decline
in users’ anonymity [Sherwood et al. 2002]. Without this assumption, anonymity
groups would shrink, leading to degradation of anonymity within the groups. We
expect that this assumption does not hold well in today’s networks, in which nodes
may frequently shut down. When anonymity groups become too small, users must
recreate a new communication tree, including a new key. This expensive step keeps
the protocol from being vulnerable to the predecessor attack when the number of
attackers is less than the size of the user’s anonymity group.

The second protocol, Tarzan, by Freedman, et al. [Freedman and Morris 2002],
is a peer-to-peer system built at the network layer. From the perspective of our
analyses, which assume a peer-to-peer setting, Tarzan may be considered a variant
of Onion Routing, as it uses Onion Routing-style layered encryption, but likely
remains vulnerable to timing analysis, despite cover traffic.

Tarzan achieves a higher level of practical security in some scenarios by having
nodes select relays according to random domain selection. This means that attack-
ers cannot overload the network with malicious nodes from within the same domain,
as initiating nodes will not select proxies from that domain with any greater fre-
quency. Attackers can gain an advantage, however, when the number of honest
domains represented in the Tarzan group is small. An attacker may be able to
operate nodes from domains with no honest Tarzan participants. With attackers
in a few such domains, attackers could make it likely to appear on an initiator’s
path despite only operating a few corrupt nodes.

Another protocol, MorphMix, is also a peer-to-peer path-based protocol [Rennhard
and Plattner 2002]. It allows honest participants to find attackers in the system
over time. Unfortunately, this comes at a cost of allowing attackers to create paths
with only other attackers. Unlike in Tarzan, the peers do not need to know all
other peers in the network to operate correctly. This is beneficial for keeping the
intersection attack from being as easy, since obtaining a list of all peers currently
in the system becomes more difficult.

Additionally, two mutual anonymity protocols have been presented recently [Xiao
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et al. 2001; Kung et al. 2002]. These protocols, like P5, are designed to hide
the identities of both communication parties from each other and from third par-
ties. Both of these protocols are, like Tarzan, variants of Onion Routing, but with
anonymity for both the client and server. Since they are designed for file sharing,
paths are not maintained. This makes them highly vulnerable to the predecessor
attack as new paths create more opportunities for attackers to be on the path.
However, repeated connections to the same responder may not be as common for
file-sharing as in other applications, and in fact easier to avoid.

6. DIFFERENT TOPOLOGIES IN DC-NET

DC-Net has often been described in the DC-Ring configuration, and it remains
secure as long as members do not leave or join the group. In practice though,
membership often changes due to computer reboots, network partitions, and the
addition of new users into the group. Under this more realistic model, DC-Ring is
no longer secure, as described in the analysis of Section 4. However, DC-Ring has
low communications overhead compared to the well-known alternative, DC-Clique,
which requires O(n) message exchanges for each node. It appears that the topology
used represents a trade-off between the resistance to the predecessor attack and the
system cost to peers.

In this section, we describe several alternative configurations between these two
extremes of a ring and clique. We show how alternative topologies can provide
greater security than the DC-Ring configuration at much lower cost than DC-
Clique. The basic premise of these configurations is to start with a DC-Ring and
gradually increase the number of neighbors which each node communicates with.
The amount of work each node must do is proportional to the number of neighbors
it has, but the security grows much faster.

6.1 Model

We consider a DC-Net in which there are nodes that must sometimes leave or rejoin
the protocol. When a node leaves the network, there is a question of what to do in
the protocol – any node that had the absent node for a neighbor is now missing a
neighbor. Similarly, nodes that join the protocol cause a problem.

A simple solution might be to add new edges for new nodes and have neighbors
of missing nodes all connect to each other. The trouble with this approach is that
the attacker can take advantage of this to position itself where it wants. This is
seen in the attack on DC-Ring prtocol described in Section 4. When one attacker
isn’t in a good position to get information, it can leave and rejoin, trying to get a
better position each time.

An alternative approach to dealing with network dynamics is to have each node
get an identifier, perhaps based on IP address, that determines that node’s position
relative to the other nodes. In this scheme, however, an attacker that has access to
nodes over a wide spectrum of the IP address space will be able to place attackers
precisely where they are needed to gain the most information.

We argue that any such scheme that maintains position within the group across
memebership changes might face a similar attack. Therefore, instead of incremen-
tally adding and deleting nodes over time, we believe that it is best to occasionally
reset the protocol so that each node gets a new random set of neighbors. This
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prevents attackers from incrementally improving their position to isolate an initia-
tor. Additionally, this comes at little additional cost; each node already needs to
share random bits with its neighbors on a regular basis. If the graph is reset at a
bit-sharing interval, then the only added cost in forming the new topology.

In the remainder of this section, we assume that the DC-Net is completely reset
periodically, with each position in the graph being assigned randomly to a member
of the group.

6.2 Configurations

There are a large number of possible configurations for DC-Net. We examine three
as representative of the space between DC-Ring and DC-Clique (illustrated in
Figures 1 and 5, respectively):

—DC-Torus: each node shares coin flips with four neighbors in an x-by-y lattice.
At the edges, the grid wraps around, forming a torus so that none of the nodes
have fewer than four neighbors. This is illustrated in Figure 2.

—DC-Cube: this is an extension of the torus configuration into a third dimension,
so that each node has six neighbors. In other words, we have a cube where all
the edges wrap around. This is illustrated in Figure 3.

—DC-Random: each node selects, uniformly at random from the graph, a number
of other nodes with which it will share coin flips. Each node selects at a minimum
i other nodes. Any node may reject a neighbor request if it already has the
maximum number of neighbors, j; the requester retries by selecting a new node.
This topography is shown in Figure 4.

In the random topology, each node should, in practice, limit the number of re-
quests it takes from other nodes by first favoring its own random choices. Addi-
tionally each node should be wary of too many requests from the same nodes over
rounds. These precautions should help keep attackers from isolating an node by
selecting it as its neighbor. Additionally, there may be ways of identifying attacker
nodes if their selection patterns are distinguishable.

We consider a random topology primarily to account for the practical challenges
of running a DC-Cube or even DC-Torus, in that the nodes must organize them-
selves and may not perfectly fit into a grid or cube shape. With DC-Random, each
node operates locally, and no global coordination is needed — except to accumu-
late and sum coin flips, which can be an efficient tree structure. We expect this
topography to be less resistant to attack because the lack of regular structure can
aid attackers in partitioning or isolating an initiator.

6.3 Attacks

There are two types of attacks against initiators in each topology. The simplest
is to attempt to partition the network into two groups, one that includes the ini-
tiator and one that does not, eliminating the nodes in the non-initiator group as
candidates. This attacks occurs over multiple rounds until only one node remains a
candidate. The second is to attempt to isolate the initiator by occupying all avail-
able positions as neighbors; this attacks operates over multiple rounds until the
initiator is isolated. Attackers can attempt both attacks in parallel, but isolation
of an initiator is the more likely case.
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...

Fig. 1. Ring: 2 neighbors per node.

...

...

...

Fig. 2. Torus: 4 neighbors per node.

...

...

...

Fig. 3. Cube: 6 neighbors per node.

Fig. 4. Random: each node has between i and
j neighbors.

Fig. 5. Clique: a fully-interconnected graph.

Partitioning is easiest in the ring topology. However, the difficulty increases
drastically with the number of edges each peer maintains. Only two attackers were
needed to partition a DC-Ring, but partitioning the x-by-y torus into two large
segments requires 2x attackers to fill two entire columns. Other partitions are
possible, but they are also difficult to acheive. In DC-Cube, the attackers need fill
two planes of the graph, which is highly improbable given random node placement.

In a torus, four attackers can isolate one node, or six attackers can isolate
two nodes. If the isolated node is the initiator, then the attacker has success-
fully identified the initiator. If not, then the isolated nodes can be eliminated
as possible initiators, thereby reducing the initiator’s anonymity set. Given our
model of random graph selection, isolation of the initiator occurs with probability
(c!(n − 4)!/(c − 4)!n!) and, using Chernoff bounds, we see that the attacker needs
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O ((n!(c− 4)!/c!(n− 4)!) lg(n)) rounds for this to occur with high probability. This
is difficult to compare directly to the O(n)-round upper bound for the DC-Ring with
only two attackers, but we will show how significant the difference is in simulation.

In a cube, attackers need six nodes to surround a single node. Isolation of the
initiator occurs with probability (c!(n− 6)!/n!(c− 6)!). Using Chernoff bounds, we
see that the attacker needs O ((n!(c− 6)!/c!(n− 6)!) lg(n)) rounds for this to occur
with high probability.

In each topology, we expect isolation is the much more likely attack, and more
easily provides a guide as to why some topologies are more robust. (An exact
analysis of the number of rounds required to complete partitioning is beyond the
scope of the paper, as the space of possibilities for partitioning is very large.) Our
goal is to provide an empirical comparison of the performance of DC-Net over these
topologies, each with increasing numbers of neighbors per node. In the simulations
we present below, attackers attempt both attacks, as isolation is really just a special
case of partitioning.

6.4 Simulations of the Predecessor Attack

To test our hypothesis that more neighbors per node yields greater security against
the predecessor attack, we developed simulations of the attack on the DC-Net
configurations described above. We compared topologies of 100 and 1000 nodes.
We varied the attackers to consist of 10% to 50% of the nodes in the system.

The simulations are simple; we only need to simulate the creation of the DC-Net
graph, with the placement of attackers, and determine what the attackers can learn.

We do not attempt to link the attacks to wallclock (or calendar) time. We instead
measure attack times in term of the rounds: the breakdown and establishment of
the positions of nodes in the topology. For simplicity, we do not change the node
membership in each round, only the positions in nodes. Specifically, we measure of
the number of changes in the topology that must occur for the attackers to succeed
in identifying the initiator.

The simulation uses the same node membership for each round. For that reason,
the simulations tend to overestimate the length of the attack as nodes that leave
the session could have been eliminated as the initiator. However, we evaluated all
protocols with this assumption and we do not expect this significantly affects their
performance relative to one another.

All topologies are selected at random in each round. To form the graph, each
of the n nodes is given an identifier selected at random from 0 to n − 1, without
replacement. The identifier determines the node’s placement in the graph.

For example, the ring is ordered linearly, such that the node that gets identifier
i has neighbors i − 1 and i + 1, both modulo n. In the DC-Torus and DC-Cube
scenarios, each position similarly is defined to have a specific neighbor set.

For the DC-Random setting, each node, by order of identifier, chooses the mini-
mum number of neighbors, each at random, without replacement. If any node that
is selected has the maximum number of neighbors, it rejects the connection and a
new neighbor is selected. Thus, every node has at least the minimum and no more
than the maximum neighbor set. For these simulations, we set the minimum to be
five and the maximum to be 10. The average number of neighbors was approxi-
mately 6.4, and therefore would have been a bit more expensive to operate than
ACM Journal Name, Vol. V, No. N, Month 20YY.



· 25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

P
ro

ba
bi

lit
y 

of
 A

tta
ck

er
 S

uc
ce

ss

Rounds

c = 100
c = 200
c = 300
c = 400
c = 500

Fig. 6. DC-Ring: 2 edges per node. N = 1000.
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Fig. 7. DC-Torus: 4 edges per node. N = 1024.

DC-Cube.
The key to the attack is the random placement of attackers and the knowledge

that they might gain. For each round, we can see what the attackers have learned
by performing a breadth-first search of the graph, using the initiator as the starting
point. The search stops at any attacker node. If less than the entire set of (non-
attacker) node is reached at the completion of the BFS, then the attackers have
partitioned the graph into two regions. The attackers also know which region
contains the initiator and can eliminate nodes in the other partition. There will
be no partitions of the graph in some rounds, in which case the attackers learn
nothing.

We ran each simulation for a set number of R rounds. After R rounds have
passed, the attacker select randomly from the remaining nodes as their best guess
at the initiator’s identity. If only the initiator remains, then it will be selected.
Otherwise, the more nodes that are eliminated, the better the attackers will do, on
average. For a given scenario, which is the protocol, the number n of total nodes,
and the number c of attackers, and for a given value of R rounds, we run T trials.
We then determine the success rate for the attacker by the number of successes
for the T trials, with error determined by statistical bootstrapping (shown as error
bars on the graphs). The number of trials for a given scenario with R rounds varied
from 30 to 10000.

Although somewhat unfortunate for comparison purposes, the simulations for
DC-Torus required using n = k2, for integer k. Similarly, DC-Cube required n = k3

for integer k. Although it was possible to do these simulations without exact
squares and cubes, it made for the possibility of edge cases, in which the precise
configuration makes some nodes easier to isolate. It would be best, perhaps, to
consider a range of values for n, in order to cover such edge cases without letting
them dominate a set of results. For simplicity, however, we chose to only consider
values of n which led to full torus configurations or full three-dimensional toruses.
In general, the results for each system are sufficiently different that the variation
in n does not hinder comparison.
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Fig. 8. DC-Cube: 6 edges per node. N = 1000.
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Fig. 9. DC-Random: 5–10 edges per node. N =

1000.
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Fig. 10. Comparison of all protocols. N =

100, c = 20%.
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Fig. 11. Comparison of all protocols. N =

1000, c = 20%.
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Fig. 12. DC-Torus and DC-Cube: C ≈ 0.2N
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6.5 Results

These results confirm our hypothesis that increasing the number of links does mean
greater security against the predecessor attack, and that it is possible to gain greater
security without the overhead of DC-Cliques. Note for all topologies, the amount
of work required of each node is directly porportional to the number of neighbors
(i.e., edges) it has in the graph.

We can see this by first looking at Figure 6, which shows that attackers against
DC-Ring need a only four rounds to identify the initiator with a high probability
of success, even in a very large network. Figure 7 shows that attackers against DC-
Torus required hundreds of rounds or more when there are 30% or fewer attackers
(note that the rightmost line represents the fewest attackers). The addition of two
neighbors per node helps tremendously. Figure 8 shows that the DC-Cube does
even better. With control over half of the nodes, the attackers still need around
100 rounds to be successful with high probability. When fewer attacker nodes are
present, the time it takes for the attacker to succeed extends into the thousands
of rounds and beyond. The two additional neighbors per node greatly hamper the
attack.

We can see the effects more directly in Figures 11 and 10, where the protocols
are compared, and which include the DC-Random topography. While a node in
DC-Random has more links on average than one in DC-Cube, nodes have a lower
minimum number of links and there is less structure to organize and maintain in the
system. DC-Random therefore does not hold up quite as well as DC-Cube, though
it still manages to defend against the attack for a long time. Note, however, that
DC-Random is not limited to the number of edges we chose. As we see in Figure 13,
increasing the minimum number of edges from five to six, with an increase in the
maximum number of edges from 10 to 12, makes DC-Random last much longer
against the attack. It also increases the work, however, with an average number of
links of 7.6.

As we would expect, the more attackers there are the faster the attack works
in all scenarios. The effect is very clear. Looking at Figure 8, we see that as the
number of attackers goes down by 100, the length of the attack appears to increase
exponentially. This suggests that finding ways to keep attackers from joining the
system is at least as important as the number of edges per neighbor.

The effects that we see do not change much with the total number of nodes
n. From Figure 12, we see that with fewer total nodes, the attacker’s job is only
slightly harder.

7. CONCLUSION

Anonymity continues to be an elusive and challenging problem. We have presented
several results that show the inability of protocols to maintain high degrees of
anonymity with low overhead in the face of persistent attackers.

We provided upper bounds for Onion Routing and Mix-Nets on the time re-
quired for attackers to degrade the anonymity of a particular initiator with high
probability. Figure II summarizes our results. Crowds’ degradation is bounded
by O

(
n
c lg n

)
rounds [Reiter and Rubin 1998]. In Onion Routing, the number of

rounds is bounded by O
((

n
c

)2 lg n
)
. With Mix-Nets, the number of rounds re-
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quired depends on the path length, l and is bounded by O
(

nl

cl lg n
)
.

We proved that as long as attackers are selected uniformly at random to be
a part of active set and sessions can be identified across path reformations, the
degree of anonymity of any sender will degrade under attack. This allows us to
understand why some proposed and exisiting protocols have a better defense against
the predecessor attack than others. For example, because the data is encrypted
into layers so that only the final node on the path can determine to which stream
the packet belongs, Onion Routing holds its defense against attackers longer than
Crowds. Since Mix-Nets thwart timing analysis, they further increase the defense.
With DC-Net, only when all pairs of nodes shared coin-flips does the attacker
require unreasonable resources to succeed; however, this result does not hold for
other topologies. We also discussed, however, some weaknesses in the protocol that
might prevent it from being usable in practice.

We have shown by simulation that the upper bounds obtained in our prior work
were fairly loose, and that the attack can potentially succeed much more quickly
than previously described. We have also shown, through study of real network
traffic, that users may follow the necessary communication patterns for the attacks
to be successful over time.

Defenses against these attacks are possible. We identified a set of defenses based
on static path selection in Onion Routing and demonstrated that they are effective
against the predecessor attack in a static setting. However, these defenses do not
hold up in a peer-to-peer setting, when group membership is dynamic. Finding
other defenses, especially in the peer-to-peer setting, is an important unresolved
issue.

We also showed how there are many topologies that range between a ring and a
clique for DC-Net. Adding a few edges to each node in the graph greatly increases
the work required for a successful attack. We showed through simulation how even
random topologies in DC-Net survive orders of magnitude longer than DC-Ring.

The churn in group membership of anonymous protocols also provides another
means for attackers to degrade initiator anonymity. Specifically, we have shown that
both Tarzan and Crowds are particularly vulnerable to the intersection attack, since
lists of current users are readily available. We note that other peer-to-peer proto-
cols, such as MorphMix, may not be as vulnerable to this attack, since awareness
of all other peers is not needed for operation of the protocol. Since MorphMix has
other vulnerabilities, developing strong peer-to-peer anonymity protocols that do
not require knowledge of all peers remains an open problem.

These results are important for both the designers and users of anonymous pro-
tocols. It appears that designing a long-lived anonymous protocol is very difficult,
and that users of current protocols need to be cautious in how often and how long
they attempt to communicate anonymously.
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