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ABSTRACT

Sensors deployed to monitor the surrounding environment
report such information as event type, location, and time
when a real event of interest is detected. An adversary may
identify the real event source through eavesdropping and
traffic analysis. Previous work has studied the source lo-
cation privacy problem under a local adversary model. In
this work, we aim to provide a stronger notion: event source
unobservability, which promises that a global adversary can-
not know whether a real event has ever occurred even if he
is capable of collecting and analyzing all the messages in
the network at all the time. Clearly, event source unobserv-
ability is a desirable and critical security property for event
monitoring applications, but unfortunately it is also very
difficult and expensive to achieve for resource-constrained
sensor networks.

Our main idea is to introduce carefully chosen dummy
traffic to hide the real event sources in combination with
mechanisms to drop dummy messages to prevent explosion
of network traffic. To achieve the latter, we select some sen-
sors as proxies that proactively filter dummy messages on
their way to the base station. Since the problem of opti-
mal proxy placement is NP-hard, we employ local search
heuristics. We propose two schemes (i) Proxy-based Fil-
tering Scheme (PFS) and (ii) Tree-based Filtering Scheme
(TFS) to accurately locate proxies. Simulation results show
that our schemes not only quickly find nearly optimal proxy
placement, but also significantly reduce message overhead
and improve message delivery ratio. A prototype of our
scheme was implemented for TinyOS-based Mica2 motes.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.1 [Computer-Communication

∗This work was supported in part by Army Research Of-
fice (W911NF-05-1-0270 and W911NF-07-1-0318) and the
National Science Foundation (CNS-0524156, CNS-0627382,
and CAREER-0643906).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’08, March 31–April 2, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-814-5/08/03 ...$5.00.

Networks]: Network Architecture and Design—Wireless
communication; K.6.5 [Computing Milieux]: Manage-
ment of Computing and Information Systems—Security and
Protection; K.4.1 [Computers and Society]: Public Pol-
icy Issues—Privacy

General Terms

Security, Algorithms, Performance

Keywords

Event Unobservability, Global Observer, Proxy, Minimum
Traffic, Sensor Network Privacy

1. INTRODUCTION
Sensor networks bear a promising future in many im-

portant applications such as habitat monitoring, military
surveillance, and target tracking. However, sensor networks
are also confronted with many security threats such as node
compromise, routing disruption and false data injection, be-
cause they normally operate in unattended, harsh or hostile
environment.

Among all these threats, privacy is of special interest to
us since it cannot be fully addressed by traditional security
mechanisms, such as encryption and authentication. Con-
sider a simple example of event reporting in a sensor net-
work. When a sensor detects an event, it sends a message
including event-related information to the base station. Af-
ter this, the location of the event source has actually been
leaked to the attacker (who may be passively monitoring
the network), no matter how strong the data encryption key
is. Furthermore, an attacker may find out more sensitive
information: whether, when and where a particular event
occurred, e.g., the appearing of an endangered animal in an
asset monitoring sensor network [14, 22]. This can help the
attacker in capturing the animal, an unfortunate occurrence.

Preserving event source location privacy, however, is a
challenging task in sensor networks, which are characterized
by limited resources in energy, computation, and commu-
nication. Hence, only lightweight, energy-efficient privacy-
conserving mechanisms are affordable in sensor networks.
Sensors typically have low-cost radio devices that employ
standardized wireless communication technologies. The open-
architecture of the underlying sensor communication mech-
anisms enables an attacker to easily monitor or eavesdrop
communications between sensors. Consequently, it is possi-
ble for a single attacker to monitor all the network traffic
either by deploying his own simple sensors that cover the



whole deployment area [33] or by employing a powerful site
surveillance device with hearing range no less than the net-
work radius.

Despite its importance, source location privacy has not
received due attention yet. A large number of anonymity
techniques [5] designed for general networks are not appro-
priate to be used for sensor networks. This is not only be-
cause the privacy problem is different but also because these
techniques are too costly to be employed. A few privacy-
enhancing solutions [14, 24, 13, 30] have been proposed for
sensor networks, but they assume relatively weak attack
models. For example, in phantom routing [14, 24], an at-
tacker has limited coverage, comparable to that of regular
sensors. At any given time, only a single source is under the
attacker’s consideration and the attacker tries to trace back
to the source in a hop-by-hop fashion. When the attacker
becomes more powerful, e.g., has a hearing range more than
three times of the sensors, the scheme performs poorly since
the capture likelihood may be raised to as high as 97%.

In this work, we aim to provide event source unobserv-
ability under a global attack model, where an attacker can
hear and collect all the messages transmitted in the net-
work at all the time. Event source unobservability promises
that an attacker may neither discern the occurrence of a
real event, nor find out the location of the real source. This
is a stronger notion of privacy than traditional source loca-
tion privacy that only hides the location of a real source.
Under such an attack model, if all the packets in the net-
work are real event packets, we are unlikely to achieve event
source unobservability, because the transmission of a mes-
sage, even encrypted, already indicates the occurrence of an
event. Therefore, we devise schemes that introduce dummy
traffic [10].

A baseline scheme based on such dummy traffic works as
follows. Every node in the network sends out messages, ei-
ther real or bogus, with intervals following a certain kind
of distribution (e.g., constant rate or exponential). When
a node detects a real event, it delays the transmission of
the real event message such that the next inter-message in-
terval follows the same distribution. Although this base-
line scheme provides event source unobservability, it is also
prohibitively expensive for sensor networks. The huge num-
ber of bogus messages not only consume the constrained
energy of sensor nodes for transmissions, but also lead to
high channel collision and consequently low delivery ratio of
real event messages. Therefore, it is our paramount goal to
reduce the traffic while preserving event source unobservabil-
ity. To achieve this goal, we propose a Proxy-based Filtering
Scheme (PFS) and a Tree-based Filtering Scheme (TFS). In
PFS, some sensors are selected as proxies to collect and fil-
ter dummy messages from surrounding sensors. PFS greatly
reduces the communication cost of the system by dropping
many dummy messages before they reach the base station.
In TFS, proxies are organized into a tree hierarchy. Proxies
closer to the base station filter traffic from proxies farther
away, thus the message overhead could be further reduced.

The message overhead imposed by these schemes is usu-
ally dependent on the locations of the proxies. Hence, based
on local search heuristics we devise a proxy placement al-
gorithm for each scheme to minimize the overall message
overhead. Since real event messages may be delayed at the
source due to the need to postpone their transmission, we
also select suitable parameters for the buffers at the proxies

to reduce buffering delay while preserving event source unob-
servability. Our simulation results indicate that our schemes
not only find nearly optimal proxy placement efficiently but
also yield high delivery ratio and low bandwidth overhead,
relative to the baseline scheme. A prototype of our schemes
is implemented for TinyOS-based Mica2 motes [3], which
consumes only about 400 bytes in the RAM space.

The rest of the paper is organized as follows. We first
describe the problem and build up our model in Section 2.
Then, Section 3 presents our PFS scheme and Section 4
presents the TFS scheme. Some issues are discussed in Sec-
tion 5. After that, simulation and implementation results
are presented in Section 6. Finally, we describe related work
in Section 7 and conclude this paper in Section 8.

2. SYSTEM MODEL AND DESIGN GOALS

2.1 Network Model
As in [26], our system assumes that a sensor network is

divided into cells (or grids) where each pair of nodes in neigh-
boring cells can communicate directly with each other. A
cell is the minimum unit for detecting events; a cell head co-
ordinates all the actions inside a cell. Each cell has a unique
integer id (in the range [1, n], where n is the total number
of cells) and every sensor node knows the cell in which it is
located through its GPS or an attack-resilient localization
scheme [21]. Also, we assume that a base station (BS) is lo-
cated at the center of the network and works as the network
controller to collect event data. An event report contains
such information as the id of the detecting cell, the event
type, and the detection time.

2.2 Attack Model
We assume that the adversary is external, passive and

global. By external, we mean that the adversary will not
compromise or control any sensors; by passive, we assume
that the attacker does not conduct active attacks such as
traffic injection, channel jamming and denial of service at-
tack; by global, we assume that the adversary can collect
and analyze all the communications in the network. Note
that such a global attacker does not necessarily mean the at-
tacker’s capability of detecting the occurrence of real events
in any places of the network by himself, because (1) real
event detection devices are often costly, whereas message
collection devices are inexpensive and off-the-shelf; (2) real
event detection devices such as animal-monitoring camera
normally do not have sizes as small as regular sensors, so
they are easy to be detected and destroyed. Although we do
not consider sensor node compromises in the attack model,
we will discuss this problem later in Section 5.3.

To be more specific, the adversary may launch the follow-
ing attacks in our model. First, he may simply examine the
content of an event message to see if it contains the source
location id. Second, even if the message is encrypted, it is
easy for him to trace back to the source of the message if the
encrypted message remains the same during its forwarding,
because the adversary is capable of identifying the immedi-
ate source of a message transmission. Third, he may perform
more advanced traffic analysis including rate monitoring and
time correlation. In a rate monitoring attack, the adversary
pays more attention to the nodes with different (especially
higher) transmission rates. In a time correlation attack, he
may observe the correlation in transmission time between a
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Figure 1: Illustration of PFS. Blank circles and filled
circles represent sources and proxies, respectively;
dashed lines and solid lines denote bogus messages
and real messages, respectively.

node and its neighbor, attempting to deduce a forwarding
path.

2.3 Design Goals
Providing event source unobservability under the global

attack model is challenging. To prevent content-based anal-
ysis, we may encrypt all the packets during their forwarding,
and also make all the packets in the network of the same
length. However, these techniques cannot defend against
rate monitoring and time correlation attacks.

To solve these traffic analysis attacks, we notice that there
exist trade-offs between various performance and security
metrics, such as privacy, delay, and communication cost. If
all packets in the network are real event packets and every
node reports and forwards a real event message immedi-
ately, it will be easy for a global attacker to trace back to
the real source. Therefore, not only network-wide dummy
traffic [10] but also delays in event reporting and forward-
ing have to be introduced at the nodes. Clearly, dummy
traffic will significantly increase the network traffic, which is
undesirable for sensor networks where communication over-
head dominates the entire energy expenditure. To guarantee
event source unobservability without causing the explosion
of network traffic, in this paper our goal is to minimize the
network traffic. Since it is hard to minimize the event report
delay simultaneously, the proposed schemes are best suitable
for applications in which a certain degree of delay could be
tolerated.

3. PROXY-BASED FILTER (PFS) SCHEME

3.1 Scheme Overview
To employ dummy traffic to hide real events without in-

curring much message overhead, we select some sensors (in
certain cells) as proxies to filter dummy messages before
they reach the BS. The locations of these proxies are deter-
mined during network planning with the goal of minimizing
aggregate network traffic. After network deployment, each
proxy broadcasts a “hello” message with TTL (time to live)
information that is large enough to reach every cell in the
network. Every cell receiving these “hello” messages records

the proxy which is nearest to it as its default proxy. Every
cell also sends back responses to its proxy so that each proxy
knows which cells it serves for.

We assume each cell can establish a pairwise key with a
proxy on the fly based on an appropriate keying scheme [20]
and each proxy shares a key with the BS. When the net-
work is in operation, each cell sends encrypted messages via
unicast to its default proxy through a multi-hop routing pro-
tocol such as GPSR [15]. To satisfy our requirement of event
source unobservability, the time intervals of these messages
follow an exponential distribution (selecting other message
generation patterns, such as a constant rate, does not af-
fect our filtering schemes). When a cell detects an event, it
postpones the transmission of the encrypted real event mes-
sage to the next probabilistic interval, so that based on time
analysis this message cannot be differentiated from dummy
traffic.

Upon receiving a bogus message, a proxy performs filter-
ing by discarding such a message. Upon receiving a real
event message, the proxy reencrypts it (with a key shared
with the BS) and forwards it towards the BS after an appro-
priate buffering time. In case of no real event message avail-
able, a proxy sends encrypted dummy ones instead. Note
that proxies can differentiate dummy messages from real
messages because they can properly decrypt the message
using the corresponding pairwise key. If a proxy receives
messages from other proxies, it just forwards them to the
next hop. Figure 1 shows an example where PFS is em-
ployed for privately reporting elephant locations.

In summary, dummy messages are generated to hide real
event messages. During this process, we minimize network
traffic through optimal proxy deployment and preserve event
source unobservability through appropriate filtering behav-
ior inside proxies. Next, we describe optimal proxy place-
ment in Section 3.2 and present proxy operations in Sec-
tion 3.3. Finally, we analyze the security property of PFS
in Section 3.4.

3.2 Proxy Placement

3.2.1 Problem Statement

Deploying proxies in the right locations is crucial to the
performance of our network. For example, if all the proxies
are deployed close to each other, network traffic cannot be
reduced effectively. Similarly, if all the proxies are placed far
away from the BS, the number of bogus messages that can
be filtered by proxies will be very limited. We consider the
minimization of aggregate network traffic as the optimiza-
tion criterion for our proxy placement. Aggregate traffic is
defined as traffic rate×message size×number of hops (unit is
byte×hop/second). Since the sizes of all the event messages
are the same, we only need consider traffic rate and total
message transmission hops in the optimization problem.

In more detail, our proxy placement problem could be
formalized in the following way. Suppose the set of all n cells
in the network is denoted as V (i.e., |V | = n). Moreover, P
is the set of proxy cells with size k(k ≤ n) and P is a subset
of V . Since the closest proxy is the one that filters dummy
messages for the cell, for a normal cell i in the network, its
distance (i.e., number of hops) to the corresponding proxy
could be expressed as:

d(i) = min
j∈P

d(i, j), (1)



where d(i, j) is the distance between cell i and proxy j
(1 ≤ i ≤ n, 1 ≤ j ≤ k). Suppose that all the cells in the net-
work send out event messages (dummy or real) following the
same traffic rate rsource and the outgoing traffic rate from
proxies is rproxy (the relationship between rsource and rproxy

is determined by the buffering behavior inside the proxies).
Our purpose is to minimize the following cost:

cost = rsource ·
∑

i∈V

d(i) + rproxy ·
∑

j∈P

c(j). (2)

That is,

cost = rsource ·
∑

i∈V

min
j∈P

d(i, j) + rproxy ·
∑

j∈P

c(j), (3)

where c(j) is the distance from proxy j to the BS.
A solution to the proxy placement problem consists of the

number of proxies needed and their locations that minimize
the cost described above. This problem is NP-hard, because
one proxy’s even one-step of position change may cause re-
calculations for all cells, which cannot be effectively solved
in polynomial time. The well-known facility location prob-
lem [29] reduces to it. We adapt heuristics based on localized
search [6, 19] to efficiently solve the proxy placement prob-
lem. Next, based on this idea, we devise proxy placement
algorithm that can find approximately optimal locations for
proxies, given any rsource and rproxy.

Algorithm 1 Proxy Placement Algorithm in PFS

Input: a cell-based network topology with node set V ; the
total number of nodes n;
Output: a set of proxies P ;
Procedure:
1: P ← Φ; P ′ ← Φ; {cost(Φ) =∞}
2: for k← 1 to n− 1 do
3: placement(k); {Update P ′}
4: if cost(P ′) < cost(P ) then
5: P ← P ′;
6: end if
7: end for
8: return P ;
9:

10: placement(k)
11: P ′[0]← BS;
12: for i← 1 to k do
13: P ′[i]← i;{Initialize P ′[0] . . . P ′[k]}
14: end for
15: for ∀i ∈ P ′ and ∀j 6∈ P ′ and i, j ∈ V do
16: P ′′ ← P ′ − i + j; {Swap i and j}
17: if cost(P ′′)< cost(P ′) then
18: P ′ ← P ′′;
19: end if
20: end for;{Loop ends after we try all the combinations

of i and j}

3.2.2 Proxy Placement Algorithm

The details of our proxy placement algorithm are pre-
sented in Algorithm 1. Given k, the number of proxies to
be deployed, we begin with a random initial set P ′ of size k
(e.g., the first k nodes) with the BS as a default proxy. Our
algorithm proceeds in steps, in each of which we try to swap
a node in set P ′ with a node that is currently not in set P ′,
if such a swap would reduce the aggregate network traffic.
If a swap succeeds, then we update the set P ′ accordingly.
We repeat this process until no more swaps are possible. At
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this point, the cost reaches a local minimum. Note that for
any k this process is guaranteed to converge since each swap
results in a reduction in the cost of the solution which is
lower bounded by a positive value corresponding to the op-
timal solution for k. We vary k from 1 to n and record the
set P with the minimum cost. After we obtain P , the size
of P is the number of proxies in our deployment and cells
corresponding to the set P are those where we place these
proxies.

We have the following results on the time complexity of
Algorithm 1. For the average case, it is hard to analyze the
number of iterations in each placement(k). Similar to [25],
we resort to experiment and find that the average-case com-
plexity of this algorithm tends to be O(n4).

In the worst case, the initial set P ′ is shifted by a max-
imum distance. For example, suppose the initial set P ′ =
{BS, 1, 2, · · · , k} and the algorithm returns {BS, n − k +
1, · · · , n} (BS is a default proxy). Then, each element in
P ′ is shifted by a distance n − k + 1, one step each time.
Take element k in the initial set for an instance, the shifting
sequence will be k, k + 1, · · · , n. For the first shift from k
to k + 1, we need to compare k + 1 with all the elements
in P ′ which includes 1, 2, · · · , k and the last attempt suc-
ceeds. Totally k swaps have been tried. For the second
shift from k + 1 to k + 2, first, we compare k with all the
elements in P ′ including 1, 2, · · · , k − 1, k + 1 and all at-
tempts fail (the last attempt between k and k + 1 can be
ignored, but we count it here for simplicity). Then, we
compare k + 2 with all the elements in P ′ which includes
1, 2, · · · , k − 1, k + 1 and the last attempt succeeds. Hence,
totally 2k swaps are attempted. Similarly, this process con-
tinues until the last shift from n−1 to n which has (n−k+1)k
swaps. Therefore, for each element like k in set P ′, there are
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k ·
∑n−k+1

1
i = O((n−k)2) swaps being attempted. To shift

the initial set of P ′ to its final set, the total number of swaps
is

∑k

i=1
i(n − k + 2)(n − k + 1)/2 = O(k2(n − k)2). Since

the time to execute each swap is O(k(n − k)), the time for
one placement(k) is O(k3(n−k)3). We try all the possible k
from 1 to n. Hence, the worst-case time complexity of Algo-
rithm 1 is

∑n

k=1
O(k3(n− k)3) = O(n7), which is much less

than that of the brute force method (where we try all the
possibilities to finally find an optimal placement) in O(n!)
(when n ≥ 2).

Through employing local search heuristics, Algorithm 1
can be completed in polynomial time. Note that Algorithm
1 is executed during network planning by network controller
who has sufficient computation and energy resources, with
the results being preloaded in each sensor’s memory before
node deployment. Individual sensors do not need to com-
pute this separately.

3.2.3 Performance Evaluation

We conducted simulations to evaluate Algorithm 1. In
the simulation, we setup a network with n = 81 and contin-
uously run placement(k) with k = 0, · · · , 80. As shown in
Figure 2, the minimum cost obtained by our algorithm is 96
when k = 14. It is as accurate as the globally optimal value
returned by the brute force method. We also evaluate the
efficacy of our algorithm in determining the locations where
the proxies should be deployed through simulation. As can
be seen in Figure 3, positions of proxies returned by our
algorithm and the optimal positions obtained by the brute
force method are almost the same. Hence, we believe that
our algorithm can quickly find a placement solution that
closely approximates the optimal solution.

We also check the impact of network scale on the number
of proxies chosen by our placement algorithm. The results
are shown in Figure 4. When the network sizes are 81(9×9),
169(13× 13), 289(17× 17), 441(21× 21), and 625(25× 25),
the numbers of proxies determined by our algorithm are 14,
22, 37, 50, and 64, respectively. These results will also be
used in our following performance evaluation in Section 6.
Apparently, the optimal number of proxies increases with a
larger network scale.

3.3 Proxy Operations
Upon receiving a message, a proxy performs the follow-

ing operations to reduce the network traffic while preserving
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Figure 5: State transitions of proxies (there are
three states: waiting, bogus, real).

event source unobservability:

• First, the proxy decrypts the message so that the proxy
can differentiate real event messages from bogus ones;

• Second, the proxy drops the message immediately if it
is a bogus message. If on the other hand the message
corresponds to a real event, the proxy re-encrypts the
decrypted message;

• Third, the proxy puts this re-encrypted real event mes-
sages into its message buffer. After a constant time,
a message, either bogus or real, will be sent out from
the proxy node.

Let us discuss these internal operations of a proxy in more
detail. These operations can be understood using the state
transition diagram of a proxy shown in Figure 5. As shown,
a proxy is initialized to be in the Waiting state. Upon re-
ceiving a message, the proxy first decrypts the packet. If
the received message is bogus, the proxy drops this mes-
sage immediately. If its message buffer is now empty, the
proxy changes its state to Bogus. Otherwise, if the received
message is real then the proxy saves the real message in its
message buffer. Whenever there are real messages in the
message buffer to be sent out, the proxy switches its state
to Real. Additionally, if the proxy is in state Bogus, it will
change to state Real if a real message is received and remain
in state Bogus if a bogus message is received. On the other
hand, if the proxy is in state Real, it will remain in state
Real regardless of the type of message received as long as
there is at least one real message in the buffer.

Recall that the goal of each proxy is to ensure that the
outgoing traffic confirms to a rate of rproxy requests per
time unit. Recall also that in this work we consider outgo-
ing traffic with requests (messages) equally spaced in time.
That is, a proxy emits a message once every Tproxy = 1

rproxy

time units. To achieve this, the proxy repeats the follow-
ing process over non-overlapping and successive intervals
of duration Tproxy each. During each of such an interval,
the proxy adds all the received real messages to its buffer.
If the buffer is full, then the new incoming real messages
are dropped (in our real implementation for Mica2 sensor
nodes, such messages are buffered in the large flash memory
to avoid dropping). At the end of each interval, the proxy
sends out a message depending on what state it was in: if
it is in state Bogus, a bogus message is sent out; if it is in
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state Real, a real message is sent out (FIFO ordering is used
in case multiple real messages have buffered up).

While the introduction of buffering at the proxies enables
the network to achieve its goals of event source unobserv-
ability (as will be shown formally in Section 3.4), it degrades
performance by introducing additional delays in the delivery
of real event messages. How can we estimate the delay in
message delivery resulting from PFS? We use queuing the-
oretic model of a proxy to conduct a simple analysis of this
delay.

Let λP denote the rate at which messages arrive at the
proxy P . Recall that our design makes source nodes gener-
ate traffic with exponentially distributed inter-arrival times
with a rate rsource that is identical across all the source
nodes. Therefore, λP = nP · rsource, where nP is the num-
ber of source nodes associated with the proxy P . Since the
processing time at the proxy (in the millisecond level for a
Mica node, which is mainly due to decryption/reencryption)
is significantly smaller than Tproxy, we make the simplifying
assumption that this process time can be ignored. In other
words, the delay caused in the delivery of a real message
is essentially the sum of the delays caused by the buffer-
ing at the source node where the event occurred and at the
proxy that the message passes through on its way to the BS.
Finally, we assume that the fraction freal

P of the messages
arriving at P is real. We can now view the proxy P as an
M/G/1 [17] queuing system since: (i) the arrival process is
Poisson with a rate freal

P · λP and (ii) the time a real re-
quest spends in the message buffer may be considered as a
random variable sP representing the “service time” of the
request. Note that the notion of servicing in this queue is
an abstract one and the time spent waiting in the message
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buffer is being modeled as the service time in a hypothetical
server. Also, our assumption above implies that the dummy
traffic arriving at P plays no role in our analysis. Therefore,
a request will be meant to signify a real request in the rest
of the analysis.

We can derive some useful properties of the random vari-
able sP using standard queuing theory. Let pP denote the
probability that a newly arriving request finds the queue rep-
resenting P idle. The well-known PASTA property (“Pois-
son Arrivals See Time Averages”)[17] states that for queuing
systems with Poisson arrivals, the fraction of requests find-
ing the queue idle upon arrival is exactly the same as the
fraction of time the system is idle. This implies that pP is
equal to the probability that the queue is idle. Clearly, re-
quests that arrive to the queue when it is idle will experience

an average service time
Tproxy

2
because in this case service

times follow a uniform distribution U [0, Tproxy] (and hence
the variance is T 2

proxy/12); other requests will experience a
service time Tproxy since requests emerge from P at the rate
rproxy. Therefore, we have,

E[sP ] = pP

Tproxy

2
+ (1− pP)Tproxy; (4)

E[s2
P ] = pP

T 2
proxy

3
+ (1− pP)T 2

proxy (5)

In Formula (5)
T2

proxy

3
is derived from the variance and the

mean of the service time when the queue is idle. Further-
more, queuing theory [17] gives us,

pP = 1− freal
P · λP · sP (6)

Combining these equations, and denoting freal
P λP as λreal

P ,



we have,

E[sP ] =
Tproxy

2− λreal
P

Tproxy

; (7)

E[s2
P ] = (1− λreal

P E[sP ])
T 2

proxy

3
(8)

+λreal
P E[sP ]T 2

proxy

The average delay dP experienced by a message at the
proxy P is then given by the following result known for the
average sojourn time of a request in our M/G/1 queuing
system,

dP = E[sP ] +
λreal
P (E2[sP ] + E[s2

P ])

2 · (1− λreal
P

E[sP ])
(9)

To verify our theoretical results we use CSIM [1] to sim-
ulate this queueing model. In our simulation setup, Tproxy

changes from 5 to 50 time units and λreal
P changes from

1/10 to 1/100 per time unit. We obtain the queuing delay
as shown in Figure 6(a) and Figure 7(a). The error-bars
show the 95% confidence interval of the simulation result.
From these figures, we can see that our theoretical values
and simulation results match well. In Figure 6(a), if the in-
coming rate λreal

P is fixed, then the average delay increases
as the interval Tproxy increases, because of the longer queue
length and buffer time. On the other hand, in Figure 7(a), if
the interval Tproxy is fixed, then the average delay decreases
as the incoming rate λreal

P decreases, since the buffer is less
occupied.

We also use simulation to check the queue length. Our
simulation results in Figure 6(b) and Figure 7(b) show the
maximum queue lengths under different simulation settings.
These results could be used to provide guidance for allocat-
ing proper buffer size. If we select a larger interval Tproxy,
then the buffer size should also be increased accordingly.
Also, if the incoming rate λreal

P is lower, then a smaller buffer
size will be enough for our application.

3.4 Security Analysis
According to [11], we have the following definitions on

event source unobservability.

Definition 1. If for each possible observation O that
an attacker A can make, the probability of an event E is
equal to the probability of E given O, that is: ∀O, P (E) =
P (E|O), then E is called unobservable.

Definition 2. A system has the property of event source
unobservability if any event E happening in this system
is unobservable: ∀E,∀O, P (E) = P (E|O).

Next, we prove that our system can achieve the property
of event source unobservability.

Theorem 1. PFS has the property of event source un-
observability.

Proof. (Sketch) P (E) = P (E|O) in Definition 1 means
that event E and observation O are independent (P (E ∩
O) = P (O) · P (E|O) = P (O) · P (E)). Therefore, according
to the above definitions, if we want to prove that PFS has
the property of event source unobservability, then we need
prove that any event E is independent of the observation O
that the attacker A makes.
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Let us first consider all the possible observations that an
attacker can make from the system. The adversary can ob-
serve messages being generated at each cell with intervals
following a certain probabilistic distribution. However, as
the messages are encrypted and of the same length, the
attacker cannot distinguish the real ones from the dummy
ones. These messages are then relayed on visible multi-hop
paths to proxies. Proxies drop and delay messages, but the
attacker does not know which messages are dropped and
which are forwarded by proxies due to message reencryp-
tion and constant-rate eviction. The outgoing messages from
proxies are finally forwarded to the BS in always the same
way. Thus, even with all these observations, the attacker
cannot gain any additional information on real events. The
occurrence of a real event E is independent of attacker’s ob-
servation O. Therefore, every real events are unobservable
for the attacker. According to Definition 2, PFS has the
property of event source unobservability.

4. TREE-BASED FILTER SCHEME (TFS)
If the number of proxy nodes is large enough, further re-

duction in the dummy traffic is possible by allowing mes-
sages to be filtered at multiple proxies on their way from
source nodes to the BS. Note that in PFS, even though
a message may traverse through multiple proxies, it is fil-
tered only at the default proxy of the cell that this message
originates from. Building upon this core idea, we propose a
tree-based filtering scheme (TFS) in which the proxies in our
network are organized in the form of a tree rooted at the BS.
Proxies in TFS, thus, form a hierarchy with each proxy hav-
ing a parent node and possibly multiple child nodes. With
the resulting multi-level filtering, we expect lower network
traffic because more dummy messages will be dropped be-
fore they reach the BS. The reduction in traffic due to TFS,
however, will come at the expense of increased latency of real
event delivery since each message may now incur buffering-
induced delays at multiple proxies on its way to the BS.
This trade-off between traffic and latency is central to the
research issues involved in the design and efficacy of TFS.

4.1 Hierarchical Proxy Placement
Randomly picking up proxies might end up assigning more

proxies to some paths than others, which may limit the
overall filtering efficacy of TFS. Therefore, similar to our
approach in PFS, we devise a heuristic based on localized
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Figure 9: Delay in TFS under different Tproxy and λ (tree level l = 2).

search to derive effective proxy placement in an efficient way.
Through experiments, we found that if there are more con-
straints on the proxy placement then the result of the algo-
rithm is better (i.e., closer to the globally optimal solution).
Hence, in the algorithm we specify the total number of levels
for the proxy tree. Another benefit of this mechanism is that
by assigning a small number of levels we can also reduce the
real event report latency since real event messages need go
through fewer levels of proxies before they reach the BS.

We adapt Algorithm 1 to implement the proxy placement
algorithm for TFS-l (the proxy level l is specified as a pa-
rameter). We do not present its details since these two algo-
rithms follow the same local search heuristics so the changes
are not much. Different from Algorithm 1 in PFS, here the
set P ′ has an internal hierarchical structure. Because of this,
an inner-swap, which works by exchanging the positions of
proxies within the current set, might reduce the cost too.
The proxy number k is iterated from 1 to n. For each given
k, we try all the combinations of proxy numbers in every
level and record the set with the minimum cost as P . The
algorithm keeps on running until no more swap or inner-
swap that could reduce the cost exists, so that the total cost
reaches its local minimum.

We also briefly analyze the time complexity of this new
algorithm. Analyzing the time complexity for the average-
case is difficult since quantifying the total number of iter-
ations in each placement(k) is unwieldy. Through repeti-
tive experiments and curve fitting, we find that the average
time complexity of this algorithm is about O(n3+l). In the
worst case, the time complexity of this algorithm is O(n6+l).
When l = 1, this time complexity is exactly the same as that
of Algorithm 1, which verifies the correctness of our analysis.

We use simulations to compare the traffic generated by
the two schemes. With n = 81, for proxy number k ranging
from 5 to 40, we check the trends of traffic under different
number of tree levels (i.e., l = 1, 2, 3, respectively). The
improvement of TFS over PFS in overall traffic is evident
in Figure 8. However, we notice that event latency may be
increased in TFS since each message may go through several
proxies, each of which has a buffering period.

4.2 Multi-level Buffering Delays
In the hierarchical organization of proxies employed in

TFS, the proxies at each level have an interval that deter-

mines the rate at which traffic emerges from them. For l lev-
els in the hierarchy, we use the notation T 1

proxy, ...T l
proxy to

represent the intervals, with level-1 corresponding to the leaf
nodes and level-l corresponding to the children of the BS.
The analysis in PFS extends directly to the“leaf-level” prox-
ies in the TFS hierarchy of proxies. For intermediate prox-
ies, however, the situation becomes more complicated. The
incoming traffic to an intermediate proxy Pint consists of:
(i) the outgoing traffic from one or more other proxies that
are its “children” in the tree imposed on the proxies by the
placement algorithm, and (ii) messages from the cells that
Pint is in-charge of. The outgoing traffic from a proxy de-
scribed in PFS was designed to follow a constant rate rproxy,
whereas the messages received from a cell arrive according
to a Poisson process with a rate of rsource. As a result, the
incoming traffic for the intermediate proxies in TFS does not
conform to a Poisson process (as it did for the proxies in PFS
and continues to do for the “leaf” nodes in TFS). This does
not compromise the privacy guarantees we wish to provide.
However, it does mean that the applicability of our M/G/1
queueing model for determining the buffering-induced delay
at such intermediate proxies becomes questionable. This can
be addressed easily by re-designing the buffering mechanism
in our proxies such that they emit traffic that conforms to a
Poisson process instead of generating the deterministic traf-
fic described in PFS. That said, we note that the estimation
of delay is not a key concern in our current research since our
focus is on providing privacy for relatively delay-tolerant ap-
plications. Therefore, we continue with a proxy design that
generates output traffic deterministically with fixed time-
gaps between messages and use the M/G/1 model as an
approximate representation of a proxy. We evaluate this
approximation empirically below.

We conduct simulations to check the relationship of real
event report delay with the buffer intervals for each level as
well as the traffic arrival rate. The real event report delay
under consideration is an aggregate delay since each message
may go through several proxies, each of which has a buffering
period. In Figure 9(a), we fix the traffic rate arriving at an
illustrative 2-level hierarchy consisting of proxies P1 and P2

(P1 is the only child of P2 and the only source of input traffic
to P2 in this example) to be 1/60 per time unit and observe
the change of delay introduced by the buffering at P1 and P2

with different T 1
proxy and T 2

proxy. Clearly, delay increases as



T 1
proxy or T 2

proxy increases. In Figure 9(b), we fix T 1
proxy = 5

time units and present the change of delay with the traffic
arrival rate, with the results showing that delay decreases as
the mean arrival rate decreases.

4.3 Security Analysis

Theorem 2. TFS has the property of event source un-
observability.

The correctness of this theorem can be proved based on
the similar arguments we used to prove Theorem 1. We omit
the details due to space limit.

5. PRACTICAL CONSIDERATIONS
In this section, we address two key sets of issues that must

be addressed for effective realization and deployment of the
privacy-preserving schemes developed in this paper.

5.1 System Parameters
Choosing appropriate values for the source traffic gener-

ation rate and the buffering intervals is very important to
balance privacy, delay, and message overhead according to
the needs of our applications. We notice that under the
purpose of achieving event source unobservability, delay and
overhead are actually tightly related to each other. How to
choose parameters depends on the relative criticality of these
two requirements in our application.

The first parameter to be decided is the source traffic rate
(consisting of real and dummy messages) rsource. If the
dummy traffic rate is too high, it will unnecessarily cause
high message overhead; if it is too low, real event messages
will experience high transmission latency at the sources. It
is desirable to have this rate as close as possible to the av-
erage real event message rate. We believe that in practice it
is not difficult to determine an appropriate rsource based on
historical information about event generation at the sources.

The more interesting issue concerns the buffering inter-
val Tproxy employed by the proxies in PFS (or buffering
intervals, one per level, in TFS; we conduct our discus-
sion in the context of PFS but the ideas extend to TFS as
well). Since Tproxy determines the rate at which messages
leave a proxy, we need to ensure that it is chosen such that
the this departure rate exceeds the aggregate rate at which
real messages arrive at the proxy. Otherwise, real event
messages may be dropped at proxies. That is, we require
∀P , agg(λreal

P ) < 1

Tproxy

. This gives us,

1

Tproxy

> aggP(λreal
P )

The choice of Tproxy concerns balancing the trade-off among
the following opposing trends. Picking a small Tproxy re-
duces the probability of messages being dropped due to the
finite buffer at a proxy overflowing. Also, smaller values of
Tproxy result in smaller values of additional delay introduced
by the buffering mechanism at a proxy. On the other hand,
picking a large Tproxy reduces the overall traffic by gener-
ating fewer dummy messages at the proxies. The choice of
Tproxy will depend on the relative criticality of these oppos-
ing requirements. As already discussed, our queuing model
serves as a reasonable predictor of the delay caused by the
choice of a particular Tproxy. Also, given Tproxy and other

relevant parameters, we may easily calculate the communi-
cation cost cost defined in Formula 3. Thus, we may adjust
Tproxy in generating acceptable delay and communication
cost.

5.2 Role Shifting among Proxy Nodes
The proxy nodes do more work than other sensor nodes:

(i) reception and filtering of dummy messages, (ii) decryp-
tion /re-encryption of real event messages, and (iii) buffer-
ing and forwarding of real event messages. Therefore, proxy
nodes drain their energy resources faster than normal nodes.
To prolong the lifetime of the network, after a certain time
period, new proxies may be selected to replace old ones.
Cell head may choose another sensor node in the same cell
to act as proxy, i.e., proxy’s cell-based position does not
change. Another choice is to rotate the proxies’ positions
in the network, determined by BS. The new proxy notifi-
cation message that includes the map of new proxies could
be broadcasted to the entire network. In this case we need
to deal with the issue of hand-off. After a shift, real event
messages may stay in the buffers of some old proxies. A rea-
sonable solution is to have the old proxies behave like regular
nodes and forward all the real event messages to their closest
new proxies.

5.3 Insider Attacks
Although we did not consider sensor node compromises in

our attack model of Section 2.2, we notice that our schemes
are robust to this kind of insider attacks, due to the fol-
lowing reasons. Compromised source sensors do not know
which packets will be dropped by proxies and compromised
forwarding sensors do not have appropriate decryption keys.
Also, the injected false packets from these sensors to launch
denial of service attack will be dropped by proxies. There-
fore, these compromised sensors could not do much to break
our scheme. Compromised proxy sensors may be a problem
because they know which packets are from real sources, but
this kind of sensor network privacy related node compro-
mises have been discussed in our previous work [27].

6. PERFORMANCE EVALUATION
In this section, we use simulations to compare the perfor-

mance of PFS and TFS schemes with the baseline scheme
(i.e., a scheme without proxies, in which every sensors send
either real or bogus messages following a certain interval,
as described in Introduction). After that, implementation
results are presented.

6.1 Simulation Setup
The simulation is based on GloMoSim [2]. In the simula-

tion, 625 sensor nodes are deployed in a 1000m×1000m area.
For each sensor node, the transmission range is 50m.The BS
is located at the center of the field. Five cells (sources) are
randomly selected to generate real event messages and other
cells generate bogus messages, with intervals following expo-
nential distributions. For real event generation, we consider
two cases: a heavy-traffic case and a light-traffic case, with
10s and 400s as the mean of inter-message intervals respec-
tively, to simulate various situations that possibly happen.
For example, if the animal stays still for rest, the real event
generation rate from detection sensor may be low; Other-
wise, if the animal moves fast, then the real event message
generation rate will be adjusted to be higher. In addition,
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Figure 10: Performance under different bogus message generation rate (heavy-rate real events).
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Figure 11: Performance under different bogus message generation rate (light-rate real events).

the mean of dummy traffic varies from 1s to 200s. The buffer
interval Tproxy is set to 5s, and the buffer size is 10 packets.
For TFS, we set the tree level as two.

During our evaluation, we use three metrics: message
overhead, packet delivery ratio, and delay. Message over-
head is defined as the product of total number of messages
and number of hops they traversed. Packet delivery ratio is
the percentage of real event messages that successfully reach
the BS. Delay is the time difference between the time when
a real event message is generated and when it reaches the
BS.

6.2 Simulation Results
Figure 10 and Figure 11 show the impact of different bogus

message generation rate (in terms of mean of bogus message
intervals) to the message overhead, the packet delivery ratio
and the delay. They correspond to the cases of heavy-rate
real events and light-rate real events, respectively.

From Figure 10(a) and Figure 11(a), we can see that in
all three schemes the message overhead increases when the
bogus message generation rate increases (as the means de-
crease in the x-axis of these figures). However, the message
overhead of PFS and TFS increases much slower compared
to the baseline scheme. Among them, TFS incurs the over-
head below 1/10 that of the baseline scheme, and is hence
the most bandwidth-efficient.

Figure 10(b) and Figure 11(b) show that packet delivery
ratio decreases when the bogus message generating rate in-
creases. This is because the chance of MAC layer collision
increases with dummy traffic rate. Since we did not run any
end-to-end reliable protocol, some messages including the

real event messages, may be lost. (Indeed, end-to-end relia-
bility is likely to make the situation worse.) The figures also
show that the packet delivery ratio of the baseline scheme
is very low (less than 20%) when the bogus message gener-
ating rate is high, but both PFS and TFS have the delivery
ratio close to 100%.

Figure 10(c) and Figure 11(c) indicate, without much sur-
prise, that the delay of PFS and TFS is normally much
higher than that of the baseline scheme. The delay of TFS
is about twice of PFS because here the TFS tree is two-level.
We note in some cases, as shown in Figure 11(c), when the
network traffic becomes very heavy (mean of bogus messages
is 1s), the delay of PFS is actually lower than that of the
baseline scheme due to high collision in the baseline scheme.

In summary, both PFS and TFS are good choices because
of high packet delivery ratio and low message overhead,
whereas the baseline scheme normally incurs low delay.

6.3 Prototype Implementation
To study the practicality of our schemes, we implement

a prototype of our PFS scheme on top of TinyOS [4] for
Mica2 motes. Since a mote has only 4KB RAM space, it
is not always possible to buffer all the real messages. To
avoid message dropping in the case of burst events, in our
implementation overflowed packets are cached in the 512-
KB flash memory, which is the event logging space available
to Mica2 motes. Whenever the buffer has spare space, a
cached message is moved to the end of the buffer immedi-
ately. An outside observer would not see the caching and
moving operation inside a mote.

Our code consumes 13.7KB (out of 128KB) in the program



memory and 399B (out of 4KB) in the data memory. We
test the queuing behavior of a mote under various message
arrival rates, and find the results agree with what we may
get through queuing analysis and simulations.

7. RELATED WORK
Since Chaum’s seminal work in 1981 [8], so far hundreds

of papers [5] have been concentrated on building, analyzing,
and attacking anonymous communication systems. Due to
space limit, we can only discuss those most relevant ones in
both wired networks and wireless networks.

7.1 Anonymous Communications in Wired Net-
works

The work that is most relevant to ours is mix and mix
cascade [8]. Mix is a node that hides the correspondences
between its input messages and its output messages in a
cryptographically strong way. To achieve this goal, a mix
changes the appearance by encryption and padding. It also
changes the flow of messages by collecting multiple messages,
reordering them, and then flushing them in a batch, ensuring
the timing of messages does not leak any linking information.
Many mix-based systems have been designed later, such as
web mixes [7], Mixmaster [23] and Stop-and-Go mix [16].
Onion routing [12] is the equivalent of mix networks but in
the context of circuit-based routing.

In our schemes, a proxy node is similar to a traditional mix
in that it changes the appearance (by decryption/reencryption)
and flow (by delaying) of real event messages. It differs from
a traditional mix in that (1) it does not perform message re-
ordering, that is, real event messages are forwarded in a
first-come-first-out basis; (2) it has only one fixed output
link; and (3) it drops some input messages.

7.2 Anonymous Communications in Wireless
Networks

Recently several on-demand protocols have been proposed
for anonymous routing in mobile ad hoc networks, including
ANODR [18], ASR [32], and MASK [31]. They use tech-
niques such as pseudonym and broadcast, and most of them
are based on public key cryptography. Moreover, they are
not designed for the global, passive, and external adversary
model and nor provide unobservability. In our schemes, no
on-demand routing is necessary because every sensor knows
where to forward its messages.

In the context of sensor networks, techniques [9] for hid-
ing the base station (message destination) from an external
global adversary are studied. In their schemes, every sensor
node is a mix and also transmits at a constant rate. This
scheme however is expensive for sensor networks. In [24, 14],
a random walk based phantom flooding scheme is proposed
to defend against an external adversary who attempts to
trace back to the data source in a sensor network where sen-
sor nodes report sensing data to a fixed base station. A more
recent work [30] demonstrates an example attack against the
flooding method used in [24, 14] and proposes a new ran-
dom walk algorithm. In [13], a path confusion algorithm is
proposed to increase source location anonymity. Note that
these schemes do not provide unobservability and only work
for a local adversary model.

Identifying a fundamental tradeoff between performance
and privacy, [28] proposed a notion of statistically strong

source anonymity for the first time. Also, a scheme named
FitProbRate was devised to implement this interesting pri-
vacy property for sensor networks, in which real event mes-
sage transmission latency is reduced through statistical al-
gorithms. Clearly, this work is complementary to ours and
they can be seamlessly integrated to provide both low la-
tency and low communication overhead. In [22], also under
the global attacker model, two schemes are proposed. The
first one is a periodic collection scheme that could be ap-
plied in situations when a certain degree of message over-
head and message delivery latency could be tolerated, be-
cause all sensors send messages at a low rate; the second one
is a k-anonymity like source-simulation scheme, where only
k− 1 fake sources simulate the mobility pattern of a mobile
real source, so that the communication overhead could be
reduced at the cost of sacrificing some privacy.

8. CONCLUSION
In this paper, we solve the optimal proxy placement prob-

lem by using local search heuristics and propose a Proxy-
based Filtering Scheme (PFS) and a Tree-based Filtering
Scheme (TFS), which are simple yet efficient event source
unobservability preserving solutions for sensor networks. The
two methods work together, so that we can maximally re-
duce the network traffic while increasing the delivery ratio
without sacrificing privacy. Performance evaluation demon-
strates that our schemes can largely improve the system per-
formance compared with a baseline scheme.

As our future work, we will investigate more on the TFS
scheme, for example, how to further optimize buffer time
and size for each proxy level. Other attack models such as
local and/or insider attacks are also of interest to us.
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MIXes: A system for anonymous and unobservable
Internet access. In Proceedings of Designing Privacy
Enhancing Technologies: Workshop on Design Issues
in Anonymity and Unobservability, 2000.

[8] D. Chaum. Untraceable electronic mail, return
address, and digital pseudonyms. Communications of
the ACM, 24(2):84–88, 1981.

[9] J. Deng, R. Han, and S. Mishra. Intrusion tolerance
and anti-traffic analysis strategies for wireless sensor
networks. International Conference on Dependable
Systems and Networks (DSN’04), June 2004.

[10] C. Dı́az and B. Preneel. Taxonomy of mixes and
dummy traffic. In Proceedings of I-NetSec04: 3rd



Working Conference on Privacy and Anonymity in
Networked and Distributed Systems, 2004.

[11] S. Fischer-Hubner. Privacy Enhancing Technologies,
volume 1958. Springer Berlin Heidelberg, 2001.

[12] D. M. Goldschlag, M. G. Reed, and P. F. Syverson.
Hiding Routing Information. In Proceedings of
Information Hiding: First International Workshop,
1996.

[13] B. Hoh and M. Gruteser. Protecting location privacy
through path confusion. Securecomm, 2005.

[14] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk.
Enhancing source-location privacy in sensor network
routing. In ICDCS ’05, pages 599–608, 2005.

[15] B. Karp and H. T. Kung. Gpsr: greedy perimeter
stateless routing for wireless networks. In MobiCom
’00: Proceedings of the 6th annual international
conference on Mobile computing and networking, pages
243–254, 2000.

[16] D. Kesdogan, J. Egner, and R. Büschkes. Stop-and-go
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