
Towards Provably-Secure Scalable Anonymous Broadcast

Mahdi Zamani
University of New Mexico

Albuquerque, NM
zamani@cs.unm.edu

Jared Saia
University of New Mexico

Albuquerque, NM
saia@cs.unm.edu

Mahnush Movahedi
University of New Mexico

Albuquerque, NM
movahedi@cs.unm.edu

Joud Khoury
Raytheon BBN Technologies

Cambridge, MA
jkhoury@bbn.com

Abstract

We devise a scalable and provably-secure protocol
for fully-anonymous broadcast in large-scale networks.
Similar to the dining cryptographers networks (DC-
NETS), our algorithm uses secure multi-party computa-
tion (MPC) to ensure anonymity. However, we address
the weaknesses of DC-NETS, which are poor scalability
and vulnerability to jamming attacks. When compared
to the state-of-the-art, our protocol reduces the total bit
complexity from O(n2) to Õ(n) per anonymous message
sent in a network of size n; total latency increases from
O(1) to polylog(n). We assume up to a one third fraction
of the parties is controlled by a static Byzantine adver-
sary. We further assume that this adversary is compu-
tationally unbounded, and thus make no cryptographic
hardness assumptions.

1 Introduction

Anonymous communication allows individuals to com-
municate with each other without fear of surveillance.
An anonymity system attempts to conceal the relation
between messages and their intended recipients, be-
tween messages and their actual senders, or both (full
anonymity).

Today, political and commercial entities are increas-
ingly engaging in sophisticated cyber-warfare to damage,
disrupt, or censor information content [11]. In design-
ing anonymity systems, there is a need to ensure relia-
bility even against a powerful adversary. In this paper,
we consider a Byzantine adversary that controls up to a
certain fraction of parties in the network. The controlled
parties can launch both passive (e.g. eavesdropping, non-
participation) and active attacks (e.g. jamming, message
dropping, corruption, and forging).

Two widely-accepted architectures for providing
anonymity against such an adversary are Mix networks
(MIX-NETS) and Dining Cryptographers networks (DC-

NETS), both of which were originally proposed by
Chaum [1, 2]. MIX-NETS are cryptographic in nature,
require semi-trusted infrastructure nodes, and are known
to be vulnerable to traffic analysis and active attacks [12].

DC-NETS [2, 9, 13, 14], on the other hand, provide
unconditionally-secure anonymous broadcast protocols
among a group of parties without requiring trusted third-
parties. The core idea of DC-NETS is that a protocol
for secure multi-party computation (MPC) can be used to
perform sender and receiver anonymous broadcast. For
example, if party pi wants to broadcast a message mi
anonymously, then all other parties participate in a se-
cure multi-party sum with input zero, while party pi par-
ticipates with input mi. All parties learn the sum, which
is mi while all inputs remain private. This ensures that no
party can trace the output message mi to its input, keep-
ing pi anonymous.

Although DC-NETS are provably-secure against traf-
fic analysis, they face several challenges. First, a reser-
vation mechanism is required to schedule which party
is broadcasting without compromising the anonymity of
the sender. Second, DC-NETS are susceptible to colli-
sions, which degrade throughput. A jamming adversary
may even use collisions to render the channel useless by
continuously transmitting in every round. Third, typical
DC-NETS are not scalable given that the bit complexity
required to anonymously broadcast a single bit within a
group of size n is Ω(n2).

State-of-the-art approaches that address some of these
challenges include [4, 9, 13]. The majority of these meth-
ods are cryptographic in nature, and scale poorly with
network size, rendering them impractical for large net-
works. We are not aware of any unconditionally-secure
anonymous protocol that scales better than O(n2) bits per
anonymous bit sent.

In this paper, we address the scalability and jamming
limitations of DC-NETS. We do so using the recent scal-
able MPC algorithm of [5]. Our jamming-resistant pro-
tocol provides full anonymity at a total bit complexity

1



of Õ(n) per anonymous message1 and a total latency of
polylog(n).

Our protocol is provably-secure as it is based on a for-
mal security framework, which follows from the secu-
rity of secure multi-party computation. In particular, our
protocol is not vulnerable to end-to-end traffic analysis
attacks common to circuit-based approaches like Tor [7].
We also provide provable anonymity against a priori
knowledge that an adversary might have regarding the
potential communicating parties, another property that
Tor fails to provide2. Moreover, unlike Tor, which relies
on centralized path setup servers, our protocol is fully-
decentralized.

Our result is motivated by a vision of creating peer-to-
peer versions of microblogging services with large num-
ber of users such as Twitter, but with provable anonymity
guarantees. In Twitter, users can tolerate a higher mes-
saging latency when compared to interactive web brows-
ing applications. Therefore, trading-off latency for band-
width cost and load-balancing is a promising goal for
such applications.

2 Model and Problem Statement

We assume a network of n parties whose identities are
common knowledge3. We assume there is a private
and authenticated communication channel between every
pair of parties and the communication is synchronous.
Moreover, our protocol does not require the presence of
any trusted third-party and we do not assume the exis-
tence of a reliable broadcast channel.

We assume t < (1/3−ε)n of the parties are controlled
by a Byzantine adversary, for some positive constant ε .
The adversary is actively trying to prevent the protocol
from succeeding by attacking (1) the anonymity of the
senders and receivers, and (2) the integrity of commu-
nications, by attempting to corrupt, forge, or drop mes-
sages. We say that the parties controlled by the adversary
are dishonest and that the remaining parties are honest.
The adversary is computationally unbounded thus, we
make no cryptographic hardness assumptions. We also
assume that the adversary is static meaning that it must
select the set of dishonest parties at the start of the proto-
col. Finally, we make the standard assumption that the
honest parties strictly follow our protocol, and do not
form coalitions in which information is exchanged.

We say a network is fully-anonymous if it provides
both sender and receiver anonymity. A protocol is sender
(receiver) anonymous if the adversary is unable to dis-
tinguish between any of the honest parties as the sender
(receiver) of a message4. More formally, a protocol is
sender (receiver) anonymous if conditioned on all mes-
sages and information that the adversary gathers from all
dishonest parties, the probability of an honest party be-

ing the actual sender (receiver) of a message is at most
1/(n− t).

In this paper, we design a fully-anonymous and scal-
able anonymity system. We assume all participating par-
ties are publicly known, i.e. we are not trying to hide the
participants’ identities or their locations.

Note on the synchrony assumption The synchrony as-
sumption in our model is due to the result of [5]. We
point out that our protocol can also work in a fully-
asynchronous setting using the result of [6]. In that set-
ting, however, we can only guarantee that, conditioned
on all information that is gathered by the adversary, the
probability that a given honest party is the sender of a
message is at most 1/(n−2t) instead of 1/(n− t). Also,
t must be decreased to less than (1/8− ε)n in the asyn-
chronous setting, for some positive constant ε .

3 Our Results

Our main result is as follows.

Theorem 1. Assume there are n parties in a fully-
connected network with private channels, up to t < n/3
of which are controlled by an adversary, and each party
has a constant-size message to broadcast. If all honest
parties follow the protocol of section 6, then with high
probability:

1. Each honest party broadcasts its message to all
other honest parties with probability 1/k, where
k > 1 is a constant,

2. The communication is fully-anonymous,

3. Each party sends Õ(n) bits and performs Õ(n) com-
putations,

4. The latency of the protocol is polylog(n).

4 Further Related Work

Von Ahn et al. [13] develop a cryptographic broadcast
protocol based on DC-NETS that is resistant to a static
Byzantine adversary. A set of n parties with private in-
puts compute and share the sum of their inputs with-
out revealing any parties’ input. The authors introduce
k-anonymity, which means no polynomial-time adver-
sary may distinguish the sender/receiver of a message
from among k honest senders/receivers. To achieve k-
anonymity, they partition the set of parties into groups of
size M = O(k) and execute a multi-party sum protocol
inside each group. The jamming detection mechanism is
weak against an adversary who may waste valuable re-
sources by adaptively filling up to M channels. In the
case where n-anonymity is desired, the protocol requires

2



O(n3) messages to be sent per anonymous message and
the total bit complexity is O(n4). The protocol has la-
tency that is O(1) on average when the number of broad-
casts is large, but which can be O(n) in worst case for a
single broadcast. While we similarly use a secure sum
computation, our protocol is non-cryptographic and han-
dles both jamming detection and correction.

Golle and Juels [9] employ cryptographic proofs of
correctness to solve the jamming problem in DC-NETS
assuming a static Byzantine adversary. The protocol de-
tects jamming with high probability in O(1) rounds, re-
quiring a communication and computation complexity of
O(n2). Their protocol assumes the existence of a reli-
able broadcast and a centralized trusted authority for key
management distribution.

The Verdict protocol of [10] (which is based on Dis-
sent [3]) has a client-server architecture and uses verifi-
able DC-NETS, where participants use public-key cryp-
tography to construct ciphertexts, and knowledge proofs
to detect and exclude jamming parties before disrup-
tion. The protocol assumes the existence of a few highly-
available servers, where at least one server is honest. All
servers must be alive, however, for the protocol to work.
An interesting aspect of Verdict is that it is robust to a
large fraction of Byzantine parties (up to n−2). The pa-
per demonstrates empirically that the system scales well
with the number of clients, when the number of servers
is fixed.

The Xor-trees approach of [8] extends DC-NETS
to achieve O(n) amortized communication complexity,
which is optimal. In this protocol, only a single user is
allowed to send at any one time in a Xor-tree. Hence,
the protocol is subject to performance degradation due to
collisions as the number of users increases. The protocol
assumes the existence of a public-key infrastructure and
a non-Byzantine polynomial-time adversary. The com-
munication complexity of the protocol is O(n2t2) bits in
worst case, where t is the number of dishonest parties.
The latency of the protocol is O(n) in worst case. How-
ever, a sender may broadcast large payloads to amortize
the costs. The amortized latency of the protocol is O(1).

5 Preliminaries

In this section, we define standard terms used throughout
the paper and then move to a recent result used in our
protocol.

Notation An event occurs with high probability, if it oc-
curs with probability at least 1−1/nc, for any c > 0 and
sufficiently large n. We assume all computations occur
over a finite field F.

Secure MPC We make critical use of a scalable pro-

tocol for secure MPC. Assume n parties in a fully-
connected synchronous network who want to jointly
compute any arbitrary function over their inputs while
keeping their inputs private.

Dani et al. [5] describe an algorithm for solving MPC
in this setting. They create groups of parties with loga-
rithmic size called quorums. In each quorum, at least a
2/3 fraction of parties is honest. Let C be a circuit that
computes the desired function, f , over n inputs. For each
gate G in circuit C, a quorum QG is assigned to G. This
quorum is used to compute the output of G. Their pro-
tocol ensures that the parties in QG all learn the sum of
the output of G plus a mask value RG selected uniformly
at random from the field F. Shares of RG are held jointly
by the parties in the quorum, but the value is unknown
to any individual. Thus, no party learns any informa-
tion about the output of G, but the parties together have
enough information to provide the input for computation
of the masked output of the next gate. This procedure is
repeated to compute the values for the gates in the next
layer of the circuit. At the top level of the circuit, the
output of f is computed and is sent down to all parties
through all-to-all communication between the quorums.

Let f be any function over n inputs, and C be a circuit
that computes f . Let m be the number of gates in C and d
be the depth of C. The following theorem gives the main
result of [5].

Theorem 2. [5] There exists a perfectly-secure protocol
that can compute f with high probability while ensuring
each party sends Õ( n+m

n +
√

n) messages and performs
Õ( n+m

n +
√

n) computations. This protocol has total la-
tency O(d +polylog(n)).

6 Our Protocol

Assume n parties p1, ..., pn, where for 1 ≤ i ≤ n, party
pi has a message mi to broadcast to the network anony-
mously. Party pi chooses a number l ∈ [1,r] uniformly at
random and forms a vector Xi = [xi j], where xil = mi and
xi j = 0 (for all 1 ≤ j ≤ r and j 6= l). For some constant
k > 1, each of the r = kn positions in Xi is referred to as
a slot. For simplicity, we assume r is an integer power
of two. The parties then run the MPC algorithm of sec-
tion 5 to compute a function f (X1,X2, ...,Xn) such that
every party learns the vector addition ∑

n
i=1 Xi and none

of the parties can send more than one non-zero input. In
the following, we explain the circuit that computes func-
tion f .

Our Circuit Figure 1 shows the circuit, which con-
sists of two major subcircuits: JAMDETECTOR that de-
tects jamming inputs and ADDER that computes the
component-wise addition. We now describe each part
of the circuit in detail.

3



GI GI GI

GS GS GS...

...

x 11
x 12 x 1r

p1

ADDER

JAMDETECTOR

X 1 = [x 1j ], 0 < j   r X 2 = [x 2j ], 0 < j   r X n = [x nj ], 0 < j   r

JAMDETECTOR

GI GI GI

GS GS GS...

...

x 21
x 22 x 2r

p2

JAMDETECTOR

GI GI GI

GS GS GS...

...

x n1
x n2 x nr

pn

...

Figure 1: Our circuit for n parties showing JAMDETECTOR and ADDER subcirciuts as black-boxes.

• Input gates: In Figure 1, gates labeled GI are
called input gates and compute the identity function
GI(xi j) = xi j. Input gates are necessary for ensuring
consistency among all inputs a party sends during the
protocol execution.

• Jam detector: Each party is associated with exactly
one JAMDETECTOR subcircuit. The subcircuit has r
inputs and r outputs: all outputs are set to zero if no
jamming is detected for the corresponding party oth-
erwise all outputs are set to a non-zero value. Fig-
ure 2 depicts a circuit for n = 2 and r = 4 showing the
subcircuit in detail. Each JAMDETECTOR consists of
three types of gates, which are defined in the following
on the field F:

G1(y) =
{

0, if y = 0

1 otherwise

G2(y1,y2) =

 0, if y1 + y2 = 0

1, if y1 + y2 = 1

2 otherwise

G3(y) =
{

0, if y = 0,1
−1 otherwise

Each JAMDETECTOR contains a perfect binary tree
consisting of only G2 gates over r leaf nodes, consist-
ing of only G2 gates. This tree is connected from its
root gate to an inverted perfect binary tree of only G3
gates over r/2 leaf nodes, consisting of only G3 gates.

• Selector gates: Gates labeled GS in Figure 1 and Fig-
ure 2 are called selector gates. Each of these gates

acts like a selector function: if the first input (which
is an output of a JAMDETECTOR subcircuit) is zero,
it simply outputs the second input otherwise it outputs
zero. The selector gate is defined as follows:

GS(y1,y2) =

{
y2, if y1 = 0

0 otherwise

where y1 is the output of corresponding G3 and y2 is
the output of corresponding input gate.

• Adder: There is one ADDER subcircuit, which is a
simple sum circuit and consists of r perfect binary
trees each of which has n leaf nodes. The j-th binary
tree sums up the outputs of all the j-th selector gates
from all parties.

Circuit Computation Using the MPC algorithm de-
scribed in section 5, the inputs of all parties are sent up
the circuit simultaneously. The JAMDETECTOR subcir-
cuit filters out any jamming inputs and sends the rest of
them up to ADDER. The ADDER subcircuit computes
the sum of all non-jamming inputs and finally, the result
is sent down to every party via the output propagation
algorithm described in [5]. The MPC algorithm ensures
that (1) the output of the circuit is computed correctly
and is reliably sent to all parties; and (2) no party learns
any information about the inputs or outputs of interme-
diate gates, except what can be learned from their own
input and the final output of the circuit.

4



JA
M

D
E

T
E

C
T

O
R

+ + + +

ADDER 

G1 G1

GI IG

G1 G1

G2

IG IG

G2

G3

G3

GS

G3

GSGS GS

G2

X 2 = [x 2j ], 0 < j   4

x 21
x 22 x 23 x 24

p2

G1 G1

GI IG

G1 G1

G2

IG IG

G2

G3

G3

GS

G3

GSGS GS

G2

X 1 = [x 1j ], 0 < j   4

x 11
x 12 x 13 x 14

p1

Figure 2: Our circuit for n = 2 and r = 4. The figure shows the JAMDETECTOR subcircuit in detail.

7 Analysis

In this section, we prove Theorem 1. As shown in the
proof of Theorem 2 in [5], each gate in the circuit outputs
the expected value.

Lemma 1. Consider a JAMDETECTOR subcircuit, r in-
put gates (GI), and r selector gates (GS) associated with
party pi (see Figure 1). During the computation of the
circuit, at most one of the selector gates, say G∗S, out-
puts a non-zero value. If pi is honest, then G∗S is chosen
uniformly at random from the r selector gates.

Proof. Assume pi has a message mi to broadcast. First,
consider the case where pi is honest. pi chooses an input
gate uniformly at random and sends mi to that gate and
sends 0 to all other input gates. Hence, at most one G1
gate outputs 1 and the rest output 0. Thus, all G2 gates
output 0 or 1, and consequently all G3 gates output 0. Fi-
nally, the output of all Gs gates is the same as the output
of the corresponding input gate. Hence, at most one Gs
gate, say G∗S, outputs a non-zero value. Obviously, G∗S is
chosen uniformly at random because the corresponding
input gate is chosen uniformly at random.

Now, consider the case where pi is dishonest and sends
non-zero values to more than one of his input gates (this

corresponds to a jamming attack). In this case, more than
one G1 outputs 1 and since the sum of them is greater
than one, all G3 gates output −1. Therefore, all Gs gates
output 0.

In the protocol of section 6, we explained that each
party selects one of the r slots uniformly at random. Even
if all parties are honest (i.e. no jamming is occurring),
collisions are always possible meaning that one or more
parties may choose the same slot for their non-zero mes-
sage. Unfortunately, there is no efficient non-interactive
method that guarantees all parties select distinct slots.
Hence, for simplicity, we ensure that the number of slots
is large enough so that the probability of collision re-
mains small. The following lemma gives an upper-bound
on the probability of collisions.

Lemma 2. If r = kn, where r is the number of slots and
k > 1 is a constant, then the probability of collision for
one party is less than 1/k.

Proof. By Lemma 1, we can ensure that each party sends
his input to at most one slot, i.e. jamming has already
been prevented. Let p be an arbitrary honest party. The
probability that another party chooses exactly the same
slot that p chooses is 1/r. So, the probability of collision
for p is at most (n−1)/r. Since r = kn, the probability of

5



collision is at most (n−1)/kn < 1/k. As in [13], in most
cases we can set r = 2n, which makes the probability of
collision for a party less than 1/2.

Lemma 3. Our protocol is fully-anonymous and it en-
sures that for each honest party pi, who sends message
mi, all honest parties learn mi with probability 1−1/k.

Proof. Theorem 2 guarantees that the adversary only
learns the set of outputs and the corresponding slots be-
sides his own input. The input slots were chosen inde-
pendently and uniformly at randomly by each party. As
proved in Lemma 1, every m j sent by an honest party p j
(1 ≤ j ≤ n) appears in at most one of the corresponding
selector gates uniformly at random and all other selector
gates output 0. Since the ADDER subcircuit keeps the
ordering of slots, the output slots corresponding to hon-
est parties are also chosen uniformly at random and thus,
give the adversary no extra information. Therefore, con-
ditioned on all information that the adversary can learn
during the protocol, the probability that mi is sent by any
honest party p j (1≤ j ≤ n) is 1/(n− t). This means that
the communication is sender-anonymous.

Theorem 2 guarantees that all honest parties learn
every output of the circuit with high probability, one
of which is mi. This shows that the communication
is receiver-anonymous and thus, the protocol is fully-
anonymous. Moreover, based on Lemma 2, the prob-
ability that the protocol fails to deliver mi is less than
1/k.

Lemma 4. The circuit constructed in section 6 has depth
O(logn) and O(nr) gates, where r is the number of slots.

Proof. In the circuit of Figure 1, for each party a subtree
of depth 2logr+3 consisting of 5r−2 gates is required
ignoring the ADDER circuit, which consists of r binary
trees each with n leaves. Each tree has depth logn+ 1
and consists of 2n−1 gates so the ADDER subcircuit has
(2n− 1)r gates. Therefore, the total number of gates in
a circuit for n parties is 7nr− 2n− r and the circuit has
depth 2logr+ logn+4.

Lemma 5. If all honest parties follow our protocol, then
with high probability, the protocol sends Õ(n) bits and
performs Õ(n) computations for sending one anonymous
bit. The latency of the protocol is polylog(n).

Proof. The MPC protocol of [5] requires each party to
send Õ( n+m

n +
√

n) bits and perform Õ( n+m
n +

√
n) com-

putations to compute any arbitrary function f , where m
is the number of gates in the circuit for computing f .
However, unlike [5] that propagates only one message
(the result of computation) to every party at the output
propagation phase, our protocol transmits n messages
at this phase. Therefore, it requires each party to send

Õ( n2+m
n +

√
n) bits. From Lemma 4, we have m = O(n2)

gates so each party sends Õ(n +
√

n) = Õ(n) bits for
sending n anonymous bits. Alternatively, the protocol
sends Õ(n) bits for sending one anonymous bit. With
a similar argument, the protocol requires each party to
perform Õ(n) computations.

As Theorem 2 shows, the MPC algorithm takes O(d+
polylog(n)) rounds to compute any arbitrary circuit with
depth d, where n is the number of parties. Lemma 4
shows that the circuit of section 6 for n parties has depth
O(logn), since r = O(n). Therefore, the protocol takes
polylog(n) rounds to send an anonymous bit.

8 Conclusion and Open Problems

We described a Byzantine-resistant protocol for fully-
anonymous broadcast in large-scale networks that has
a communication complexity of Õ(n) per anonymous
bit and a polylogarithmic latency. To the best of our
knowledge, this is the first result that ensures provable
anonymity against an unbounded adversary that sends
asymptotically less than O(n2) bits per anonymous bit.

Although the Õ(n) message complexity of our proto-
col scales very well comparing to the state-of-the-art, the
actual bandwidth cost is still very high. This is mainly
due to the large constants in the communication com-
plexity of the scalable MPC algorithm and the large num-
ber of gates in our circuit. It may be possible to decrease
the message cost significantly in practice by using thresh-
old cryptography to speed up Byzantine agreement [15],
which is used repeatedly in the MPC algorithm for sim-
ulating a reliable broadcast channel.

One aspect of our DC-NET-based model is that the
adversary can only try to corrupt the protocol by actively
jamming the channels, which makes it possible to de-
tect dishonest parties. We are interested in the average
cost of our protocol when multiple broadcasts occur and
thus, it may be possible to blacklist parties that exhibit
adversarial behavior. We hope to create an algorithm that
achieves amortized resource costs per anonymous mes-
sage sent that is significantly better than our algorithm
for a single-shot communication.

Our work (and most previous work) assumes the iden-
tities of parties is a common knowledge. This does not
conform, for example, with the fully-distributed nature
of peer-to-peer systems. We are interested to know if we
can do better in this respect and still retain efficiency and
provable security.

References
[1] CHAUM, D. Untraceable electronic mail, return addresses, and

digital pseudonyms. Commun. ACM 24, 2 (Feb. 1981), 84–90.

6



[2] CHAUM, D. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of Cryptology 1
(1988), 65–75. 10.1007/BF00206326.

[3] CORRIGAN-GIBBS, H., AND FORD, B. Dissent: accountable
anonymous group messaging. In Proceedings of the 17th ACM
conference on Computer and Communications Security (New
York, NY, USA, 2010), CCS’10, ACM, pp. 340–350.

[4] CORRIGAN-GIBBS, H., WOLINSKY, D. I., AND FORD, B. Din-
ing in the Sunshine: Verifiable Anonymous Communication with
Verdict. ArXiv e-prints (Sept. 2012).

[5] DANI, V., KING, V., MOVAHEDI, M., AND SAIA, J. Brief an-
nouncement: breaking the o(nm) bit barrier, secure multiparty
computation with a static adversary. In Proceedings of the 2012
ACM symposium on Principles of distributed computing (New
York, NY, USA, 2012), PODC ’12, ACM, pp. 227–228. Full
version available at http://arxiv.org/abs/1203.0289.

[6] DANI, V., KING, V., MOVAHEDI, M., AND SAIA, J. Quo-
rums quicken queries: Efficient asynchronous secure multiparty
computation, 2013. Available at http://cs.unm.edu/~saia/
papers/mpc-asynch.pdf.

[7] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
the second-generation onion router. In Proceedings of the 13th
USENIX Security Symposium - Volume 13 (Berkeley, CA, USA,
2004), SSYM’04, USENIX Association, pp. 21–21.

[8] DOLEV, S., AND OSTROBSKY, R. Xor-trees for efficient anony-
mous multicast and reception. ACM Trans. Inf. Syst. Secur. 3, 2
(May 2000), 63–84.

[9] GOLLE, P., AND JUELS, A. Dining cryptographers revisited. In
Proceedings of Eurocrypt 2004 (May 2004).

[10] HENRY CORRIGAN-GIBBS, D. I. W., AND FORD, B. Proac-
tively accountable anonymous messaging in verdict. In Proceed-
ings of the 22nd USENIX Security Symposium (2013).

[11] KREPINEVICH, A. F. Cyber warfare: A nuclear option?, 2012.
Center for Strategic and Budgetary Assessments, Washington,
DC, USA, 2012.

[12] PFITZMANN, A., AND WAIDNER, M. Networks without user
observability design options. In Proc. of a workshop on the the-
ory and application of cryptographic techniques on Advances
in cryptology—EUROCRYPT ’85 (New York, NY, USA, 1986),
Springer-Verlag New York, Inc., pp. 245–253.

[13] VON AHN, L., BORTZ, A., AND HOPPER, N. J. k-anonymous
message transmission. In Proceedings of the 10th ACM confer-
ence on Computer and communications security (New York, NY,
USA, 2003), CCS ’03, ACM, pp. 122–130.

[14] WAIDNER, M., AND PFITZMANN, B. The dining cryptographers
in the disco: unconditional sender and recipient untraceability
with computationally secure serviceability. In Proceedings of the
workshop on the theory and application of cryptographic tech-
niques on Advances in cryptology (New York, NY, USA, 1990),
EUROCRYPT ’89, Springer-Verlag New York, Inc., pp. 690–.

[15] YOUNG, M., KATE, A., GOLDBERG, I., AND KARSTEN, M.
Practical robust communication in dhts tolerating a byzantine ad-
versary. In Proceedings of the 2010 IEEE 30th International
Conference on Distributed Computing Systems (Washington, DC,
USA, 2010), ICDCS ’10, IEEE Computer Society, pp. 263–272.

Notes
1The symbol Õ, is used as a variant of the big-O notation that ig-
nores logarithmic factors. Thus, f (n) = Õ(g(n)) means f (n) =
O(g(n) logk g(n)) for some k.

2For example, the adversary might know beforehand that some group
of dissidents are likely to be communicating and could redirect all its
resources to prove this.

3This is required only because of the quorum-building method we use in
our scheme as a black-box. This means that our algorithm can be used
without such common knowledge if also the quorum-building method
can work without that knowledge.

4Obviously, delivering a message to all parties guarantees receiver
anonymity [12].

7


