
Exploring the Potential Benefits of Expanded Rate Limiting
in Tor: Slow and Steady Wins the Race With Tortoise

W. Brad Moore
Georgetown University

Washington, D.C. 20057
wbm@cs.georgetown.edu

Chris Wacek
Georgetown University

Washington, D.C. 20057
cwacek@cs.georgetown.edu

Micah Sherr
Georgetown University

Washington, D.C. 20057
msherr@cs.georgetown.edu

ABSTRACT
Tor is a volunteer-operated network of application-layer relays that
enables users to communicate privately and anonymously. Unfor-
tunately, Tor often exhibits poor performance due to congestion
caused by the unbalanced ratio of clients to available relays, as well
as a disproportionately high consumption of network capacity by a
small fraction of filesharing users.

This paper argues the very counterintuitive notion that slowing
down traffic on Tor will increase the bandwidth capacity of the net-
work and consequently improve the experience of interactive web
users. We introduce Tortoise, a system for rate limiting Tor at its
ingress points. We demonstrate that Tortoise incurs little penalty for
interactive web users, while significantly decreasing the throughput
for filesharers. Our techniques provide incentives to filesharers to
configure their Tor clients to also relay traffic, which in turn im-
proves the network’s overall performance. We present large-scale
emulation results that indicate that interactive users will achieve a
significant speedup if even a small fraction of clients opt to run
relays.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; C.2.0 [Computer-Communication Networks]: General—
Security and Protection; C.2.1 [Network Architecture and De-
sign]: [Distributed Networks]

General Terms
Performance, Anonymity, Security

Keywords
Anonymity, Tor, Performance

1. INTRODUCTION
Anonymity networks such as Tor [9] allow their users to privately

communicate without revealing their identities. These systems are
regularly used to enable private browsing, circumvent censorship

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’11 Dec. 5-9, 2011, Orlando, Florida USA
Copyright 2011 ACM 978-1-4503-0672-0/11/12 ...$10.00.

firewalls, and provide unfettered access to information. In partic-
ular, Tor enables any application that communicates using TCP to
tunnel its connections through the anonymity network.1 This flexi-
bility permits a variety of applications – web browsers, instant mes-
saging clients, file sharing applications, and more – to achieve some
degree of anonymity. Tor does not discriminate against any partic-
ular application, and moreover, its anonymity features aggravate
efforts to distinguish between applications.

A consequence of Tor’s versatility is that the anonymity net-
work’s capacity is disproportionately consumed by a small subset
of users who run high-bandwidth applications. By analyzing the
traffic that exited their exit relay in 2008, McCoy et al. found that
while nearly 97% of observed connections could be classified as in-
teractive (e.g., web browsing), approximately 40% of anonymous
traffic belonged to non-interactive applications [17] such as Bit-
Torrent. By itself, this disproportionate bandwidth utilization is not
problematic: Tor is a general-purpose anonymity network, and file
sharing has many legitimate uses.

Unfortunately, relative to unprotected communication, Tor suf-
fers from high-latency and low-bandwidth. The network’s poor
performance not only negatively impacts the applications that it ser-
vices, it also likely discourages the network’s use as many would-
be users may be unwilling to sacrifice so much performance for
increased privacy. In their performance analysis of Tor, Dingledine
and Murdoch identify BitTorrent as a major cause of Tor’s slow-
ness [10].

A simplistic approach to improving Tor’s performance is to dis-
allow BitTorrent on Tor. However, such a policy arguably runs
counter to Tor’s philosophy and mission as an anti-censorship tech-
nology. Additionally, it is unclear how client applications can be
reliably differentiated (though notably, previous work has shown
that applications can be probabilistically identified by examining
their traffic patterns [13]).

An alternative approach to improving Tor’s performance is to in-
crease the number of relays that forward anonymous traffic [10, 14,
22]. A recent study of the Tor network estimates that the number
of clients outnumbers the number of available relays by a factor
of nearly 67 [15]. Increasing the number of relays diminishes this
imbalance and consequently decreases congestion in the network.

This paper adopts this latter technique and proposes an incentive
scheme to increase the number of relays on the Tor network and
improve the network’s overall performance and capacity. Our so-
lution, which we call Tortoise, takes the counterintuitive and seem-
1Applying Tor without carefully considering the application’s
protocol and communication characteristics risks exposing the
sender’s identity [4, 7]. For example, certain BitTorrent clients an-
notate requests with their senders’ network addresses [4]; similarly,
improperly configured end-hosts may reveal receivers’ identities by
failing to anonymize DNS resolution requests.

ingly contradictory approach that slowing down Tor will help
achieve speedup. In particular, Tortoise imposes strict rate limits
on individual client connections at the network’s ingress points but
does not limit connections originating from Tor relays. By care-
fully tuning these limits, interactive clients such as web browsers
see little effect, while bandwidth-intensive users (for example, file-
sharers) experience a significant decrease in throughput. We ar-
gue that this slowdown provides incentives for filesharers to oper-
ate their own relays through which they can bypass the network’s
rate limiting. We posit that some fraction of filesharers will be-
come sufficiently frustrated to operate their own relays, which will
in turn serve additional traffic and reduce congestion. Moreover,
the savings in bandwidth from rate limiting filesharers and other
high-throughput users who do not run relays can provide additional
network capacity.

Unlike recently proposed incentive and e-cash approaches that
require centralized mints [14] or banks [2, 5], our solution is fully
decentralized, is backwards-compatible with the existing Tor net-
work, and may be deployed incrementally. We demonstrate the
feasibility of Tortoise and investigate its ability to improve the per-
formance of interactive web clients through emulation using Ex-
perimenTor [3], a large-scale network emulator that executes actual
Tor binaries on a virtual network. We show that the performance of
interactive web browsers will significantly increase if just a small
number of clients opt to run their own relays.

Threat Model and Limitations. Importantly, Tortoise is not ro-
bust against determined adversaries who wish to circumvent its rate
limiting through Sybil-style attacks [11]. For example, an attacker
can achieve high throughput by connecting to many (rate limited)
relays and aggregating their bandwidths. Although existing Sybil
defenses may offer some protection, we note that Tortoise does not
worsen the performance of the network (relative to unmodified Tor)
in the presence of such determined attackers. Rather, Tortoise is de-
signed to provide incentives for ordinary users – some of whom de-
sire high throughputs – to also operate as relays. If a small fraction
of such honest users opt to relay Tor traffic, then the network will
improve. More sophisticated high-bandwidth users may evade the
rate limits, but as we discuss below, doing so may be more costly
than behaving correctly and operating a relay.

Additionally, as with other solutions that motivate users to run re-
lays, Tortoise inherently trades off performance for anonymity: op-
erating a relay increases performance, but decreases sender
anonymity since the initiator of high-throughput traffic is likely the
operator of a Tor relay. We discuss the security implications of
using Tortoise in more detail below.

We begin by reviewing the Tor network and describing its current
rate limiting features.

2. BACKGROUND
Tor is a volunteer-operated network of approximately 2,500 ap-

plication-layer routers (also called relays or ORs). The network
provides anonymity by forwarding traffic from clients (also called
proxies or OPs) along a bidirectional anonymous circuit consisting
of Tor routers. To conceal the identities of the communicants, Tor
encrypts messages such that each relay can discern only the iden-
tities of the previous and next hops along the anonymous circuit.
By default, Tor uses three-relay hops, consisting of a guard relay, a
middle relay, and an exit relay.

Increasing the number of relays provides greater anonymity
and performance. The number and configuration of Tor relays de-
termine the network’s performance and anonymity. A large num-
ber of (honest) relays provides strong anonymity since traffic has a

lower likelihood of traversing only malicious relays. (If the guard
and exit relays are malicious and colluding, then the adversary
can identify the sender and receiver of intercepted communica-
tion [19, 32].) In addition, an increase in the number of Tor relays
improves the performance of the network by providing additional
capacity, which in turn decreases congestion.

Ideally, each person who uses Tor would also run a Tor relay,
contributing some bandwidth to the network’s overall capacity. Un-
fortunately, the current ratio of end-clients to relays is estimated
to be 67:1 [15], leading to significant congestion and poor perfor-
mance. This imbalance can be partially explained by the multiple
costs of running a Tor relay: Operating a relay taxes both the host-
ing computer as well as its network connection. In order to provide
a benefit to the network, a router must be continuously online for
weeks before Tor clients will begin to use it. Additionally, when
Tor is configured to operate as an exit router, the operator’s com-
puter may appear to law enforcement officials to be accessing ille-
gal content. Unlike the two other relays that comprise a Tor circuit,
the exit relay directly accesses the server requested by the sender;
if this service serves illegal content, it will appear to the outside
world that the request originated at the exit relay, putting the re-
lay’s operator at substantial risk. There are currently few incentives
to operating a relay, and it is reasonable to assume that most current
Tor relay operators volunteer their computer and network resources
for altruistic reasons.

Rate limiting in Tor. Tor includes rate limiting features that
allow relay operators to configure how much collective bandwidth
they wish to delegate for serving Tor traffic. The existing function-
ality does not currently support per-connection rate limits, although
such features are present in alpha releases. As described below,
Tortoise extends Tor’s rate limiting by throttling clients’ inbound
traffic.

3. DISMISSED: FILESHARER
IDENTIFICATION AND FILTERING

A seemingly plausible and straightforward method of reducing
the strain on the Tor network is to filter filesharing traffic at exit
relays using standard port blocking. In fact, the Tor Project rec-
ommends that users running exit routers block BitTorrent’s default
ports [23]. However, such filtering does little to deter determined
filesharers since users of these services can trivially switch to non-
standard ports.

Alternatively, exit relays could apply more advanced techniques
and perform deep packet inspection (DPI) and/or traffic fingerprint-
ing [13] on the traffic that they forward. Recall that once a user’s
traffic has reached the exit relay, it is no longer protected by any
layers of encryption that were applied by Tor (since the exit relay
must interface with the destination server as if it were the origi-
nal client). Hence, exit relays could examine outgoing traffic and
discard any detected BitTorrent packets.

However, applying DPI and traffic fingerprinting at exit relays
suffers from several shortcomings. First, and perhaps most impor-
tantly, such strategies are antithetical to the goals of the Tor project.
Tor is an anonymity network whose principal purpose is to pro-
vide its users with unfettered Internet access without the fear that
their traffic is being monitored. In order to be effective, the traf-
fic blocking schemes described above would necessarily have to
violate Tor’s underlying philosophy by engineering eavesdropping
into the system’s design. Relatedly, another of Tor’s goals is to
allow its users to access content that would otherwise be unavail-
able to them; actively blocking content is incompatible with this
goal. Additionally, if Tor were to attempt to identify and limit cer-

Client

Filesharing app Tor Proxy (OP)
Tor Relays (ORs)

BitTorrent swarm

Client

Filesharing app BitTorrent swarm
Tor Relays (ORs)

Tor Proxy (OP) &
Relay (OR)

Figure 1: Tortoise’s universal rate limiting. Dashed lines indicate connections that are subject to Tortoise’s universal rate limit. The
shaded circle encompasses relays that comprise the Tor network. Left: Client operates a OP and is subject to the universal rate limit.
Right: Client additionally operates an OR, increasing the size of the Tor network and becoming exempt from the universal rate limit.

tain types of traffic, users generating that traffic could always shape
their communication to resemble a type of traffic not easily discrim-
inated against by Tor (for example, communication that is shaped
like encrypted web traffic). Finally, performing either DPI or fin-
gerprinting techniques imposes added complexity and increases the
relays’ computational costs.

At best, identifying filesharers is an arms race: detection ap-
proaches will likely be followed and countered by obfuscation tech-
niques, ad nauseam. In the next section, we present Tortoise, a uni-
versal rate limiting approach that is applied to all communication,
thereby evading this adversarial arms race.

4. TORTOISE
Tortoise modifies Tor’s already-implemented (but not very uti-

lized) token-bucket system to limit users’ bandwidths at the net-
work’s ingress points. Our goal is to establish a universal rate limit
that imposes a heavy throughput penalty for users who use the net-
work for bulk transfers while not significantly degrading the expe-
rience of users who use the anonymity service for interactive web
browsing.

By itself, a universal rate limit will do little to improve Tor’s
performance. Imposing bandwidth limits on bulk transfer users is
unlikely to reduce their overall effect on the network, since their use
of the Tor network already indicates their willingness to tolerate
slow speeds. For instance, halving their speeds with a universal
rate limit is likely only to double the time the bulk users spend on
the network. In general, merely penalizing bulk transfer users is a
zero-sum game.

An intuitive strategy is to apply a low universal rate limit to pro-
vide incentives to all users (both low- and high-bandwidth clients)
to operate Tor relays. However, many users of the Tor network
connect from totalitarian regimes where Internet access is severely
limited and subject to strict censorship. Requiring these users to
operate relays not only does not add significant capacity to the Tor
network, such a policy may also physically endanger the operators.
Instead, Tortoise is designed to place the burden on users who re-
quire large bandwidths. That is, anyone can access Tor and achieve
bandwidth that is suitable for web browsing. Users who require
greater bandwidths are incentivized to also offer their services as
Tor relays.

Tortoise aims to improve the overall performance of the Tor net-
work not by traffic shaping, but rather by increasing the capac-
ity of the network by encouraging users to run routers. Tortoise
achieves this goal by enforcing the universal rate limit only on Tor
OPs (clients); the connections between Tor ORs (relays) are not im-
pacted by Tortoise and are subject only to relay-specific bandwidth
limits. (As described below, Tortoise requires ORs to meet certain
conditions in order to be exempted from the universal rate limit.)
Hence, clients who also run routers can use their routers as bridges

to the Tor network, bypassing Tortoise’s universal rate limit. We
posit that some bulk transfer users who find their bandwidth on the
Tor network severely limited will be motivated to bypass the band-
width limits by running their own OR.

An illustration of Tortoise’s universal rate limiting is presented
in Figure 1. Initially (Figure 1, Left), a filesharing client tunnels
his traffic through Tor and is subject to Tortoise’s universal rate
limit (indicated in the Figure with dashed lines). To achieve bet-
ter performance, the client then opts to also run a Tor relay (Fig-
ure 1, Right). The new relay increases the size of the Tor net-
work, which consequently decreases congestion and improves the
network’s overall performance.

4.1 Preventing Cheating
High-bandwidth users who wish to evade the universal rate limit

may do so by operating their own relay. However, Tortoise should
ensure that those relays are actually contributing to the performance
of the Tor network in toto. For example, a user could attempt to
game the system by running a relay only when it wants to download
content at high speed, or it may operate a very low-bandwidth relay
that has little effect on the network’s overall capacity.

Tortoise mitigates these “cheats” by relying on status flags main-
tained by the Tor directory servers. To prevent a user from tak-
ing advantage of Tortoise by running a router only at times when
they want increased performance, Tortoise requires that a router be
listed as STABLE in directory servers; connections from all other
routers are subject to the universal rate limit. We note that apply-
ing rate limits to non-STABLE routers will not significantly impact
the performance of the network, since Tor’s default relay selection
strategy biases selection in favor of STABLE relays. In order to ap-
pear as STABLE, a router must have a mean-time-between-failures
greater than that of the median of all other routers [30]. At the time
of this writing, the 50th percentile of Tor routers had an uptime of
approximately four days.

Additionally, to prevent rewarding a user who operates a STA-
BLE relay that offers very little bandwidth to the Tor network, only
relays that are marked as FAST in the directory servers are excluded
from the universal rate limit. FAST routers are defined as those that
offer at least 20KBps or have bandwidths that are in the top 87.5%
of known relays [30]. Tor’s default relay selection strategy also
heavily biases selection towards FAST relays, and hence applying
the universal rate limit to non-FAST relays will not significantly de-
grade the performance of the network.

In summary, relays that are marked as STABLE and FAST are
exempt from the universal rate limit. Currently, these are exactly
the relays that are selected by Tor’s relay selection algorithms, and
consequently, are the relays that forward Tor’s traffic.

4.2 Anonymity Considerations
At first blush, it may appear that Tortoise allows eavesdroppers

to distinguish between encrypted traffic that belongs to a filesharer
and that which belongs to a web client by measuring the monitored
connection’s throughput. However, upon inspection, this tactic will
be less effective than anticipated. While filesharers have the most
to gain by running a router under Tortoise, the benefits are not con-
fined to filesharers alone. The incentive to run a Tor relay applies
to all users who desire faster speeds through Tor, and hence high-
bandwidth traffic may belong to any user who runs a relay.

Admittedly, since the goal in rate limit selection is to avoid ad-
versely affecting web browsing clients (see Section 5.1), it is likely
that Tortoise will more adversely affect filesharers, placing greater
incentives on that population. However, because there are an or-
der of magnitude more web users than file sharers using Tor [17],
distinguishing between web and filesharer traffic remains difficult.
For example, even if the participation rate (i.e., the rate of users
who decide to run routers as a result of Tortoise) is ten times higher
for filesharers than it is for web browsing clients, the number of
web browsing clients that decide to participate will still be three
times that of filesharers.

As with other incentive schemes that reward relay operators with
additional bandwidth [2, 5, 14], Tortoise reduces anonymity by forc-
ing a smaller sender anonymity set – the set of potential senders for
a given anonymous connection. With both standard Tor and Tor-
toise, any Internet-connected device can use the anonymity system,
and hence the sender anonymity set is quite large. However, Tor-
toise’s “differentiated services” (that is, the use of rate limited as
well as non-rate limited traffic classes) permit the attacker to reason
that intercepted high-bandwidth data originates from a node that is
also a router. As more users run relays, the size of the anonymity set
will similarly increase, as will the anonymity offered by Tortoise.
Of course, any reduction in anonymity can be entirely avoided since
a relay operator may always choose to not take advantage of his in-
creased bandwidth.

5. EVALUATION
We evaluate Tortoise using ExperimenTor [3], a large-scale net-

work emulator that uses ModelNet [31] to model a network topol-
ogy. Our ExperimenTor deployment consists of two machines: a
edge node that runs all Tor relays, directory servers, clients, and
web servers, and a core that emulates the actual network. The
edge node has a 12-core 2.8GHz Xeon processor and runs Linux
2.6.35 and Tor version 0.2.1.28. Our default configuration consists
of five authoritative directory servers, 15 relays, 900 clients, and 40
web/file servers. Our setup does not utilize guard relays, all relays
are potential exit relays, and directory servers do not relay traffic.
Tor was extended to include Tortoise’s universal rate limiting ex-
tensions.

The core machine has a 2.8GHz Pentium D processor and runs
FreeBSD 6.3. We assign bandwidth capacities to the Tor relays by
randomly sampling bandwidths that were advertised in the live Tor
network’s directory servers in May 2011. Since Tor’s default relay
selection strategy is biased in favor of relays that offer the most
bandwidth [9], we select from only the highest 300 bandwidths
listed by the Tor directory server in order to achieve speeds that
closely resemble those of the real Tor network. (We note that in
the live Tor network, the first 300 relays advertise 86.5% of the
network’s total capacity.) The core node simulates a topology in
which latencies between all nodes are less than 10ms.

We assign client bandwidths using two classes of client connec-
tions: residential and institutional. Residential connections are

0 500 1000 1500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Average Web Page Sizes

Page size (KB)

C
u

m
u

la
ti
ve

 f
ra

c
ti
o

n

250 750 1250

Top pages
Average of 5 pages

Figure 2: Average page sizes for the top 60 websites as reported
by Alexa.

asymmetric – download bandwidth is greater than upload band-
width (as is the case, for example, with most broadband services).
Institutional connections are those where bandwidth is symmetric.
We assign residential connections to 90% of the clients. The capac-
ity distribution for client connections was selected by cross refer-
encing 2011 country of origin data for Tor clients (gathered by the
Tor Project) with average upload and download speeds for those
countries as measured by NetIndex [21]. For example, since
20% of Tor client connections originate in the United States, we
assign 20% of links the mean U.S. upload and download speeds for
2011. Both residential and institutional clients receive capacities
from this distribution, but clients designated as institutional are as-
signed symmetric connections using the download speed for both
upstream and downstream traffic.

We instantiate two types of Tor users: web clients periodically
request web pages. To model a realistic workload, we determined
the sizes of the frontpages of the top 60 websites as reported by
Alexa [1] (see Figure 2). Sampling from this distribution, web
clients request pages of sizes 106KB, 150KB, 238KB, 496KB, and
992KB, each with equal probability. These values represent the
10th, 30th, 50th, 70th, and 90th percentile of web page sizes, re-
spectively. Additionally, web clients are configured to pause an
average of 11 seconds, the median “think time” between requests
as measured in a study of web browsing behavior [12], and will
take between 9 and 11 minute breaks after 15 minute browsing
sessions. In contrast, bulk clients model high-bandwidth users
and continually download files whose sizes are chosen uniformly
at random from 1MB, 2MB, 3MB, 4MB, and 5MB. Keeping with
the percentages observed by McCoy et al. [17], we select 3% (30)
of our clients to be bulk; the remaining 870 are configured to be
web clients.

We took precautions to ensure that our physical emulation setup
did not introduce any processing or network effects. The edge and
the core machines are connected via a dedicated 1Gbps link; the
total aggregate network throughput did not exceed 1Gbps, and our
experiments are not bound by our ExperimenTor configuration’s
bandwidth or CPU resources.

5.1 Rate Limit Selection
The universal rate limit should be sufficiently large to not sig-

nificantly impact the experience of web users. We can compute a
reasonable minimum rate limit by considering both the amount of
time that users are willing to wait for a web page to be retrieved, as
well as the distribution of web page sizes.

5.2 Effects of Rate Limiting
At the other extreme, the rate limit should not be so high as to

allow high-bandwidth users to consume an unfair share of the net-
work’s resources. That is, the universal rate limit should be chosen
to degrade the performance of high bandwidth users, and conse-
quently provide incentives for them to operate their own relays.

Figure 2 shows the cumulative distribution of the sizes of web
pages from the top 60 Alexa [1] web sites. Reported page sizes in-
clude embedded images and Javascript but exclude Flash and other
content that would not be included in a web page loaded through
Tor. The Figure plots both the front page web sizes as well as the
average of four additional randomly selected pages on each site.

We select our rate limits based on the expected load time of cur-
rent web pages. Using the (somewhat dated) heuristic that users tol-
erate web page load times of eight seconds or less [33], we select
a 200KBps limit, which covers all pages from the Alexa dataset.
Additionally, we also evaluate Tortoise when using a more strin-
gent 100KBps limit, which covers approximately 80% of the top
60 Alexa websites.

Figure 3 shows the effects of rate limiting at 100KBps (left) and
200KBps (right) on web and bulk clients, when no clients opt to
run relays. Web clients are largely unaffected by the rate limit:
even with the more severe 100KBps limit, the mean transfer speed
drops only 15%, from 40KBps to 34KBps. Bulk transfer clients,
on the other hand, are severely affected: even with the less severe
200KBps limit, the mean transfer speed seen by these clients drops
31%, from 70KBps to 49KBps. As we show below, if even a small
percentage of the effected clients is sufficiently motivated to oper-
ate relays, the overall performance and capacity of the network will
improve.

Computational overhead. Tortoise requires that each relay
maintain additional token buckets to perform the added rate lim-
iting. Consequently, Tortoise incurs a computational cost relative
to unmodified Tor. However, as shown in Figure 4, Tortoise’s com-
putational overhead is fairly modest. The Figure plots the CPU
utilization of the edge node that executes all 960 Tor instances.
Although the edge node’s CPU usage is a coarse-grained mea-
sure, comparing the processing cost when using unmodified Tor
and Tortoise provides a useful estimate of the latter’s overhead.
With unmodified Tor, the median CPU utilization on Experimen-
Tor is 24.7%; with Tortoise, the usage increases slightly to 26.4%.

5.3 Performance Improvements
Benefits of adding more relays. We begin by examining the

effects of adding more relays to a Tor network. Figure 6 plots the
cumulative distribution of client bandwidths when no rate limiting
is applied and relays are added to the network. Here, we model
an idealized setting in which clients altruistically decide to become
relays. It is important to note that such clients generally contribute
less to the network than the original 15 ORs since (i) the former are
generally on slower (e.g., consumer broadband) connections than
the dedicated ORs and (ii) as clients, they also use their capacities
for their own purposes.

As expected, the more relays that are added, the greater the band-
with available to nodes on the network. In the base case with 15
ORs (1.7% of all nodes), the mean client bandwidth is 41KBps. To

determine the effect of clients who also opt to become ORs, we
examine two scenarios: in the first case, 10% (2) of bulk trans-
fer clients and 2% (18) of web browsing clients opt to run routers,
adding an additional 20 routers to the network. In the second case,
these percentages double for an additional 40 routers on the net-
work. In the first configuration, the mean bandwidth experienced
by clients increases by 27% to 52KBps. With 40 additional relays,
the mean bandwidth grows by 66% to 68KBps.

Though the results of having client Tor instances also run as re-
lays are (unsurprisingly) positive, it is unlikely that, in practice,
so many clients will suddenly and unselfishly choose to become
routers. The challenge is to motivate clients to also act as relays,
despite the costs involved. Applying the universal rate limit sup-
plies such motivation, as bulk clients witness their average band-
widths decrease by 31% and 30% with respective limits of 200KBps
and 100KBps. (In contrast, web clients incur only 15% and 17%
decreases with the two rate limits.) Given the option of achieving
greater speeds by running relays, we anticipate that at least a small
fraction of bulk (and potentially web) clients will also run ORs.
We investigate the advantages of behaving as both an OP and OR
below.

Benefits to clients that become relays. Operating an OR ex-
empts a client from Tortoise’s universal rate limit. As illustrated
in Figure 5, clients that choose to additionally run as an OR will
experience better bandwidth than those in the same network that
do not. Here, Tortoise utilizes a 100KBps universal rate limit; the
low and high adoption rates correspond to the scenarios described
above in which 10% (2%) and 20% (4%) of bulk (web) clients opt
to run ORs. Although all clients who run ORs experience increased
bandwidth, bulk relays gain the greatest benefit from choosing to
run a relay since they are most affected by the universal rate limit.
Under a 100KBps limit, the mean bandwidth experienced by all Tor
clients who chose to run routers increased by 38% and 78% when
10% and 20% of bulk clients became routers, respectively. Most of
this improvement was realized by the bulk transfer clients.

Benefits of adding more relays with rate limiting. Figure 7
examines the impact of running Tortoise on network performance.
The grey line denotes the average bandwidth seen on a network
running unmodified instances of Tor. The solid black line shows
the bandwidth of a network using Tortoise. If no clients opt to run
as a relay, adopting a 200KBps or 100KBps rate limit will lead to
decreased capacity seen by the network. However, given the moti-
vation to run as a relay (see Figure 5), we argue that at least some
small fraction of clients will decide to additionally operate as ORs.
If only 10% of bulk and 2% of web clients (2.22% of all clients)
elect to run relays, the mean bandwidth increases slightly by 3.1%
and 0.7% with 100KBps and 200KBps limits, respectively. The
addition of another 20 client relays (4.44% of all clients) produces
more significant gains, providing 36% and 31% greater mean band-
widths under the 100KBps and 200KBps rate limits respectively,
than the unmodified network. As more clients choose to become
relays (and hence gain better performance themselves), the network
achieves greater speedups.

Handling increasing capacity. Since the “freed” capacity that
is not being used due to rate limiting may be applied to serve other
clients, a network running Tortoise will be better able to handle
additional clients than a network which uses unmodified Tor. Fig-
ure 8 depicts the change in network capacity when the sizes of both
a Tortoise network and an unmodified Tor network are increased by
20%. (Here, we conservatively assume that no additional nodes run
ORs.) The average bandwidth across the network decreases from
45KBps to 30KBps (35%) for the unmodified network, and from
50KBps to 36KBps (28%) on a network running Tortoise with a

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Effects of 100KBps Rate Limit

Average bandwidth (KBps)

C
u
m

u
la

ti
ve

 f
ra

c
ti
o
n

Web clients (no rate limiting)
Web clients (rate limiting)
Bulk clients (no rate limiting)
Bulk clients (rate limiting)

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Effects of 200KBps Rate Limit

Average bandwidth (KBps)

C
u
m

u
la

ti
ve

 f
ra

c
ti
o
n

Web clients (no rate limiting)
Web clients (rate limiting)
Bulk clients (no rate limiting)
Bulk clients (rate limiting)

Figure 3: The effects of 100KBPs (left) and 200KBps (right) universal rate limits on web and bulk clients.

0 50 100 150

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Aggregate CPU Utilization

Time (minutes)

P
e

rc
e

n
ta

g
e

 C
P

U
 U

s
a

g
e

No Ratelimiting
100KBps Ratelimiting

Figure 4: Aggregate CPU usage of the entire network. The
vertical dotted line represents the approximate time at which
all nodes have joined the network.

100KBps limit. Similarly, with a 200KBps limit, Tortoise’s aver-
age bandwidth is reduced from 57KBps to 40KBps (30%) when
extra clients are added. In other words, the Tortoise-based network
is better able to tolerate a sudden and large increase in (non-relay)
clients; when the number of clients increases by 20%, the percent-
age decreases in performance for Tortoise are 20% and 14% less
than that of regular Tor when 100KBps and 200KBps rate limits
are respectively applied.

Effect of partial participation. To evaluate Tortoise’s efficacy
when not all relays apply the universal rate limit, we simulated a
Tor network in which only 50% of the relays rate limit the clients.
Figure 10 shows the cumulative distribution of bandwidths when 0,
20 (“low client adoption”), and 40 (“high client adoption”) clients
opt to also run relays.

This network’s performance was similar to a network with 100%
Tortoise adoption in cases where significant numbers of clients

chose to run routers: with 20 client routers, this network had a mean
bandwidth of 44KBps, vs. 43KBps for the 100% Tortoise network;
with 40 routers, these numbers were 54KBps and 56KBps, respec-
tively. The only case where a network with 50% Tortoise adoption
showed any significant difference from a 100% Tortoise network
was when no clients chose to run routers, in which case the net-
work with 50% adoption exhibited a mean bandwidth of 42KBps,
while the 100% Tortoise network averaged 35KBps. While the
above data might seem to imply that a network with less than 100%
adoption of Tortoise performs better than one with full adoption, it
is important to note that a network with less than 100% adoption
is less likely to lead to clients choosing to run routers. Figure 9
illustrates the fact that in a network with 50% adoption of Tortoise,
there is less motivation to become a router simply because there is
less difference between speeds achieved by clients running relays
and those not running relays.

5.4 Summary
The above emulation results indicate that Tortoise has the po-

tential to significantly increase Tor’s performance. As highlighted
above, the challenge of our technique is selecting a universal rate
limit that properly motivates clients to operate as relays. If no addi-
tional clients serve as relays, then applying a rate limiting trivially
slows down the network. However, our emulation results suggest
that the addition of even a few relays improves the network’s over-
all performance and capacity, even if the vast majority of clients
are subjected to rate limits. Assuming that at least a small number
of clients are sufficiently motivated to operate as relays, Tortoise’s
performance gains can be felt even with partial use of Tortoise rate
limits. For instance, the mean client bandwidth increased by 6.5%
over standard Tor even in the conservative case when the universal
rate limit was 100KBps, only 50% of the relays applied the rate
limit, and just 2.2% of clients opted to run relays.

6. DISCUSSION AND LIMITATIONS
Tortoise’s relay exemption policy is currently incompatible

with bridges. Tortoise may cause problems for bridges – unlisted
Tor relays that allow users to connect to the Tor network in lo-
cations where the public relays are inaccessible. Although bridges
may forward traffic from multiple clients, Tortoise will subject them

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

0 50 100 150 200 250

0
.2

0
.4

0
.6

0
.8

1
.0

Clients' Benefits of Running a Relay

 (100KBps Rate Limit, Low Adoption Rate)

KBps

C
u

m
u

la
ti
ve

 F
ra

c
ti
o

n

l Tortoise, not running relays

Tortoise, running relays
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

0 50 100 150 200 250

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Clients' Benefits of Running a Relay

 (100KBps Rate Limit, High Adoption Rate)

KBps

C
u

m
u

la
ti
ve

 F
ra

c
ti
o

n

l Tortoise, not running relays

Tortoise, running relays

Figure 5: Bandwidth improvements seen by clients that choose to run routers, in a network running Tortoise. The experiments
represented in the two graphs differ only in the number of clients who choose to run routers.

0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Benefit of Additional Relays

Average bandwidth (KBps)

C
u

m
u

la
ti
ve

 f
ra

c
ti
o

n

15 relays
15 relays + 20 client relays
15 relays + 40 client relays

Figure 6: Average bandwidth seen by all clients in an unmod-
ified network, and unmodified networks with additional client
relays.

to the universal rate limit since the bridges are not listed in Tor di-
rectories.

We propose two methods for adapting Tortoise to better sup-
port bridges. For both solutions, we consider a relay that wishes
to determine whether an upstream connection is from a client or a
bridge: clients should be subject to rate limits, while bridges should
be exempt, but only if they are actually forwarding traffic.

One potential approach is for the relay to use a separate bridge to
attempt to create a Tor circuit through the node in question. If the
circuit is successfully extended, then the node must be a bridge. If
the circuit cannot be extended, the node can safely be assumed to
be a client. Importantly, since a bridge (known only to the relay) is
used to extend the circuit, the node in question cannot behave as a
bridge only to the relay (i.e., to be falsely detected as a bridge in or-
der to evade the rate limit). The difficulty with this approach is that
if the node is a bridge, its bridge listening port will not be immedi-
ately known to the relay. However, the relay can attempt to extend

a circuit (via the bridge) using commonly chosen ports.2 Addi-
tionally, Tor would have to be slightly modified to allow bridges to
extend circuits to other bridges.

Alternatively, bridges could reveal their identities to
independently-chosen trusted relays. These relays would be aware
of the bridges’ status and will not subject them to the rate limit. The
challenge with this approach is that since clients select the anony-
mous path, bridges would additionally have to recommend a second
hop (the trusted relay) that is not subject to rate limiting. We leave
the study of these and other potential strategies for supporting Tor
bridges as a future research direction.

Tortoise relies on accurate directories. Only the relays that
are marked STABLE and FAST in the Tor directory are exempt from
Tortoise’s universal rate limit. A client may attempt to cheat the
system by advertising a relay that is neither FAST nor STABLE, but
is marked as such by the directory. Since the directories periodi-
cally poll the relays to measure their failure rates, a dishonest client
cannot easily fake a STABLE rating. It can, however, report a false
(high) bandwidth to cause a directory to rate it as FAST.

Several techniques have been recently proposed to avoid the re-
liance on relays’ self-reported capacities. For example, Snader and
Borisov introduce an opportunistic measurement system in which
relays report the observed bandwidth of their peers. Directory
servers then advertise the median of these measurements [28]. Perry
has suggested an alternative technique in which measurement au-
thorities perform empirical measurements of relays’ bandwidths [24].

Additionally, a node that wishes to gain exemption from the uni-
versal rate limit may contribute only the minimum amount of band-
width such that they receive the FAST flag. The FAST tag is applied
to the fastest 87.5% of routers (as of this writing, this requires a
bandwidth of only 15KBps). To better ensure that clients who also
run relays are meaningfully contributing to the network, a poten-
tial refinement to Tortoise’s approach is to additionally apply a rate
limit on relays. Here, relays’ bandwidths would be capped based on
the amount of bandwidth that they provide to the network. Hence,
the improvement in client bandwidth will be proportional to the
amount of bandwidth that the client’s OR serves the network.

Tortoise is susceptible to Sybil-style attacks. Tortoise is vul-

2Many bridges choose to run on port 443, since HTTPS traffic is of-
ten allowed through firewalls, and like HTTPS, Tor uses SSL/TLS
to provide confidentiality.

20 40 60 80 100 120

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Benefit of Additional Relays (100KBps rate limit)

Average bandwidth (KBps)

C
u

m
u

la
ti
ve

 f
ra

c
ti
o

n

15 relays
15 relays + 20 client relays
15 relays + 40 client relays
No rate limit, no extra relays

20 40 60 80 100 120

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Benefit of Additional Relays (200KBps rate limit)

Average bandwidth (KBps)

C
u

m
u

la
ti
ve

 f
ra

c
ti
o

n

15 relays
15 relays + 20 client relays
15 relays + 40 client relays
No rate limit, no extra relays

Figure 7: Average bandwidth rates when additional relays join the network when a 100KBps (left) or 200KBps (right) universal rate
limit is imposed.

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Benefit to Network Capacity (100KBps Rate Limit)

Average bandwidth (KBps)

C
u

m
u

la
ti
ve

 f
ra

c
ti
o

n

Tor, 900 clients
Tor, 1080 clients
Tortoise, 900 clients
Tortoise, 1080 clients

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Benefit to Network Capacity (200KBps Rate Limit)

Average bandwidth (KBps)

C
u

m
u

la
ti
ve

 f
ra

c
ti
o

n

Tor, 900 clients

Tor, 1080 clients

Tortoise, 900 clients

Tortoise, 1080 clients

Figure 8: Increased capacity with 100KBps (left) and 200KBps (right) universal rate limits.

nerable to Sybil-style [11] attacks in which a client achieves high
bandwidth by multiplexing connections over many Tor circuits. Al-
though each circuit may be individually rate limited, the combined
bandwidth may allow the client to surpass the universal rate limit.

Existing Sybil countermeasures may be applied to mitigate such
attacks against Tortoise. In particular, guard relays may require
clients to complete periodic cryptopuzzles [18] in order to con-
tinuously forward their traffic. Solving occasional cryptopuzzles
will add only a modest burden to standard clients, but could be
very computationally expensive for misbehaving clients that con-
nect through many guard nodes. Here, the goal is not to disallow
a client from establishing a large number of connections to the Tor
network, but rather to shift the incentives to better motivate compli-
ance with Tortoise’s envisioned model. That is, applying periodic
cryptopuzzles may make it more cost effective to operate an OR
rather than to evade the system’s universal rate limit.

7. RELATED WORK
There are a number of existing approaches that aim to increase

Tor’s performance. We categorize and outline some of these tech-
niques below.

Prioritizing techniques. Tang and Goldberg recently proposed
replacing Tor’s round-robin circuit scheduler with one that consid-
ers a circuit’s recent usage [29]. Using the exponential weighted
moving average (EWMA), their technique favors bursty circuits
over constantly busy circuits, and consequently lowers the latency
of more interactive applications. Their scheduler has been inte-
grated into Tor.

Unlike their approach in which interactive traffic is given prece-
dence over busy clients by rearranging the schedule in favor of the
former, Tortoise’s traffic shaping is done by active throttling. The
two techniques are orthogonal, and EWMA and Tortoise can be si-
multaneously applied to increase performance.

Improved multiplexing. Reardon and Goldberg note that Tor’s
TCP multiplexing techniques significantly contribute to network la-
tency. They suggest tunneling TCP connections of DTLS (Data-
gram Transport Layer Security) packets to alleviate the effects of
interference among multiplexed Tor circuits [25]. Similarly, Math-
ewson has investigated using SCTP (Stream Control Transmission
Protocol) for Tor multiplexing [16]. In contrast to these approaches,
Tortoise imposes strict rate limits on all non-contributing clients.
Applying Tortoise in conjunction with the above multiplexing strate-

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

0 50 100 150 200 250

0
.2

0
.4

0
.6

0
.8

1
.0

Clients' Benefits of Running a Relay

 (100KBps Rate Limit, Low Adoption Rate)

KBps

C
u
m

u
la

ti
ve

 F
ra

c
ti
o
n

l Tortoise, not running relays

Tortoise, running relays
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

0 50 100 150 200 250

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Clients' Benefits of Running a Relay

 (100KBps Rate Limit, High Adoption Rate)

KBps

C
u
m

u
la

ti
ve

 F
ra

c
ti
o
n

l Tortoise, not running relays

Tortoise, running relays

Figure 9: Bandwidth improvements seen by clients that choose to run routers, in a network with only 50% of routers running Tortoise.

10 20 30 40 50 60 70 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Effects of Reduced Relay Participation in Tortoise

KBps

C
u
m

u
la

ti
ve

 F
ra

c
ti
o
n

Zero client adoption
Low client adoption
High client adoption

50% relay participation
100% relay participation

Figure 10: The effect of sub-100% participation in Tortoise
when a 100KBps rate limit is applied.

gies should provide added benefit, since the reduced traffic load
will lighten congestion.

Relay selection. Tor uses a bandwidth-weighted relay selection
strategy in which the probability that a relay is chosen as a member
of an anonymous path is proportional to the bandwidth advertised
by that relay [8]. Snader and Borisov proposed a refinement to Tor
that allows the sender to increase the performance of her paths at
the expense of anonymity [28]. Murdoch at Watson later showed
that Tor’s current bandwidth-weighted strategy provides both good
anonymity and performance [20]. Sherr et al. argue that path se-
lection based on other non-bandwidth metrics (such as latency or
loss) offers performance and anonymity benefits [26, 27].

However, as has been pointed out by Dingledine and
Murdoch [10], the primary cause of Tor’s slowness is likely due to
congestion caused by file sharing. While the above relay selection
techniques may provide better performance or stronger anonymity
on less congested networks, we believe such approaches are un-

likely to provide good performance on the current Tor network.
Tortoise is agnostic to clients’ relay selection algorithms, and may
complement the above approaches by alleviating congestion and
permitting higher performing and more flexible anonymous routes.

Incentive schemes. Tortoise is most similar to techniques that
attempt to provide incentives to operate Tor relays. In PAR [2],
relays earn coins that they can spend on fast paths. However, the
need to frequently authenticate coins with a central bank limits the
approach’s scalability.

Jansen et al. introduce a number of mechanisms called BRAIDS
that encourage Tor users to run relays [14]. BRAIDS implements a
form of differentiated service by segregating traffic into three ser-
vice classes, each of which has particular performance properties
(e.g., high latency, high throughput, etc.). Similar to e-cash sys-
tems, BRAIDS uses a ticket model in which tickets may be ex-
changed for higher performing anonymous paths. By rewarding
relay operators with tickets (and consequently, better performing
paths), BRAIDS encourages users to run Tor relays.

Similar to BRAIDS, Tortoise offers a form of differentiated ser-
vice by enforcing different rate limits for users depending on
whether they run a Tor router or not, providing an incentive for
users to operate relays. However, while BRAIDS requires a par-
tially trusted offline bank to manage tickets, Tortoise is fully back-
wards compatible with the existing Tor network, can be incremen-
tally deployed, and requires no centralized structures.

Ngan et al. proposed a system [22] in which cells from circuits
are marked with a “gold star” if they originate from a Tor instance
that is also a STABLE router. Tests on an experimental Tor network
showed that using the system, cooperating nodes (nodes running a
router, and thus receiving priority) gained a significant advantage
over other nodes when the network was under heavy load. While
the gold star system considers a cell’s priority at each hop, Tortoise
checks only at network ingress points, and gives all traffic equal
priority once it is past the first hop. Additionally, the ability to
prioritize traffic at each hop in the gold star scheme requires that
each hop be running the modified software; in Tortoise, only the
guard nodes’ are aware of the rate limiting.

Adaptive throttling of Tor clients by entry guards. A Septem-
ber 2010 Tor blog post [6] addressed the efficacy of using per-
connection rate limits to reduce the impact of bandwidth-intensive
connections on the network. The author confirmed that one could

set rate limits in a manner such that only large transfers would be
significantly throttled. However, some commenters claimed such
measures would not help the network because a client could avoid
rate limiting by running a relay from the same IP as the client trans-
ferring large amounts of data. Our work takes the opposite view-
point: a bulk client running a relay in order to achieve faster speeds
is not only acceptable, it is also desirable as it benefits the network
as a whole.

8. CONCLUSION
This paper proposes Tortoise, a backwards-compatible extension

to Tor that applies per-connection rate limits at Tor’s ingress points.
By carefully tuning these limits, our results indicate that Tortoise
imposes little performance penalty to most web clients while simul-
taneously providing incentives to high-bandwidth clients to operate
their own relays.

Tortoise’s benefits hinge on the ability to attract additional relays.
By enforcing strict rate limits and giving exemptions only to relay
operators, we argue that clients who demand high bandwidths will
be sufficiently motivated to contribute a fraction of their bandwidth
to the Tor network. Emulation results demonstrate that even if a
small percentage of clients opt to run relays, the network not only
achieves significant performance gains, but also an increased ca-
pacity to handle additional load. For instance, if 4% of the clients
are motivated to operate a relay, then the network experiences a
32% improvement in effective capacity and is significantly better
able to tolerate a sudden influx of additional clients than the cur-
rent Tor network.

Acknowledgements
We thank the anonymous reviewers for their helpful feedback, and
Kevin Bauer for several thoughtful discussions about this work.
This research was supported by DARPA SAFER award N66001-
11-C-4020 and NSF grant CNS-1064986. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
funding agencies.

References
[1] Alexa: The Web Information Company. Top Sites. http://www.

alexa.com/topsites. Retrieved May 13, 2011.
[2] E. Androulaki, M. Raykova, S. Srivatsan, A. Stavrou, and S. Bellovin.

PAR: Payment for Anonymous Routing. In Privacy Enhancing Tech-
nologies Symposium (PETS), 2008.

[3] K. Bauer, M. Sherr, D. McCoy, and D. Grunwald. ExperimenTor:
A Testbed for Safe and Realistic Tor Experimentation. In USENIX
Workshop on Cyber Security Experimentation and Test (CSET), 2011.

[4] S. L. Blond, P. Manils, A. Chaabane, M. A. Kaafar, A. Legout,
C. Castellucia, and W. Dabbous. De-anonymizing BitTorrent Users
on Tor (poster). In USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), 2010.

[5] Y. Chen, R. Sion, and B. Carbunar. XPay: Practical Anonymous Pay-
ments for Tor Routing and Other Networked Services. In ACM Work-
shop on Privacy in the Electronic Society (WPES), 2009.

[6] R. Dingledine. Research Problem: Adaptive Throttling of Tor Clients
by Entry Guards. http://preview.tinyurl.com/3tcyaem.
Retrieved May 24, 2011.

[7] R. Dingledine. Bittorrent Over Tor Isn’t a Good
Idea. https://blog.torproject.org/blog/
bittorrent-over-tor-isnt-good-idea, April 2010.

[8] R. Dingledine and N. Mathewson. Tor Path Specification.
http://www.torproject.org/svn/trunk/doc/spec/
path-spec.txt, January 2008.

[9] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-
Generation Onion Router. In USENIX Security Symposium (USENIX),
2004.

[10] R. Dingledine and S. Murdoch. Performance Improvements on
Tor, or, Why Tor is Slow and What We’re Going to Do About
It. https://svn.torproject.org/svn/projects/
roadmaps/2009-03-11-performance.pdf, March 2009.

[11] J. R. Douceur. The Sybil Attack. In International Workshop on Peer-
to-Peer Systems (IPTPS), 2002.

[12] F. Hernández-Campos, K. Jeffay, and F. Smith. Tracking the Evolu-
tion of Web Traffic: 1995-2003. In Modeling, Analysis and Simulation
of Computer Telecommunications Systems (MASCOTS), 2003.

[13] A. Hintz. Fingerprinting Websites Using Traffic Analysis. In Privacy
Enhancing Technologies Symposium (PETS), 2003.

[14] R. Jansen, N. Hopper, and Y. Kim. Recruiting New Tor Relays with
BRAIDS. In ACM Conference on Computer and Communications
Security (CCS), 2010.

[15] K. Loesing. Measuring the Tor Network: Evaluation of Client Re-
quests to the Directories. Technical report, Tor Project, June 2009.

[16] N. Mathewson. Evaluating SCTP for Tor. http://archives.
seul.org/or/dev/Sep-2004/msg00002.html, September
2004. Listserv posting.

[17] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker. Shining
Light in Dark Places: Understanding the Tor Network. In Privacy
Enhancing Technologies Symposium (PETS), 2008.

[18] R. C. Merkle. Secure Communications over Insecure Channels. Com-
munications of the ACM, 21:294–299, April 1978.

[19] S. J. Murdoch. Hot or Not: Revealing Hidden Services by Their Clock
Skew. In ACM Conference on Computer and Communications Secu-
rity (CCS), 2006.

[20] S. J. Murdoch and R. N. M. Watson. Metrics for Security and Perfor-
mance in Low-Latency Anonymity Systems. In Privacy Enhancing
Technologies Symposium (PETS), 2008.

[21] NetIndex Source Data. http://netindex.com/
source-data/. Retrieved May 26, 2011.

[22] T.-W. J. Ngan, R. Dingledine, and D. Wallach. Building Incentives
into Tor. In Financial Cryptography and Data Security, 2010.

[23] M. Perry. Tips for running an exit node with minimal ha-
rassment. https://blog.torproject.org/blog/
tips-running-exit-node-minimal-harassment.
Retrieved May 16, 2011.

[24] M. Perry. Computing Bandwidth Adjustments. Proposal 161, Tor
Project, 2009.

[25] J. Reardon and I. Goldberg. Improving Tor using a TCP-over-DTLS
Tunnel. In USENIX Security Symposium (USENIX), 2009.

[26] M. Sherr, M. Blaze, and B. T. Loo. Scalable Link-Based Relay Se-
lection for Anonymous Routing. In Privacy Enhancing Technologies
Symposium (PETS), August 2009.

[27] M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. T. Loo, and M. Blaze.
A3: An Extensible Platform for Application-Aware Anonymity. In
Network and Distributed System Security Symposium (NDSS), 2010.

[28] R. Snader and N. Borisov. A Tune-up for Tor: Improving Security and
Performance in the Tor Network. In Network and Distributed System
Security Symposium (NDSS), 2008.

[29] C. Tang and I. Goldberg. An Improved Algorithm for Tor Circuit
Scheduling. In ACM Conference on Computer and Communications
Security (CCS), 2010.

[30] Tor Project, Inc. Tor Directory Protocol, Version 3, 2010.
https://git.torproject.org/checkout/tor/
master/doc/spec/dir-spec.txt.

[31] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase,
and D. Becker. Scalability and Accuracy in a Large-scale Network
Emulator. SIGOPS Oper. Syst. Rev., 36:271–284, December 2002.

[32] S. Zander and S. J. Murdoch. An Improved Clock-Skew Measure-
ment Technique for Revealing Hidden Services. In USENIX Security
Symposium (USENIX), 2008.

[33] Zona Publishing. The Need for Speed II. Zona Market Bulletin, 5,
April 2001.

http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://preview.tinyurl.com/3tcyaem
https://blog.torproject.org/blog/bittorrent-over-tor-isnt-good-idea
https://blog.torproject.org/blog/bittorrent-over-tor-isnt-good-idea
http://www.torproject.org/svn/trunk/doc/spec/path-spec.txt
http://www.torproject.org/svn/trunk/doc/spec/path-spec.txt
https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf
https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf
http://archives.seul.org/or/dev/Sep-2004/msg00002.html
http://archives.seul.org/or/dev/Sep-2004/msg00002.html
http://netindex.com/source-data/
http://netindex.com/source-data/
https://blog.torproject.org/blog/tips-running-exit-node-minimal-harassment
https://blog.torproject.org/blog/tips-running-exit-node-minimal-harassment
https://git.torproject.org/checkout/tor/master/doc/spec/dir-spec.txt
https://git.torproject.org/checkout/tor/master/doc/spec/dir-spec.txt

	Introduction
	Background
	Dismissed: Filesharer Identification and Filtering
	Tortoise
	Preventing Cheating
	Anonymity Considerations

	Evaluation
	Rate Limit Selection
	Effects of Rate Limiting
	Performance Improvements
	Summary

	Discussion and Limitations
	Related Work
	Conclusion

