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Abstract

The goal of anonymity providing techniques is to pre-
serve the privacy of users, who has communicated with
whom, for how long, and from which location, by hiding
traffic information. This is accomplished by organizing ad-
ditional traffic to conceal particular communication rela-
tionships and by embedding the sender and receiver of a
message in their respective anonymity sets. If the number of
overall participants is greater than the size of the anonymity
set and if the anonymity set changes with time due to un-
synchronized participants, then the anonymity technique be-
comes prone to traffic analysis attacks. In this paper, we are
interested in the statistical properties of the disclosure at-
tack, a newly suggested traffic analysis attack on the MIXes.
Our goal is to provide analytical estimates of the number of
observations required by the disclosure attack and to iden-
tify fundamental (but avoidable) ‘weak operational modes’
of the MIXes and thus to protect users against a traffic anal-
ysis by the disclosure attack.

1. Introduction

Anonymity techniques to prevent network traffic analy-
sis date back to the 1970’s and 1980’s when David Chaum
and others suggested several revolutionary techniques in-
cluding broadcast and implicit addresses, MIXes, DC-
Networks, and PIR [5, 4, 6, 7, 14, 18]. Among these tech-
niques, the MIX concept can be considered as the most
popular and deployment friendly [1, 2, 8]. It has been
proposed for networks like GSM, ISDN and the Internet
[3, 9, 10, 11, 13, 16, 17, 20, 21]. However, in such open
environments the network traffic is usually unconstrained
and can be vary in each time epoch. The variation in traffic
can be exploited by an attacker to gain information about a
targeted user, e.g., the attacker can establish statistics about
the on-line and off-line behavior of users.

Kesdogan, Agrawal, and Penz [15] have suggested a new

type of traffic analysis attack, the so called disclosure at-
tack, that re-identifies all hidden peer partners of the tar-
geted user. Thus the attack determines a protection limit of
anonymity techniques, that is, it provides an upper bound
on the number of observations required for an attacker to
‘break’ a given anonymity technique. In [15], the authors
applied disclosure attack on the popular MIX technique and
presented simulation results to show protection limits of the
MIXes for a typical set of system parameters.

The goal of this paper is to present a comprehensive anal-
ysis of the disclosure attack and compute system parameters
for which the anonymity of systems like the MIXes can be
compromised by a few acts of communication by the tar-
geted user. To that end, we will follow [15] as required, and
then present our new results on the disclosure attack. The
paper is organized as follows. In the next section, we will
provide basic terminology and overview the formal model
of the MIXes and the disclosure attack as described in [15].
In Section 3, contributions of this paper are highlighted. In
Section 4, we present a proof that the underlying problem
of the disclosure attack is NP-hard. After this, an analysis
of the disclosure attack is given in Section 5. Next, in Sec-
tion 7, we define ‘weak operational region’ of an anonymity
system and provide an analytical formula for the boundary
of the weak operational region induced by the disclosure at-
tack. In Section 8, we discuss the impact of assumptions
made during our analysis, and finally, in Section 9, we con-
clude with a summary of this paper and ideas for the future
research work.

2. Background

The basic mechanism to provide anonymity is to orga-
nize additional traffic and conceal specific communication
relationships amidst the additional traffic. In particular, the
sender and/or receiver of a message can be embedded in a
so-called anonymity set [16]. The size of the anonymity set
can be used as a measure of anonymity provided by a tech-
nique.
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Definition 1 Assume an attacker model E and a finite set
of all users Ψ. Let R be a role for the user (sender or re-
cipient) with respect to a message M . If, for an attacker
according to model E, the a-posteriori probability p that a
user u ∈ Ψ has the role R with respect to M is non-zero
(p > 0), then u is an element of the anonymity set A ⊆ Ψ.
A technique (method) provides an anonymity set of size n if
the cardinality of A is n (n ∈ N).

Thus a sender or a receiver is anonymous only within their
anonymity sets. In open environments, the anonymity set
of a sender or a receiver would change with time. Since
the intersection of two different anonymity sets is likely to
be smaller than either of the anonymity sets, different in-
tersections of anonymity sets could be used to gain infor-
mation about the targeted user. Effectively, this leads to an
anonymity set whose size shrinks as the attacker observes
additional acts of communication by the targeted user1. The
disclosure attack proposed by Kesdogan, Agrawal and Penz
can re-identify all hidden peer partners of a targeted user
deterministically after observing sufficient acts of commu-
nication by the user[15].

The disclosure attack is powerful in that it assumes a for-
mal model of the MIXes and is independent of specific im-
plementation weakness often exploited by other attacks. In
the following, we overview the formal model of the MIXes
presented in [15] and the corresponding disclosure attack.

2.1. The Formal Model of the MIXes

A MIX is a special intermediary network station which
provides untraceability between the sender and recipient of
a massage. A MIX collects bmessages of equal length from
b distinct senders, discards repeats, changes their appear-
ance(i.e., the bit pattern), and forwards the messages to the
recipients in a different order [7]. This measure hides the
relationship between the sender and recipient of a message
from everybody but the MIX and the sender of the mes-
sage. By using more than one MIXes to forward a message
from the sender to the recipient, the relation is hidden from
all attackers in the network who do not control all MIXes
through which the message passed, or who do not have the
cooperation of all the other sender [7].

Clearly, MIXes should be carefully designed to imple-
ment the procedures for discarding repeat messages, chang-
ing message appearance, and reordering messages in a
batch. The disclosure attack assumes a formal model for
the MIXes which is inherently secure except for the unsyn-
chronized users. Specifically, the random communication
model proposed in [15] makes the following assumptions:

1In other anonymity evaluations [19, 22, 23, 12], a weak attacker model
is assumed, i.e., the attacker is not global. The disclosure attack investi-
gates the pure hiding functionality of MIXes: the attacker is global and
only one MIX is not corrupt.

• The untraceability providing system, i.e. a MIX, pro-
vides perfect untraceability between incoming and out-
going packets.

• There are N users in the system. The batch size of
the system is b, where 1 < b � N , and a batch may
contain a receiver more than once. Thus, the size n of
the anonymity set fulfills the condition n ≤ b (see also
Definition 1).

• The b packets in a batch are created by b different
senders.

• Alice is one of the senders and she uses the system to
hide her m, 1 � m � N , communication partners.

• Alice chooses her communication partner in each com-
munication uniformly among her m partners, while
the other senders choose their communication partners
uniformly among all N recipients.

• The attacker E takes notice of each untraceable com-
munication act of Alice. This triggers the attacker to
write down all recipients who are involved in this un-
traceable communication process, that is, the attacker
simply records only those recipient sets which include
a communication partner of Alice.

For the sake of simplicity, we will enumerate the time t
with increasing integer numbers whenever Alice sends
a message. Thus, when Alice communicates for the
first time, t = 1, when she communicates for the sec-
ond time, t = 2, and so on. We will denote the recipi-
ent set at time t by Rt = {R1

t , . . . , R
n
t }.

The formal model contains three essential parameters,
namely user population N , batch size b, and the number m
of communication partners of the intended target. These pa-
rameters can be easily identified in other anonymity provid-
ing techniques. For a detailed discussion of the assumptions
involved in the formal model, we refer the reader to [15].

2.2. The Disclosure Attack

In the disclosure attack on the MIXes, a potential at-
tacker proceeded in two stages: the learning phase and
the excluding phase. In the learning phase the attacker
waits until he observes m mutually disjoint recipient sets
(R1, . . . , Rm), i.e., for all i �= j, Ri ∩ Rj = ∅. After
the learning phase, the attacker can be sure that in each set
Ri, there is only one peer communication partner of Al-
ice. In the excluding phase of the attack, the recipient sets
(R1, . . . , Rm) are refined using further observations. This
can be done by using a new recipient set R which intersects
with only one prior recipient set, that is, if R ∩ Ri �= ∅

and R ∩ Rj = ∅ for all j �= i. In that case, Ri can be
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refined to Ri ∩ R. The refinement process is continued un-
til each of the sets R1, . . . , Rm contains only one user. It
is clear that the remaining m users in R1, . . . , Rm are the
communication partners of Alice.

Since the senders are not coordinated, the probability
that one of the phases does not find the needed batches (i.e.
m disjoint batches or batches that overlap with only one of
thesem disjoint batches) converges to zero as the number of
observations grows. Hence, we can deduce that with proba-
bility one the attack succeeds after a finite number of obser-
vations. Let Tl and Te respectively be the average number
of observations needed by the disclosure attack to complete
the learning and excluding phases. The total average num-
ber of observations (Tl + Te) required by the attacker can
be considered as the protection limit of the MIXes.

3. Our Contribution

In this paper, we present an extensive analysis of the dis-
closure attack which includes:

• a proof that disclosure attack solves an NP-complete
problem and consequently, simulations of the disclo-
sure attack require significant computing resources.

• analytical estimates of the number of observations
that an adversary needs in the learning and excluding
phases of the disclosure attack.

For the learning phase of the attack our estimate is quite
tight, effectively eliminating the need for time and resource
consuming simulations. For the excluding phase, our esti-
mate provides an upper bound on the required number of
observations.

We develop analytical formulas which explain the shape
of performance curves2 obtained by simulations in [15].
These formulas are used to relate the sharp rise in the num-
ber of observations in the performance curves to the non-
peer recipients in the system.

We define the concept of weak operational regions of an
anonymity system. In weak operational regions, the num-
ber of observations required by an attack becomes indepen-
dent of the system parameters. We present analytical for-
mula which provides the boundary of the weak operation
region induced by disclosure attack. Finally, we extend sim-
ulation results presented in [15] by providing performance
curves for two typical parameter settings of the MIXes. In
each case, we show that our analysis effectively predicts the
boundary of the weak operational region.

2performance curves plot the number of observation required to break
anonymity versus a system parameter.

4. NP-Completeness of the Disclosure Attack

Fortunately, the disclosure attack is an NP-complete
problem. Specifically, finding m mutually disjoint sets
among t given sets with b elements each is an NP-complete
problem. The proof consists of two parts. First, we show
that this problem is in NP, i.e., in the class of all problems
whose solutions can be verified in polynomial time. Sec-
ond, we reduce another NP-complete problem, the CLIQUE
problem, to our problem.

The first part of the proof is easy to see. A solution con-
sists ofm sets that have to be checked pairwise for disjoint-
ness. There areO(m2) pairs of sets, and for each pairO(b2)
elements must be checked for equality in order to find com-
mon elements. Altogether, the verification of a solution is
possible in polynomial time and therefore the problem is in
NP.

To complete the proof, we have to show that another NP-
complete problem can be reduced to our problem in polyno-
mial time. We chose the CLIQUE problem as its structure is
very similar to our problem. A CLIQUE problem consists
of an undirected Graph G = (V,E) and a natural number
k. The goal is to find a k-clique inside the graph, that is a
set of k vertices that are fully connected by the edges E of
the graph.

We assume V = {v1, v2, . . . , vt} for any natural number
t. Let {i, j} denote the edge joining vi and vj . For each
vertex vi ∈ V , construct a set Ai which consists of all edge
representations {i, j} that are not included in E:

∀1 ≤ i < j ≤ t : Ai = {{i, j}|i �= j ∧ {vi, vj} /∈ E}
Obviously, Ai can easily be constructed by checking for

every other vertex vj , if {vi, vj} ∈ E. Only if this check
fails, {i, j} is included into Ai. Clearly, this procedure can
be performed in polynomial time.

According to this procedure, two setsAi andAj can only
have one common element, that is {i, j}. This element is
included in both sets if and only if {vi, vj} /∈ E. Hence, Ai

and Aj are disjoint if and only if vi and vj are connected. If
we find k mutually disjoint sets, the corresponding vertices
form a k-clique. Thus, the problems are equivalent and the
construction is a valid problem reduction.

Figure 1 shows an example reduction. We see a graph
with six vertices v1, . . . , v6, which are transformed to the
corresponding sets A1, . . . , A6 on the right. The graph con-
tains a 4-clique {v2, v3, v5, v6}. Hence, the sets A2, A3, A5

and A6 are mutually disjoint.
Altogether, the problem of finding m mutually disjoint

sets turns out to be NP-complete. Therefore, simulating the
disclosure attack becomes computationally infeasible when
the parameters m and b are large. The goal of this paper is
to derive analytical results which permit an analysis of the
disclosure attack without simulations.
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Figure 1. Example of the reduction procedure

5. Analytical Estimates

In the following subsections, we will develop estimates
for Tl and Te, the average number of observations needed
respectively for the learning and excluding phases. In devel-
oping these estimates, we often encounter a situation where
analytical calculations can be made easier by making some
simplifying assumptions or by making an approximation. In
order to maintain the flow of main ideas, we will postpone
the discussion of these assumptions and approximations to
the Section 8.

5.1. An Estimate for the Learning Phase

In the learning phase, an attacker wants to collectmmu-
tually exclusive recipient sets in which Alice participates.
An attacker with unlimited resources could follow the fol-
lowing brute-force strategy: after observing a new recipient
set in which Alice participates, construct all possible col-
lections of mutually exclusive recipient sets. The attacker
would complete the learning phase when one of these col-
lections contains m recipient sets.

More formally, let Gk be the set of all possible collec-
tions of mutually exclusive recipient sets after observing k
batches in which Alice and only one peer communication
partner of Alice participate. Let Gk(i), i = 1, 2, . . . ,m and
k = 1, 2, 3, . . . , be the number of collections in Gk with i
recipient sets. After observing the (k + 1)-th batch, the at-
tacker would update Gk to G(k+1) as follows: the attacker
would check if the recipient set of the (k + 1)-th batch is
compatible with any of the collections in Gk, that is, the
attacker will check if the recipient set is mutually exclu-
sive with all recipient sets in a collection C, C ∈ Gk. If
the (k + 1)-th recipient set is compatible with the collec-
tion C, then the recipient set is included in the collection C
and the cardinality of the collection C goes up by one. The
original as well as the updated collection C is then copied
over to G(k+1). If the collection C is not compatible, then
it is not updated and is copied over to G(k+1). Note that
Gk ⊂ G(k+1).

Clearly, we are interested in the average value of the
smallest k for which the number of collections with m re-
cipient sets is at least one, that is, Gk(m) � 1. Let π(i)
is the probability of finding a new recipient set (in which
Alice and only one peer communication partner of Alice
participate) compatible with a collection of i − 1 mutually
exclusive recipient sets. Since each recipient set in the col-
lection contains exactly one peer communication partner of
Alice, there are only (m− i + 1) choices for the peer part-
ner of Alice for the i-th mutually exclusive set. For the other
(b − 1) recipients, neither a partner of Alice nor the other
non-peer recipients in already collected (i − 1) sets can be
used. This results in at leastN−m−(i−1)(b−1) choices
for the other b− 1 recipients. There could be more choices
for the non-peer (b − 1) recipients since a recipient set in
the collection may contain a non-peer recipient more than
once. However, in order to derive our estimate we will as-
sume that we have exactly N −m− (i− 1)(b− 1) choices
for the other (b − 1) recipients. Later in Section 8, we will
discuss the effect of this assumption on our calculations.

By simple combinatorics, there are total (N −m− (i−
1)(b − 1))(b−1)(m − i + 1) compatible and equally likely
choices for the i-th mutually exclusive recipient set. Since
there are a total of (N −m)(b−1)m equally likely recipient
sets with only one peer partner of Alice, π(i), the proba-
bility that a new recipient set would be compatible with a
collection of i− 1 mutually exclusive recipient sets is given
by

π(i) =
(N −m− (i− 1)(b− 1))(b−1)(m− i + 1)

(N −m)(b−1)m
(1)

A collection with i recipient sets in G(k+1) either belongs
to Gk or is a result of updating a collection with (i − 1)
recipient sets in Gk. Consequently, the expected number of
collections with i recipient sets in G(k+1) is given by:

E[G(k+1)(i)|Gk(i− 1), Gk(i)] = Gk(i− 1)π(i) + Gk(i)
for i = 2, . . . ,m,

G(k+1)(1) = Gk(1) + 1 (2)

where E[·] denotes the expected value. Note that (2) im-
plies that the probability of (k + 1)-th recipient set being
identically equal to one of the earlier recipient set is zero.
In Section 8, we will show that this probability is indeed
negligible and can be assumed to be zero without much loss
in the accuracy of our results.

The above equations suggest that a heuristic estimate of
the number of observations required for the learning phase
can be obtained by replacing random variables in these
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equations by their expected values:

E
[
G(k+1)(i)|E[Gk(i− 1)], E[Gk(i)]

]
= E

[
Gk(i− 1)|E[Gk−1(i− 2)], E[Gk−1(i− 1)]

]
π(i)

+ E
[
Gk(i)|E[Gk−1(i− 1)], E[Gk−1(i)]

]
for i = 2, . . . ,m,

E[G(k+1)(1)] = E[Gk(1)] + 1
(3)

Recall that the learning phase stops when there is a col-
lection with m mutually exclusive sets. Using (3), we can
recursively calculate the value of k for which

argmin
k

E
[
Gk(m)|E[G(k−1)(m−1)], E[G(k−1)(m)]

]
� 1

Let K denote this value of k. We treat K as an estimate of
the average value of smallest k for which Gk(m) � 1.

The above estimate only considers the batches in which
Alice and only one of the peer partners of Alice participate.
Since there is a small probability that a sender other than
Alice would send a message to a peer communication part-
ner of Alice, the total number of recipient sets required for
the learning phase is given by:

K
Prob(One peer partner participates)

(4)

where

Prob(One peer partner participates) =
(N −m

N

)b−1

(5)

The estimate derived above can be improved slightly for
certain values of N, b, and m by realizing that the num-
ber of required observations cannot be less than the number
of observations required to see all m peer communication
partners of Alice. This correction results in the following
improved estimate:

Tl ≈ max

[
K(

N−m
N

)b−1
,

m∑
i=1

m

m− i + 1

]

(6)

5.2. An Upper Bound on the Learning Phase

In this section, we will develop an upper bound on the
number of observations needed at the learning stage. Imag-
ine a genie that knows peer communication partners of Al-
ice. The genie observes batches in which Alice participates
and keeps the recipient set of a observation if it contains
only one partner of Alice and if it is mutually disjoint from

all the other recipient sets the genie has kept so far. The ge-
nie discards the recipient set if it either contains more than
one partner of Alice or intersects with already kept recipient
sets.

It is clear that the number of observations required by
the genie to collect m mutually disjoint recipient sets is an
upper bound on the number of observations required by an
attacker. An unbounded attacker would form all possible
combinations of m recipient sets from all the recipient sets
in which Alice participates, and thereby find the mutually
exclusive set found by the genie. Since an unbounded at-
tacker does not discard recipient sets, it is likely that the
attacker would find the required m mutually exclusive sets
earlier than the genie.

Assume that the genie has already collected (i− 1) mu-
tually exclusive recipient sets and it is looking for the i-th
mutually exclusive recipient set. The average number of
observations required by the genie to find the i–th mutually
exclusive set is given by

Tu
l (i) =

∞∑
j=1

j
(
1− π(i)

)j−1

π(i)

=
1

π(i)
, (7)

where π(i) is the probability of finding the i-th mutually
exclusive set given by (1). It follows that an upper bound on
the average number of observations in the learning phase is
given by

Tu
l =

m∑
i=1

1
π(i)

=
m∑

i=1

(N −m)b−1(
N −m− (i− 1)(b− 1)

)b−1
· m

m− i + 1

(8)

We will show later that the bound given by (8) can be used
for asymptotic analysis to explain the characteristics of the
performance curves shown in [15]. In particular, it can ex-
plain the sharp rise in the number of observation required
for the learning phase once the system parameters cross cer-
tain thresholds.

5.3. An Estimate for The Excluding Phase

Recall that in the excluding phase, the attacker observes
new batches and checks if its recipient setRt intersects with
only one of the m recipient sets Ol, 1 � l � m, collected
during the learning phase. If the recipient set Rt intersects
with more than one set then it is kept in a pool P of the
recipient sets that may be useful in the future. On the other
hand, if the set Rt intersects with only one recipient set Ol,
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then Ol is replaced by the intersection of Rt and Ol and the
set Rt is discarded. Each time after a set Ol, 1 � l � m is
replaced with a smaller set, all recipient sets from the pool
P are checked again to see if any of them intersects with
only one set from O1, . . . , Om. This process is repeated
until O1, . . . , Om each has only one recipient.

In order to obtain an upper bound on the number of ob-
servations required for the excluding phase, we will con-
sider a storage limited attacker who does not maintain the
pool P of recipient sets. Such an attacker would necessarily
require more observations than the attacker who maintains
the pool P , and thereby provide an upper bound on the at-
tacker with unlimited resources.

We can model the excluding phase of the limited at-
tacker as a discrete stochastic process with state X =
(O1, O2, . . . , Om). Let Xt denote the state of the process
after observing the t-th batch. Since the state Xt only de-
pends on the previous state Xt−1 and the t-th batch, Xt is a
Markov process.

If we assume that the non-peer recipients in a new batch
occur uniformly over all N users, then the process Y given
by Y = (|O1|, |O2|, . . . , |Om|) also becomes aMarkov pro-
cess. This is because the recipient sets O1, O2, . . . , Om are
mutually exclusive at the end of the learning phase and they
remain mutually exclusive during the excluding phase. The
mutual exclusivity ofO1, O2, . . . , Om and uniformly occur-
ring non-peer recipients in a new batch render the individual
identities of the recipient unimportant for determining the
sizes of O1, O2, . . . , Om. In other words, the mutual exclu-
sivity ofO1, O2, . . . , Om and uniformly occurring non-peer
recipients in a batch imply that the number of recipients in
the set Ol, 1 � l � m, after observing the t-th batch de-
pends only on the number of recipients in these sets before
observing the t-th batch. Since we are only interested in the
average number of observation required to reach the state
Y = (1, 1, . . . , 1), it suffices to analyze the Markov process
Y .

In theory, the recognition of Y as a Markov process en-
ables us to obtain an upper bound on the average number
of observations required for the excluding phase. However,
this statistics is hard to compute due to the large size, given
by bm, of the state-space of Y . The state space of Y is large
even for moderate values of b and m, for example, b = 25
and m = 10.

To efficiently compute the required upper bound, we just
look at the number of recipients in the first recipient set,
Y1 = |O1|, and stipulate that the total number of recipients
in other recipient sets is given by γ. Under this stipulation,
the transition probability of Y1 can be computed easily. In
particular, P (Y1t = r|Y1(t−1) = r) is the sum of the prob-
abilities of the following three disjoint events:

1. Rt does not contain the peer communication partner of
Alice present in O1,

2. Rt contains the peer communication partner of Alice
present in O1, but it intersects with γ non-peer recipi-
ents in O2, . . . , Om, and

3. Rt contains peer communication partner of Alice
present in O1, it does not intersect with γ non-peer
recipients inO2, . . . , Om, but it contains all r−1 non-
peer partners in O1.

In each of these cases, the size of O1 will remain the same.
The transition probability, P (Y1t = c|Y1(t−1) = r), c < r
is given by the probability of the following event: Rt con-
tains the peer partner in O1, it does not intersect with
O2, . . . , Om, and it intersects with O1 in c − 1 non-peer
recipients. It is clear that the state transition probability of
Y is given by

P (Y1t = c|Y1(t−1) = r)

=




(m−1)
m + 1

mΨ(γ)+
1
m

(
1−Ψ(γ)

)
Ω(c− 1, r − 1) c = r

1
m

(
1−Ψ(γ)

)
Ω(c− 1, r − 1) c < r

0 c > r

(9)

whereΨ(i) is the probability that a recipient set contains
any of the specified i recipients as its non-peer recipients,
and Ω(β, α) is the probability that a recipient set intersects
a set of α non-peer recipients in exactly β recipients, given
that it does not intersect with γ other given non-peer recipi-
ents. It is easy to check that that Ψ(i) is given by

Ψ(i) = 1−
(N − i

N

)(b−1)

(10)

Computing Ω(β, α) turns out to be tricky. There are
(
α
β

)
different sets of β non-peer recipients in a set with α non-
peer recipients. LetG denote a set of β non-peer recipients.
A recipient set which containsG can have members ofG in
the places of s recipients, s = β, . . . , b − 1, which can be
chosen in

(
b−1

s

)
ways. The number of ways members of G

can appear for s given recipients is given by β!S(β)
s , where

S(β)
s is the Sterling number of second kind and equals to

the number of ways of partitioning a set of s elements into
β non-empty subsets. The factor of β! takes into account
the fact that these β subsets are further assigned β different
identities of non-peer communication partners. For each of
the other b − s − 1 members of the recipient set, there are
N −α− γ distinct choices. Putting this all together, we get
the following formula for Ω(β, α):

Ω(β, α) =
β!

(
α
β

) ∑b−1
s=β

(
b−1

s

)S(β)
s (N − α− γ)b−s−1

(N − γ)b−1

(11)
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Using (9), (10), and (11), we can compute the transition
probability matrix Mb×b of the Markov process Y1, where
Mij = P (Y1t = j|Y1(t−1) = i), for 1 � i, j � b.

By the properties of Markov processes, the probability
of state |O1| = 1 after observing the k-th batch is given by
e1(MT )kΠ, where e1 = [1, 0, 0, . . . , 0], Π = [Π1, . . . ,Πb]
and Πi is the probability of |O1| = i at the end of the learn-
ing phase. We would discuss how to calculate the vector of
initial probabilities Π in the Section 8.

It follows that with probability e1[(MT )k−(MT )k−1]Π,
the excluding phase ends after observing k batches. There-
fore an upper bound on the average number of batches re-
quired by the attacker for the excluding phase is given by:

Tu
e =

∞∑
k=1

k · e1[(MT )k − (MT )k−1]Π (12)

It is tempting to hope that the above expression can be
quickly computed by using geometric series summation for-
mula to compute the sums S1 =

∑∞
k=1 k · e1[(MT )k]Π

and S2 =
∑∞

k=1 k · e1[(MT )k−1]Π, and then by putting
Tu

e = S1 − S2. A careful investigation shows that the
state transition matrix M always has an eigenvalue 1, and
therefore neither of above geometric series converge, and
S1 = S2 = ∞. Thus Tu

e should be calculated by comput-
ing partial sums

∑K
k=1 k · e1[(MT )k − (MT )k−1]Π for a

sufficiently large value of K which meets the desired accu-
racy goal.

6. Simulation Results

In this section, we will compare our analytical estimates
of the number of observations required for the learning and
excluding phases with the simulation results. We will con-
sider three typical cases: (a) N = 20000, b = 50, m=20,
(b) N = 400, b = 10, m = 10, (c) N = 200,000, b = 100,
m = 40. Simulation result for the case (a) were presented
in [15], while the simulation results for two other cases are
new. Case (a) represents a typical case, while cases (b) and
(c) may represent extremes of an anonymity providing sys-
tem working in an open environment.

6.1. The Learning Phase

For case (a), Figure 2 shows the number of observations
required at the learning stage as a function of m, b, and N
as the two other parameters are kept fixed. For all three
parameters, the analytical estimate fits closely with the ac-
tual number of observations required for the learning stage.
Note that the analytical estimate is slightly less than the ac-
tual value obtained by simulation, with the difference be-
coming the most prominent around the knee of the curves.
It turns out that the knee of these curve coincides with the
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Figure 2. Number of observation required for
the learning phase for Case (a)

change of term in (6). For the flat part of the curve, it is
the second term which provides the number of observations,
while for the rising part the first term provides the number
of observations. As the number of observations shifts from
the first term to the second, our estimate becomes less accu-
rate.

Figure 3 shows the number of observations required for
the learning stage for case (b). Once again, for all three
parameters, analytical estimates for learning phase is quite
close to the simulation results. Finally, Figure 4 shows the
number of observations required for the case (c). In this
case too, our estimates are quite close to the simulation re-
sults.

The three cases considered above span a wide range of
anonymity system parameters. The close match of analyt-
ical results to the simulation results for the learning phase
in these cases gives us confidence that one can rely on the
analytical estimate presented here and avoid the computa-
tionally intensive simulations.

6.2. The Excluding Phase

For the excluding phase, Figures 5–7 compare the num-
ber of observations obtained by simulations to that of ob-
tained by the analysis given in Section 5. These figures
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Figure 3. Number of observation required for
the learning phase for Case (b)

show that once the number of observations start their sharp
rise, our estimate is an overestimate. This is expected since
in estimating the number of observations needed for the ex-
cluding phase, we did not maintain the pool of unused ob-
servations for the future use. However, our estimates are
still within one order of magnitude of the numbers obtained
by the simulations, and can be used to compute a protection
limit for the anonymity systems.

7. Operational Regions of Anonymity Systems

Figures 2–7 show that for both phases of the disclo-
sure attack, required number of observations rises sharply
as the parameters m and b increase above a threshold and
the parameter N decreases below a threshold. Before this
sharp rise, the number of observations required at both
stages is too low—often less than 50—to provide adequate
anonymity. Furthermore, before the sharp rise, the number
of required observations remain almost constant as a func-
tion of N and b. Clearly, the insensitivity of the required
number of observations on the system parameters is unde-
sirable as it takes away control dimensions from the oper-
ators of anonymity systems by which they can control the
anonymity of the system. These facts motivate us to de-
fine the weak operational region of an anonymity system as
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Figure 4. Number of observation required for
the learning phase for Case (c)

follows:

Definition 2 Weak operational region of an anonymity sys-
tem is a region of the parameter space where the number of
observations required by an attack is independent of one or
more system parameters N ,m, and b.

The independence from a system parameter in a certain re-
gion of the parameter space implies that as the parameter is
varied, the number of observations change at most byO(1).
We caution that unless the attack is optimal, parameter tu-
ples outside the weak operational region do not guarantee
a high level of anonymity against an attack which may be
more efficient than the attack used to derive the weak op-
erational region. Therefore, avoiding weak operational re-
gion is necessary, but not sufficient for providing adequate
anonymity.

In the rest of this section, we will analyze characteristics
of the operational region rendered weak by the disclosure
attack. The first step toward this analysis is to show that
in a certain region of the parameter space, the number of
observations at the learning stage become independent of
the parameters N and b.
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Figure 5. Number of observation required for
the excluding phase for Case (a)

7.1. Asymptotic Analysis of the Learning Phase

Recall that a new recipient set observed by an attacker
may not be compatible with a given collection of k mutu-
ally exclusive recipient sets if any of the following occurs:
it contains a non-peer recipient that is already present in one
of the k given recipient sets, the new recipient set has more
than one peer communication partner of Alice, or it con-
tains a peer communication partner of Alice that is already
present in one of the k given recipient sets.

If the bottleneck in the learning phase is due to already
observed non-peer recipients or due to more than one peer
communication partners of Alice, then the dominant term
in (8) becomes

m∑
i=1

(N −m)(b−1)

(N −m− (i− 1)(b− 1))(b−1)
. (13)

where the already observed non-peer recipients decrease the
denominator of the summand by (i − 1)(b − 1) while the
peer partners of Alice decrease it by m. Clearly, for b >
10, the largest contribution of non-peer recipients ((m −
1)(b− 1)) is far more than the contribution of peer partners
(m) in reducing the denominator. Since for most anonymity
systems b > 10, henceforth we will refer to this bottleneck
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Figure 6. Number of observation required for
the excluding phase for Case (b)

as Type N bottleneck indicating that the non-peer recipients
are the main cause of the bottleneck.

On the other hand, if the bottleneck is due to already
observed peer communication partners of Alice, then the
dominant term in (8) becomes

m∑
i=1

m

m− i + 1
. (14)

Henceforth, this bottleneck will be referred to as the Type P
bottleneck indicating that the peer partners of Alice are the
cause of the bottleneck.

Depending on the values of N, b, and m, the dominant
bottleneck in the learning phase could either be that of Type
N or that of Type P. These two types of bottlenecks have
significantly different impact on the required number of ob-
servations. Specifically,

m∑
i=1

(N −m)(b−1)

(N −m− (i− 1)(b− 1))(b−1)

= Poly
( 1
cm −m

,
1

N − cN

)
,Exp(b)

(15)
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Figure 7. Number of observation required for
the excluding phase for Case (c)

and
m∑

i=1

m

m− i + 1
∼ O(m logm) (16)

where cm, and cN are constants which depend on two fixed
parameters. Thus, while a Type N bottleneck causes the
number of observations to increase at least polynomially in
functions of b, m, and N , the Type P bottleneck causes the
number of observations to increase only as m logm. Fur-
thermore, the number of observations under Type P bottle-
neck is largely independent of N or b.

We caution that the asymptotic behavior indicated by
(15) and (16) is valid for the upper bound on the number
of observations, not on the number of observations itself.
However, these results help us intuitively understand the na-
ture of performance curves in Figures 2–4. In particular,
these figures show that before the sharp rise caused by non-
peer recipients, the number of required observations remain
almost constant as a function of N and b as suggested by
(16). Once the bottleneck changes over to the Type N, the
number of observations rise sharply as suggested by (15).

These figures also show that the transition from one type
of bottleneck to another occurs in the same parameter range
for both the learning and excluding phases. Since it is im-
portant that the anonymity provided by the system be sen-

parameters N m b

N = 20000, m = 20, b = 50 15718 28 56
N = 400, m = 10, b = 10 369 11 10

N = 200000, m = 40, b = 100 105602 91 138

Table 1. Threshold values of N , m, and b for
three typical cases

sitive to the parameters N and b, in the following we will
present a formula for the transition region where the domi-
nance of the bottlenecks changes for the learning phase.

7.2. Threshold of Transition Region

A threshold for transition from Type N bottleneck to
Type P bottleneck can be obtained by comparing the terms
responsible for these bottlenecks. Specifically, we use the
difference

D(i) =
(N −m)(b−1)

(N −m− (i− 1)(b− 1))(b−1)
− m

m− i + 1

to compare the two terms. Since for both bottlenecks the
most number of observations are required for finding the
m-th compatible recipient set, the boundary of the transition
region can be obtained by setting D(m) = 0,

(N −m)(b−1)

(N −m− (m− 1)(b− 1))(b−1)
= m (17)

By fixing two parameters in (17), we can compute the
threshold value of the third parameter when the learning
phase goes from one bottleneck to another. The Table 1
shows the threshold values for three typical cases consid-
ered in this paper. A comparison of these thresholds with
the performance curves in Figures 2–4 shows that (17) pre-
cisely estimates the boundary of transition region for all
nine performance curves. Furthermore, a comparison of
these thresholds with the knee of performance curves in Fig-
ures 5–7 shows that they are also an excellent predictor of
the transition region in the excluding phase.

8. Issues in Computing Analytical Estimates

In this section, we will address certain issues that arise in
computing analytical estimates. We start by addressing the
approximation of distinct non-peer recipients in a recipient
set made for deriving the analytical estimate for the learning
phase.

Recall that we assumed that all non-peer recipients in a
recipient set were distinct or in other words, we assumed
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that the number of distinct non-peer communication part-
ners in a recipient set is b − 1. This approximation allows
us to set the number of non-peer recipients in i−1mutually
exclusive recipient sets to be (i − 1)(b − 1). In practice,
there is a small probability that a non-peer partner would be
the intended recipient for more than one message, making
the number of distinct non-peer recipients in a recipient set
to be l, where l = 1, . . . , b− 1. These l non-peer recipients
can be chosen from the pool of N −m non-peer partners in(
N−m

l

)
ways. Furthermore, a particular group of l non-peer

recipients can be put in b− 1 places in l!S(l)
b−1 ways, where

S(l)
b−1 is the Sterling number of second kind and equals to the

number of ways of partitioning a set of (b−1) elements into
l non-empty subsets. The factor of l! takes into account the
fact that these l subsets are further assigned l different iden-
tities of non-peer communication partners. It now follows
that the probability of obtaining l distinct non-peer commu-
nication partners in a recipient set is given by

l!
(
N−m

l

)S(l)
b−1

(N −m)b−1

In an open environment, we expect that the chances of a
non-peer communication partner occurring more than once
in a batch would be very small, and a quick calculation for
typical sets of parameters by using the above formula shows
that indeed this is true, and assuming b− 1 non-peer recip-
ients in a batch results in very little loss of accuracy. If
desired, the analytical estimates can be made more precise
by substituting E[distinct non-peer partners], the expected
number of distinct non-peer partners, in place of b− 1:

E[distinct non-peer partners] =
b−1∑
l=1

l
l!
(
N−m

l

)S(l)
b−1

(N −m)b−1

Another assumption used in deriving the analytical es-
timate for the learning phase was that the probability of
seeing the same recipient set more than once is negligible.
Given a recipient set, the probability of a new recipient set
being the same as the given set is

1
m

(b− 1)!
1

N (b−1)

For b � N this probability is negligible: it evaluates to
5.4× 10−150, 1.38× 10−19, and 3.7× 10−371 for the cases
(a), (b), and (c), respectively.

Recall that in deriving the analytical estimate for the
excluding phase we made two critical assumption: First,
we assumed that the attacker does not maintain the pool
of unused recipient sets for the future use. This attacker
would necessarily require more observation than the un-
bounded attacker, and therefore our estimate produces an

upper bound on the required number of observations. Sec-
ond, in order to make our calculations tractable, we decou-
pled the state vector Y by assuming that the number of non-
peer recipients left in O2, . . . , Om is given by γ, and pro-
ceeded to calculate the number of recipients left in O1. In
our calculations, we assumed that on the average other re-
cipients sets have the same number of recipient as O1 and
put γ = (m− 1)(|O1| − 1).

It turns out that our upper bound for the excluding phase
is quite loose. For the simulated cases discussed in this pa-
per, our upper bound is up to six times higher than the values
obtained by simulations. The main source of high estimate
is our assumption that the attacker does not keep the pool
of unused recipient sets for the future use. We are currently
working on a solution which removes this restriction and
promises a much tighter upper bound.

At present, we have not calculated the impact assuming
γ = (m−1)(|O1|−1) since the impact is likely to be much
smaller than the impact of not maintain the pool of unused
recipient sets for the future use.

9. Conclusions

In this paper, we presented a comprehensive analysis
of the disclosure attack on anonymity providing systems.
We showed that the disclosure attack is NP-complete which
causes the simulations of the attack to be significantly ex-
pensive in computing resources. As an alternative, we de-
rived analytical estimates for both the learning and exclud-
ing phases of the disclosure attack. These estimates were
compared against the simulation results for three different
sets of system parameters. For the learning phase, our es-
timate is tight and can serve as a substitute for simulation
results. For the excluding phase, our estimates provide an
upper bound which can be used as a protection limit of
anonymity systems.

We defined weak operational region of anonymity pro-
viding systems as the parameter space where anonymity
provided by the system becomes independent of one of the
system parameters. Simulation results show that disclosure
attack renders a large parameter space as weak operational
region. We presented an asymptotic characterization of the
performance curves and showed that indeed the number of
observations required at the learning stage become indepen-
dent of the number of users and the batch size for certain
values of system parameters.

An analytical formula was developed to estimate the
boundary of weak operational regions. The values esti-
mated by this formula were in a precise agreement with the
simulation results, eliminating the need for expensive sim-
ulations to avoid the weak operational region.

The future work may proceed in several directions. To
completely eliminate dependencies on the simulations, bet-
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ter estimates are needed for the number of observations at
the excluding phase. Although the disclosure attack is quite
powerful in its scope, it is still suboptimal, and a better de-
terministic attack may be found. Finally, a more refined
notion of privacy needs to be developed in order to assess
the erosion of privacy as an attacker observes progressively
more acts of communication by the targeted user.
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