
ANONIZE: A Large-Scale Anonymous Survey System

Susan Hohenberger

Johns Hopkins University

susan@cs.jhu.edu

Steven Myers

Indiana University

samyers@indiana.edu

Rafael Pass

Cornell University

rafael@cs.cornell.edu

abhi shelat

University of Virginia

abhi@virginia.edu

Abstract—A secure ad-hoc survey scheme enables a
survey authority to independently (without any interac-
tion) select an ad-hoc group of registered users based
only on their identities (e.g., their email addresses), and
create a survey where only selected users can anonymously
submit exactly one response. We present a formalization
of secure ad-hoc surveys and a provably-secure implemen-
tation in the random oracle model, called ANONIZE. Our
performance analysis shows that ANONIZE enables securely
implementing million-person anonymous surveys using a
single modern workstation. As far as we know, ANONIZE

constitutes the first implementation of a large-scale secure
computation protocol (of non-trivial functionalities) that
scales to millions of users.

I. INTRODUCTION

We study the basic conflict between anonymity and

authenticity in large network settings. Companies, uni-

versities, health providers and government agencies

routinely conduct asynchronous and real-time data col-

lection surveys for targeted groups of users over the In-

ternet. To do so, they aim for authenticity (i.e., ensuring

that only the legitimate users can participate in the data

collections) and anonymity (i.e., ensuring that the there

is no link between the legitimate user and his/her data

so that users are more likely to submit honest feedback).

The intrinsic conflict between these two goals may

result in users self-censoring or purposely biasing data

they submit.

A simple example is a course evaluation for a uni-

versity class. A typical implementation of such a survey

requires a trusted third party (such as the university,

or some external party) to ensure that feedback is

collected anonymously from the participants and that

only authorized participants, i.e., the students enrolled

in a particular class, can submit feedback for that class.

In such trusted-party implementations, students are re-

quired to authenticate themselves with their university

IDs and thus leave a link between their evaluation and

their identity; they are trusting the survey collector to

keep such links private.

Assuming that the survey collector acts as a trusted

third party is dangerous. Even if the survey collector

intends to keep the links between users and their surveys

private, its computer may be stolen or broken into,

and the information leaked. For instance, in 2009, a

computer at Cornell was stolen, containing sensitive

personal information, such as name and social security

number, for over 45,000 current and former university

members [1]. Additionally, even if users have full confi-

dence in the the trusted third party, and in particular, its

ability to keep its data secure, developing an anonymous

survey system using such a trusted party still requires

some care. For example, in the implementation of course

reviews at the University of Virginia, side channel infor-

mation indicating who has already filled out the survey

may leak information about the order in which students

participate. Later, the order of the students’ comments

in the aggregated responses may be correlated to break

anonymity [2].

Furthermore, in many situations, jurisdictional bound-

aries or legal requirements make it unfeasible to rely on

solutions with external trusted third parties: it may be

illegal to store sensitive patient information on a third-

party system; similarly, many countries do not permit

sensitive data to be stored on servers run by foreign

corporations due to the potential for this data to be

seized [3].

For these reasons, we seek cryptographic solutions

to the problem of anonymous surveys that offer secu-

rity guarantees where anonymity and authenticity hold

without needing to trust a third party.

Cryptographic voting techniques described in prior

work may offer a partial solution to this problem (see

e.g., [4], [5], [6], [7], [8]). In such schemes, each survey

consists of two steps: 1) users authenticate themselves

to a server and anonymously check out a single-use
“token”; the token itself carries no link to the user’s

identity. 2) a user can then use her token to participate

in the specified survey. Such schemes provide good

anonymity assuming that users actually separate steps

1 and 2 with a reasonably long time lag (otherwise

there is a clear time link between the user and its

data). But if users are required to separate the two

steps by, say, a day, the ease-of-use of the survey is

significantly hampered and become much less conve-

nient than “non-anonymous” surveys (or anonymous

surveys employing a trusted third party). Additionally,

the extra steps required to authenticate for each survey

may be onerous. Consequently, such techniques have

gained little traction.

A. Our innovation: electronic ad-hoc surveys

In this paper, we consider a general solution to the

problem of anonymously collecting feedback from an

authenticated group of individuals by introducing the

notion of an ad-hoc survey. The “ad-hoc” aspect of

this notion means that anyone can select a group of

individuals and create a survey in which those and only

those individuals can complete the survey at most once;

additionally, the survey initiator can initiate this survey

knowing only the identities (e.g., the email addresses) of

the users in the ad-hoc group—no further interaction be-

tween the survey initiator and the users is required.1 As

such, our method provides essentially the same ease-of-

use as traditional (non-anonymous) electronic surveys

(and it thus is expected to increase user participation

and make the feedback submitted more valuable).

As we demonstrate, ad-hoc surveys admit practical

and efficient solutions for very large surveys: we present

an ad-hoc survey scheme, ANONIZE, a proof of secu-

rity for the cryptographic protocols in ANONIZE, and

an implementation of the protocol. ANONIZE supports

millions of “write-in” (i.e., collection of arbitrary strings

of data) surveys in minutes. As far as we know, this

is the first implementation of a provably-secure2 multi-

party protocol that scales to handle millions of users.

Additionally, we prove security of our scheme even

if the adversary participates in an arbitrary number of

concurrent surveys.

B. Ad-hoc Surveys in more detail

In more details, there are three parties in an ad-hoc

survey system: a registration authority (RA) that issues

master user tokens, a survey authority (SA) that can

create surveys, and users that provide survey data. A

user must first register with the RA and retrieve a secret

“master user token”. This is a single token that can

be used for all future surveys the user participates in.

Anyone can act as an SA by choosing a uniquel survey

ID and publishing a list of identities that are permitted to

participate in that survey. The list of identities that can

participate in a particular survey can grow dynamically,

and the SA can create a survey without any interaction

with others. Finally, a user who is on the list of valid

identities for a survey can non-interactively submit a

response to the survey by simply routing one message

to the SA (through an anonymous network like Tor, or

anonymous proxy relay).

To exemplify this approach and informally discuss

the anonymity/authenticity properties it provides, we

consider the course evaluation scenario.

1Before users can complete a survey, we additionally require them
to register their identity. We emphasize that this registration is done
only once and can be used for any number of subsequent surveys.

2By “provably-secure”, we only refer to the cryptographic protocol.

1) Student Registration: When a student is asked to

set-up his college/university account information (while

proving his identity using traditional, non-electronic,

methods), the student also generates an unlinkable mas-
ter user token that is tied to his school email identity

(e.g., his email address). This step can also be done at a

later stage if the student desires (or if the student loses

his credential), but it only needs to be done once.

2) Course Survey Setup: Whenever a course admin-

istrator wishes to set-up a course survey, she generates

a survey key based only on the actual identities (e.g.,

the email addresses) of the course participants.

3) Survey Execution: Upon filling out a survey with

its associated survey key, the student’s client (either

computer or smart phone) combines the survey key and

her master user token to generate an unlikable one-time
token that she can use to complete the survey. The one-

time token satisfies two properties: 1) it carries no link

to the student’s identity (thus we have anonymity), and

2) for a given survey key, the student can obtain at

most one such token (and thus we ensure that a student

can only complete the survey once3). The results of the

survey can now be tabulated, and, possibly announced.

We emphasize that once Step 1 has been done (pre-

sumably once the students enroll into college), Steps 2

and 3 can be repeatedly performed. The participants do

not need to check-out new single-use tokens for each

survey; rather their client uses the master user token to

create a unique single-use token for this survey without
any interaction (that could deanonymize the student).

Part of our contribution is to precisely define security

properties of ad-hoc surveys such as anonymity (intu-

itively, that there is no link between users and the sur-

veys they submit), and authenticity (intuitively, that only

authorized users can complete the survey, and they can

complete it only once). As mentioned, we are interested

in providing security not only for a single survey, but

also if an attacker participates in many surveys, be they

in the past, concurrent, or in the future. A common

approach for defining security in such circumstances

is to formalize the notion of secure ad-hoc surveys

within the framework for Universal Composability [9].

Doing so permits one to analyze the protocol under a

single instance and deduce that it also remains secure

under concurrent executions. Unfortunately, there are

well-known inefficiencies with this approach. Rather,

to enable an efficient implementation, we provide di-

rect game-based definitions of security and directly

analyze the security of our protocol under concurrent

executions—this is analogous with other cryptographic

3Our systems support the (optional) ability for the user to change
her response (before the voting deadline) in a manner that replaces
her previous submission, but in no other way leaks any information
about her identity.

game-based definitions, e.g., blind signatures [10]; we

emphasize that although related notions of anonymity

and authenticity have been defined in the literature

for other applications, our setting is considerably more

complex and thus the actual definitions are different.

C. Anonize in more detail

Our system is constructed in two steps. We first

provide an abstract implementation of secure ad-hoc

surveys from generic primitives, such as commitment

schemes, signatures schemes, pseudo-random func-

tions (PRF) and generic non-interactive zero-knowledge

(NIZK) arguments for NP4. We prove the security of the

abstract scheme based on the assumption that all generic

primitives employed are secure. Note that we have taken

explicit care to show that our schemes remain secure

even when the adversary initiates many concurrently
executing sessions with the system.

In a second step we show that (somewhat surpris-

ingly) the generic scheme can be instantiated with

specific commitment schemes, signatures schemes, PRF

and NIZKs to obtain our efficient secure ad-hoc survey

scheme ANONIZE (which now is based on specific

computational assumptions related to the security of the

underlying primitives in the Random Oracle Model).

The surprising aspect of this second step is that our

generic protocol does not rely on the underlying prim-

itives in a black-box way; rather, the NIZK is used to

prove complex statements which require code of the

actual commitments, signatures and PRFs used. In this

second step, we rely on ideas similar to those under-

lying efficient constructions of anonymous credentials

in bilinear groups [11], [12], although our constructions

differ in a few ways. As far as we know, our scheme is

also one of the first implementations of a cryptographic

scheme that is concurrently-secure.

Let us briefly provide a high-level overview which

omits several important features, but conveys the intu-

ition of our abstract protocol (we assume basic familiar-

ity with the concepts of commitment schemes, signature

schemes, PRFs and NIZKs).

1) Registration: A user with identity id registers with

the RA by sending a commitment to a random seed sid
of a pseudo-random function (PRF) F and providing a

NIZK that the commitment is well-formed. If the user

has not previously been registered, the RA signs the

user’s name along with the commitment. The signature

returned to the user is its “master user token”. The

security property required here is weaker than that of a

blind signature.

2) Survey: To create a survey, an SA publishes a list

of signed user identities along with a survey id, vid.

4As we show, we actually need a new variant of standard NIZKs.

3) Response: To complete a survey for survey id

vid, a user id generates a single-use token Fsid(vid)
(by evaluating the PRF on the seed sid with input vid)

and presents a NIZK that it “knows a signature by the

RA on its identity id and a commitment to a seed sid”

and that it “knows a signature by the SA on its id” and

that the single-use token is computed as Fsid(vid). The

user’s actual survey data will be part of and thereby

authenticated by this NIZK.

Roughly speaking, the NIZK proof in the survey

completion step ensures that only authorized users can

complete the survey, and that they can compute at most

one single-use token, and thus complete it at most

once. 5 Anonymity, on the other hand, roughly speaking

follows from the fact that neither the RA nor the SA

ever get to see the seed sid (they only see commitments

to it), the zero-knowledge property of the NIZKs, and

the pseudo-randomness property of the PRF.

Proving this abstract protocol secure is non-trivial.

In fact, to guarantee security under concurrent exe-

cutions, we introduce and rely on a new notion of

a simulation-extractable NIZK (related to simulation-

sound NIZK [13] and simulation-extractable interactive

zero-knowledge arguments [14], [15]).

To enable the second step of our construction (i.e.,

the instantiation of the abstract protocol using specific

primitives), we demonstrate a simple and efficient way

of implementing simulation-extractable NIZK in the

Random Oracle Model by relying on the Fiat-Shamir

Heuristic [16]. Finally, the key to the construction is

choosing appropriate commitments, signatures and PRF

that can be “stitched together” so that we can provide

an efficient NIZK for the rather complex statement used

in the abstract protocol.

D. Related notions and techniques

Ad-hoc surveys are related to, but different from, a

number of primitives previously considered in the liter-

ature such as group signatures, ring signatures, voting
schemes and anonymous credentials. Roughly speaking,

group [17], [18], [19] and ring [20] signatures allow

members of a set of users to sign messages in a way

that makes it indistinguishable who in the set signed

the message (in the case of group signatures the set is

fixed 6, whereas in the case of ring signatures the set

can be selected “ad-hoc”). This property is similar to the

5If the user wants to replace her survey response before the deadline
and this is allowed by the system, then she can create a new NIZK
with new data for the same Fsid (vid) value. The old survey with this
value can be deleted.

6The desirability of making group signatures dynamic was ad-
dressed by Bellare, Shi and Zhang [21]. Their solution, however,
requires that every group member or potential group member has
their own personal public key, established and certified, e.g., by a PKI,
independently of any group authority. Our ad-hoc survey solution does
not require this.

anonymity property of ad-hoc survey, but unfortunately,

the authentication property these notions provide is

insufficient for our setting—in a ring signature scheme,

a user may sign multiple messages with impunity which

corresponds to the ability to complete the survey mul-

tiple times in our context. Voting schemes [4], [5], [6],

[7], [8] on the other hand do provide both the anonymity

and the authenticity properties we require; however, they

do not allow for the authenticated users to be selected

ad-hoc for multiple elections.
An anonymous credential system [22], [23], [24],

[11] allows users to obtain credentials from authorities

and to anonymously demonstrate possession of these

credentials. In essence such systems provide methods

for providing, a “zero-knowledge proof of knowledge

of a signature on a set of attributes.” As mentioned, the

NIZKs we use rely on intuitions similar to those used

in constructions of anonymous credentials (most closely

related to [11] and the electronic cash/token extensions

in [25], [12]), but we have different goals and rely

on different complexity assumptions. Moreover, since

anonymous credentials typically are not analyzed under

concurrent executions, we must develop new techniques

for the security analysis.

E. Our Implementation
One of the key points of our system is that it can

be implemented and can easily handle large numbers of

users with moderate resources. The computational costs

on the users are quite low as well, with a typical desktop

being able to compute the worst-case scenario in under

a few seconds, using a single core of the machine.

Thus we argue our system scales to manage that vast

majority of practical surveying needs at costs that are

easily affordable.

II. AD-HOC SURVEYS

An Ad-hoc Survey Scheme is a protocol involving

three types of players:

— A single Registration Authority (RA).

— One or multiple Survey Authorities (SA).

— Users; each user is associate with a public user

identity id (e.g., its email address).

We assume that the RA has the ability to set up a

secure session (private and authenticated) with the user

associated with a particular user identity. Each user

additionally has the ability to setup an anonymous

connection to the SA when returning their survey.
An ad-hoc survey scheme is a tuple of

algorithms (GenRA,GenSA,RegRA,RegU , GenSurvey,

Authorized, Submit,Check) which we formalize

shortly. To gain some intuition, let us first explain

how these algorithms are intended to be used in a

system and informally explain what types of security

requirements we want from the algorithms.

System Set-up:
— The RA generates a public key-pair pkRA, skRA ←

GenRA(1n); pkRA is made public and skRA is

secretly stored by the RA.

— Each SA generates a public key-pair pkSA, skSA ←
GenSA(1n); pkSA is made public and skSA is

secretly stored by the SA.7

— For systems that require the use of a Common

Reference String (CRS); a CRS is generated and

made publicly available. For simplicity of notation,

we omit the CRS in all the procedures below and

simply assume that all these procedures get the

CRS as an input. Likewise, for systems in the

Random Oracle model, we assume the procedures

below have access to the Random Oracle.

User Registration: To use the system, users need

to register with the RA; at this point the user and the

RA execute the protocol (RegRA,RegU) which allows

the user to check out an unlinkable “master credential”.

A user with identity id proceeds as follows:

1) The user sets up a secure session with the RA.

2) The RA checks that user identity id previously has

not been registered. If it has, the RA closes the

session. Otherwise, the RA and the user invoke the

interactive protocol (RegRA,RegU) on the common

input 1n, id.

3) If the protocol ends successfully, the RA stores that

user identity id has been registered, and the user

secretly stores the output as credid.

Survey Registration: Whenever an SA wants to set-

up a survey with identifier sid, it generates a “survey
public-key” based on the identities of the participants

(and its own secret key). More precisely, the SA on

input a survey identifier sid and a list L of user identities

(they may be previously registered or not) computes and

makes public pksid ← GenSurvey(1n, sid, L, skSA).
Completing a Survey: Given a registered survey

with identifier sid and its associated public-key pksid,

each “authorized” user idi can combine its master cre-

dential credid with the survey identifier sid and public-

key pksid to generate an unlikable “one-time token” that

it can then use to make a submission in the survey.

Roughly speaking, the “one-time token” satisfies two

properties: 1) it carries no link to the students identity

(thus we have anonymity), and 2) for a given “survey

key”, the student can obtain at most one such token (and

thus can only submit one response).

More precisely, user id with master credential

credid submits the message m as the completed

survey by privately executing the algorithm Sub =
(tok,m, tokauth) ← Submit(1n, sid, pksid,m, credid)

7Our security properties hold even if new SAs are added on-the-fly.

and then submitting Sub to the SA through an

anonymous channel; tok is the “one-time token”,

and tokauth is an authenticator required to bind the

message m to the one-time token, and to ensure

uniqueness of the one-time token. SA checks whether

the submission is correctly computed by executing

Check(pkSA, pkRA, sid, pksid, Sub); if it outputs accept
it stores the submission. If a submission with the same

tok has been previously stored (i.e., if a Sub of the

form (tok,m′, tokauth′) has already been stored, the

old record is removed. (Or alternatively, the new Sub is

not stored.)

Announcing the results: Once all the submissions

have been collected, the SA may (depending on exter-

nal privacy requirements) publish a list of all stored

submissions Sub = (tok,m, tokauth).
Audit Procedures: The system also includes au-

dit procedures. First, Users can check that their sub-

mission was “counted” by simply inspecting that

their submission is output. Second, a User may

use Check(pkSA, pkRA, sid, pksid, Sub) to check whether

Sub is a valid submission (i.e., user can check that

there is no “ballot/survey-stuffing”). Finally, to ensure

that a survey is not targeted to a particular user (for

de-anonymization purposes), the user may use function

Authorized(pkSA, sid, pksid, id
′) to check whether user

id′ is also authorized for survey sid with public key

pksid.

Key features and Security Properties: A crucial

aspect of an ad-hoc survey is the privacy property:

even if the RA and SA are arbitrarily corrupted (and

in collusion) they cannot learn anything about how

particular users answered submissions (or even learn

correlations between groups of users). The key security
property of our ad-hoc survey is that only authorized

users can complete a survey, and furthermore they can

complete it at most once.

A. Definition of an Ad-hoc Survey

Definition 1: An ad-hoc survey scheme Γ is an

8-tuple of PPT algorithms and interactive PPTs

(GenRA,GenSA,RegRA,RegU , GenSurvey, Authorized,

Submit, Check) where

• GenRA(1n) outputs a key-pair pkRA, skRA.

• GenSA(1n) outputs a key-pair pkSA, skSA.

• RegRA(skRA, 1
n, pkRA, idi) is an interactive PPT

that outputs either success or fail.

• RegU (1n, pkRA, id) is an interactive PPT that out-

puts a bitstring credid or fail.

• GenSurvey(1n, sid, L, skSA) outputs a bitstring

pksid. Here sid is a unique arbitrary identifier and

L is a description of the set of users eligible to

participate in the survey.

• Authorized(pkSA, sid, pksid, id) outputs either YES
or NO.

• Submit(1n, sid, pksid,m, credid) outputs Sub =
(tok,m, tokauth).

• Check(pkRA, pkSA, sid, pksid, Sub) outputs either

accept or fail.

A remark on the Authorized procedure: We are in-

terested in schemes where the description of the autho-

rized procedure makes it possible to naturally interpret

the set of users that are allowed to complete a survey

(and indeed, our constructions fall into this category).

For instance, the description of the Authorized proce-

dure specifies a list of user identities, or specifies a list

of user identities with wildcard (e.g., ∗@∗.cornell.edu).

In our specific implementation, the public key for the

survey pksid consists of a list of authorized users.

B. Correctness

We proceed to define what it means for an ad-hoc

survey scheme to be correct. The following definition

requires that for every set of users L, and every user

id ∈ L, if an SA sets up a survey for L, and if the

user correctly registers with the RA, then the user will

be authorized to complete the survey; furthermore, for

every submission m, if user id correctly submits m, this

submission will pass the check.

Definition 2: An ad-hoc survey scheme Γ is correct
if there exists a negligible function μ(·), such that the

following experiment outputs fail with probability at

most μ(n) for every n ∈ N, sid,m ∈ {0, 1}n, set L
of n-bit strings, id ∈ L:

– (vkRA, skRA)← GenRA(1n)

– (vkSA, skSA)← GenSA(1n)

– Set (outRA, outU) to the result of the protocol

(RegRA(skRA, 1
n, vkRA, id),Reg

U (1n, vkRA, id))

– Output fail if either outRA or outU is fail, otherwise

let credid = outU.

– vksid ← GenSurvey(1n, sid, L, skSA)

– Output fail if Authorized(vkSA, sid, vksid, id) = NO.

– Sub← Submit(1n, sid, vksid,m, credid)

– Output Check(vkSA, vkRA, sid, vksid, Sub)

C. Privacy and Security

The following definition stipulates that the SA(s) and

RA and malicious users, even if arbitrarily corrupted,

cannot distinguish the submissions of two authorized

honest users, even for an adaptively chosen participant

list, user identities and submission messages, and even

if they may see the submission messages of the two

participants for any messages of their choosing, in any

other survey of its choice. Thus, even if an attacker

knows what submissions correspond to which users in

any surveys of its choice (before and after the survey

of interest), it still cannot identify what these users

submitted for a survey of interest. The definition mirrors

the definition of CCA-secure encryption: we give the

attacker the opportunity to generate an arbitrary public-

key for the RA, pick two user identities id0, id1, ask the

users to register with him, and then make oracle queries

to the users’ Submit procedure. Finally, the attacker

selects a survey consisting of a public-key for a SA, a sid
and a public key for the survey pksid such that id0, id1
are both authorized (for which it has not yet queried

the Submit oracle on sid), a pair of messages m0,m1,

and then sees two submissions. The attacker must guess

whether the two submissions correspond to ones from

id0 and id1 or from id1 and id0 respectively; the attacker

continues to have oracle access to the users’ Submit
procedure during this decision-making phase but cannot

make queries on the sid.

Definition 3: An ad-hoc survey scheme Γ is unlink-
able if for every non-uniform PPT A the ensembles

{EXEC0(1n, A)}n∈N, {EXEC1(1n, A)}n∈N are compu-

tationally indistinguishable where EXECb(1n, A) is de-

fined as follows:

EXECb(1n, A)

– (vkRA, skRA), z ← A(1n)

– A(1n, z) concurrently interacts with
RegU (1n, vkRA, id) for any two different ids
id0 and id1. Whenever an interaction with some
RegU (1n, vkRA, id) �= ⊥ completes, for the
remainder of the experiment, A gets oracle access
to Submit(1n, ·, ·, ·, credid). Next, A outputs a target
survey:

– (vkSA, sid, vksid, id0, id1,m0,m1, z
′)← A(1n, z)

– Output fail if Authorized(vkSA, sid, vksid, id�) = fail
or if A has queried Submit(1n, sid, ·,mj , credid�) for
either �, j ∈ {0, 1}

– Let Sub� = Submit(1n, sid, vksid,m�, credid�⊕b
)

for both � = 0 and � = 1 and finally output
A(1n, (Sub0, Sub1), z

′)

1) Justification for the definition: We want to allow

the adversary to participate in multiple surveys, with

multiple honest submitters, and see the submissions of

as many honest submitters as it wishes. In particular, we

can consider a definition in which the following changes

are made. The adversary is now permitted to register

an unlimited number of honest users by interacting

with RegU under the condition that no two have the

same id. The adversary, for an arbitrary k surveys and

� ≥ 2 honest submitters in each survey, is allowed to

output two k × � matrices of ids ID0,ID1, a vector of

k sids, �sid, a vector of k the surveys’ verification-keys
�vksid and two k× � matrices of messages M0,M1. We

require the submissions be legitimate, thus we require

that all of the ids in a given row of IDc, c ∈ {0, 1} be

distinct. Similarly, all the sids in �sid must be distinct,

corresponding to distinct surveys (if one wanted to

have more ids in a given survey, the adversary could

simply increase the size of �). Finally, all of the surveys

need to be “well formed” for every i ∈ [k], j ∈ [�],
both ID0

i,j and ID1
i,j are authorized to participate in

survey sidi. Finally, of course, we do not permit the

attacker to query the Submit oracle for submissions by

idi,j in survey sidi). We call this notion multi-survey
unlinkability. We note that this is a form of concurrent

security as it guarantees unlinkability no matter how

the adversary generates multiple surveys and schedules

the registration of individuals. In the full version of this

paper, we formally define this notion and show that it

is implied by Definition 3.

2) Security: Let us now turn to define security.

The following definition stipulates that only authorized

users may complete surveys, and only one of their

submissions is counted. We require that this holds even

if the user attacker may register multiple identities, and

see submissions of the attacker’s choice for any other

user of its choice and in any survey (this one, or any

other survey).

To begin, we formalize what it means to give

the attacker access to submission oracles for

users of its choice by defining the stateful oracle

Submit′(1n, sid, pksid,m, id, pkRA, skRA) that operates

as follows: if the oracle has not previously been

queried on the identity id, let (outRA, credid) ←
(RegRA(skRA, 1

n, pkRA, id),Reg
U (1n, pkRA, id)); next

output Submit(1n, sid, pksid,m, credid). If the oracle

has previously been queried on the identity id, recover

the previously computed credential credid, and directly

output Submit(1n, sid, pksid,m, credid).
Definition 4: An ad-hoc survey scheme Γ is secure

against malicious users if for every non-uniform PPT A,

every polynomial p(·), there exists a negligible function

μ(·), such that the following experiment outputs success
with probability at most μ(n) for every n ∈ N,

MU(A, n)
– (vkRA, skRA)← GenRA(1n)

– For i = 1 to p(n), let (vkiSA, sk
i
SA)← GenSA(1n)

– Throughout the rest of the experiment, A has access

to oracle GenSurvey(1n, ·, ·, skiSA) for any i, and

Submit′(1n, ·, ·, ·, vkRA, skRA).
– Let adversary A(1n) concurrently interact with

RegRA(skRA, 1
n) with adaptively chosen, but unique,

user identities id ∈ {0, 1}n of its choice. (That is,

A can only use each user identity id in a single

interaction with RegRA.) Let L′ denote the list of user

identities selected by A, and let z denote the output

of A after this interaction finishes.

– z′, L, sid, i← A(1n, z)

– vksid ← GenSurvey(1n, sid, L, skiSA)

– S ← A(1n, z′, vksid)
– Output success if
• |S| > |L ∩ L′| and
• Check(pkSA, pkRA, sid, pksid, Sub) accepts for all
Sub ∈ S,

• For (tok,m, tokauth), (tok′,m′, tokauth′) ∈ S2,
tok �= tok′.

• For all (tok,m, tokauth) ∈ S, (tok,m, tokauth′)
was never received as an output from A’s Submit′

oracle (where tokauth′ is an arbitrary string) when
queried with sid as second input.

These four conditions roughly correspond to the

determining whether A produced more submissions than

allowed, all submissions are valid, all submissions have

different token-numbers, all token-numbers are new, and

no submissions have been modified.

Remark: Note that in the above definition, A is

allowed to talk to p(n) different SAs. It is without loss

of generality to assume that A talks to just a single

SA (that is p(n) = 1). This follows from standard

technique, and is omitted for space reasons.

III. AN AD-HOC SURVEY SCHEME BASED ON

GENERAL ASSUMPTIONS

We assume the reader is familiar with signature
schemes secure against adaptive-chosen message at-

tacks [26], non-interactive commitment schemes [27],

and pseudorandom functions [28]; see [29].

A. Concurrent simulation extractable NIZK

We introduce the new notion of tag-based concurrent
simulation-extractable (cSE) NIZK (a non-interactive

version of tag-based concurrent simulation-extractable

zero-knowledge from [14], [15]); this notion is closely

related to the notion of non-malleability in the explicit
witnesses sense of [30] (which in turn relies on the

notion of simulation-soundness of [13]), and universally
composable UC NIZK of [9]. The former is (a-priori)

weaker than ours in that it only requires extraction from

a single protocol (this notion is referred to as “many-

one” simulation-extractability in [14], [15]) whereas the

latter is stronger in that it requires extractability to

be done “on-line”. Relying on this new intermediate

notion allows us to strike the right balance between

security and efficient implementability: in particular, we

will present simple and extremely efficient concurrent

simulation-extractable NIZKs in the Random Oracle

model, whereas UC NIZK incurs more overhead.

We first start by defining concurrent simulation ex-

tractability. Imagine an attacker A playing man-in-the-

middle between a legitimate prover on the left interac-

tion, and a legitimate verifier on the right. More specif-

ically, in the left interaction, attacker A can request

proofs of any true statement x of its choice using any

tag tag of its choice. In the right interaction, A outputs a

list of tags, statements and proofs (�tag, �x, �π) as well as a

string aux. For every such A, we require the existence

of a simulator-extractor SE that must reconstruct the

view of A and additionally produce witnesses for all

accepting statement-proofs (x, π) ∈ (�x, �π) on the right

that use a new tag.

Below, we assume a proof system (D,P, V) where D
generates a CRS, P is a prover, and V is a verifier. The

function W provides witnesses to theorem statements.

Let real(1n, A,W, z) denote the output of the following

experiment: Run ρ ← D(1n); next give A(1n, z, ρ)
oracle access to P ′(·, ·, ·) where P ′(tag, x, ρ) runs

P (tag, x,W (x, view′), ρ) where view′ is A’s view up

until this query; finally, outputs the view of A (that is

a sequence of tag-statement-proof tuples �(tag, x, π) and

the CRS ρ. Given a view view of A, we interpret the

output of A as a sequence of tag-statement-proof tuples

(tag′, x′, π′) and some additional output aux. Define

the predicate fail(view, �w) = 1 if and only if A, when

given the view view, containing the CRS ρ, outputs a

proof π of some statement x with respect to tag tag
such that a) none of the proofs received by A in the

view view use tag tag, b) V accepts the proof π—that

is, V (tag, x, ρ, π) = 1, and c) �w does not contain a

witness for x.

Definition 5 (Concurrent Simulation-Extractability):
Let (D,P, V) be a non-interactive proof system for

the language L. We say that (D,P, V) is concurrently
simulation extractable (cSE) if for every PPT A, there

exists an expected PPT simulator-extractor SE such

that the following two conditions hold:

(Simulatability) For every witness function W (·, view′)
such that W (x, view′) ∈ RL(x) for all x ∈ L and

all view′, the following ensembles are computationally

indistinguishable

• {real(1n, A, S,W, z)}n∈N,z∈{0,1}∗
• {(view, �w)← SE(1n, z) : view}n,z∈{0,1}∗

(Extractability) There exists a negligible function μ such

that for every n ∈ N,

Pr[(view, �w)← SE(1n, z) : fail(view, �w) = 1] ≤ μ(n)

Additionally, we say that (D,P, V) is black-box concur-
rently simulation extractable if there exists an expected

PPT oracle-machine S̃E such that for every A, the

above two conditions hold with respect to SE(1n, z) =

S̃E
A(1n,z,·)

(1n).
1) Simulation extractability in the ROM: The def-

inition of tag-based non-interactive arguments in the

ROM is identical to Definition 5 except that there

is no need for procedure D; instead of sampling

ρ ← D(1n), we sample ρ as random function from

{0, 1}poly(n) → {0, 1}poly(n) for some appropriate

polynomial; furthermore, instead of providing ρ as input

to P and V , both algorithms have oracle access to ρ. We

make the analogous change in the definition of the real

experiment in the definition of simulation extractability

(now additionally, A gets oracle access to ρ instead of

getting it as input). Also, the view of A contains all of

the answers to oracle calls to ρ made by A, and thus

the simulator-extractor SE needs to reconstruct those

(as opposed to reconstructing the whole of ρ).

Simulation-extractability from HVZK: In this

section we show how to transform any 3-round

special-sound special Honest-verifier Zero-knowledge

(HVZK) [31] proof/argument into a black-box concur-

rently simulation-extractable NIZK in the ROM.

Definition 6 ([31]): A proof system (P, V) is a

3 round special-sound Honest-verifier Zero-knowledge
(HVZK) proof/argument for binary relation R if:

1) (three-move form) Let α be the common input to

P and V , and β such that (α, β) ∈ R is private

input to P . (P, V) has the following three-move

form:

a) P sends a message a to V .

b) V sends a random t-bit challenge string c.
c) P replies z, and V accepts if φ(α, a, c, z) = 1

for some polynomial-time predicate φ.

2) (special soundness) Given accepting transcripts

(a, c, z) and (a, c′, z′) for the instance α such that

c �= c′, there exists a polynomial-time algorithm

computing β such that (α, β) ∈ R.

3) (special honest-verifier ZK) There exists a poly-

nomial time simulator Sim, which on input α and

a random challenge c, outputs an accepting con-

versation of the form (a, c, z), which is identically

distributed to transcript generated by P (α, β) and

V (α) for any (α, β) ∈ R.

Given a protocol Π that is a 3-round special-

sound Honest-verifier Zero-knowledge (HVZK)

proof/argument for binary relation R, we obtain the

tag-based NIZK Π̃ for R by applying the Fiat-Shamir

heuristic to Π and additionally requiring that the tag

tag is hashed—that is, the second-message challenge

c is generated by applying the random oracle ρ to the

first message a and the tag tag (i.e., b = ρ(a, tag)).
Theorem 1: Let Π be a special-sound special HVZK

argument for L, where the first message a of Π has

ω(log n) min-entropy 8 and the second message b is

8Every special-sound special HVZK argument for a hard-on-the-
average language must have this property: if not, with polynomial
probability two honest executions would have the same first message,
but different second messages and thus a witness can be extracted
out.

of length ω(log n). Then Π̃ is a tag-based black-box

concurrently simulation-extractable argument.

Proof: (Omitted for space.)

B. The construction

Assuming familiarity with basic cryptographic primi-

tives discussed in the previous section, the construction

is easy to understand at a high-level. We assume that all

users have unique string identifiers, e.g. email addresses,

to identify them in the protocol. The RA and SA are

each have keys for digital signatures which are consid-

ered the output of GenRA and GenSA respectively.

A user’s secret credential is a random string s. The

user generates the credential by generating a commit-

ment to the random string s and proving the correct-

ness of the commitment to the RA in zero-knowledge.

During registration, the RA verifies that this proof

corresponds to the correct identity of the user and then

authorizes the credential by signing the commitment

and the user id with its signing key. The security of

the signature scheme ensures that only the RA can

authorize legitimate credentials. The signature on the

commitment can be interpreted as a very weak form of

blind-signature in which the RA does not learn anything

about the values being signed, but can verify that the

user has knowledge of the underlying secret.

To generate a survey, an SA generates a unique sid
and individually signs the pair (id, sid) for each user

id that can participate in the survey. We call the list

of all generated signatures L. Only those IDs which

are signed by the SA will be able to complete the given

survey, and the unforgeability properties of the signature

scheme ensure that only the SA can modify the list.

Beneficially, SAs do not need to interact with any other

players to create the surveys.

To submit a response to a survey, the user sends her

submission m to the SA along with an NIZK proof that

the she has a valid credential (i.e., she has a commitment

signed by the RA, and she knows the values committed

to), and that her credential corresponds to an identity on

the survey list L (i.e., the ID in her signed commitment

is also in signed in L). Only legitimate users can

submit in the scheme, and clearly the submission is

anonymous to the SA who learns nothing except that

the submitter is on its approved list. However, we need

to achieve two other properties: i) tie the submission

m to the proof and the survey id, and ii) ensure that

the submitter does not submit multiple responses. The

first property prevents submissions from replay and is

achieved because the NIZK we use is tag-based; we

can use the sid concatenated to the message m as the

tag for the proof. To prevent multiple submissions, we

include a unique token number created by evaluating

a pseudo-random function on the sid using the user’s

credential secret s as the seed, and we augment the

NIZK proof to show that the unique token number

is computed correctly and corresponds to the user’s

credential. Thus, every valid submission by a given user

will have the same random token number associated

with it. This token does not reveal any information about

the submitter, but it allows the SA to detect multiple

submissions from the same anonymous user and either

discard all of them, or accept only the latest submission.

1) Primitives used: Let,
• (Gen, Sign,Ver) be a signature scheme.

• {fs}s∈{0,1}∗ be a family of PRFs.

• Com be a commitment scheme.

• Let L1 be the NP language defined as follows:

(1n, c) ∈ L1 iff there exists strings r ∈ {0, 1}∗, s ∈
{0, 1}n such that c = Com(s; r).

• Let L2 be the NP language defined as follows:

(tok, sid, pkRA, pkSA) ∈ L2 iff there exist strings

s, id, c, r, σs, σsidid such that c = Com(s; r) and

VerpkRA(c||id, σs) = 1 and VerpkSA(sid||id, σsidid) = 1
and tok = fs(sid)

• Let (D1, P1, V1) and (D2, P2, V2) be black-box cSE

NIZK protocols for L1 and L2 respectively.

2) Abstract ad-hoc survey scheme Γ:
• GenRA(1n) = Gen(1n), GenSA(1n) = Gen(1n).

• (RegRA(skRA),RegU)(1n, idi) proceeds as follows:

– A user with identity id uniformly generates

and stores s ← {0, 1}n, r ← {0, 1}poly(n) and

computes c = Com(s; r).

– i computes a cSE-NIZK π using P1 (given the

CRS or RO) that (1n, c) ∈ L1, using the tag 0n

and using (s, r) as witness.

– The user sends c, id, π to the RA.

– The RA checks that π with tag 0n is an

accepting proof that (1n, c) ∈ L1 (using V2) and

if so returns σs = SignskRA(c||id); otherwise it

simply returns fail.

– The user outputs cred = (c, s, r, σs).

• GenSurvey(1n, sid, L, skSA) proceeds as follows.

For each id ∈ L, compute σsidid = SignSAsk
(sid||id)

and output the list of tuples (id, σsidid).

• Authorized(pkSA, sid, pksid, id) outputs YES if pksid
contains a record of the form (id, σsidid) such that

VerSApk
(sid||id, σsidid) = 1

• Submit(1n, sid, pksid,m, id, cred) proceeds as:

– Parse cred = (c, s, r, σs).

– Compute token-number tok = fs(sid).

– Recover a tuple of the form (id, σsidid) from

pksid. If VerSApk
(sid||id, σsidid) �= 1, abort.

– Compute a cSE NIZK π using P2 (and the CRS

or RO) that (tok, sid, pkRA, pkSA) ∈ L2 with tag

1||sid||m using c, s, r, σs, σsidid as witness.

– Send the tuple Sub = (tok,m, π) to the SA.

• Check(pkRA, pkSA, sid, tok,m, π) outputs accept if

V2 (given the CRS or RO) accepts π as a proof of the

statement (tok, sid, pkRA, pkSA) ∈ L2 with tag sid||m.

Theorem 2: If (Gen, Sign,Ver) is a secure signature

scheme, and {fs}s∈{0,1}∗ is a family of secure PRFs,

and Com is a perfectly hiding, computationally binding

commitment scheme, and (D1, P1, V1) and (D2, P2, V2)
are cSE NIZKs for the languages L1, L2 respectively,

then scheme Γ is a multi-survey unlinkable (Def. 3),

ad-hoc survey scheme that is secure (against malicious

users) (Def. 4).

Proof: (Omitted for space.)

C. Alternative implementations

Our proof for theorem 2 applies to more general im-

plementations of the Reg protocol as well. In particular,

the proof allows for the user’s output from the RegU

protocol to be a signature on s||id instead of Com(s)||id
as long as the signature scheme remains unforgeable

even when the user is given access to a RegRA(skRA)(·)
oracle. Recall that the standard security property of a

signature scheme allows the adversary oracle access to

the Sign(·) function; providing oracle access to RegRA

instead is a natural generalization. This generalization

allows for more efficient concrete implementations. In

particular, it allows one to exploit natural connections

between specifically engineered commitment schemes

and signature schemes.

IV. CONCRETE INSTANTIATION

A. Bilinear Groups and Assumptions

Let G and GT be groups of prime order p. A

symmetric bilinear map is an efficient mapping e :
G×G→ GT which is both: (bilinear) for all g ∈ G and

a, b← Zp, e(ga, gb) = e(g, g)ab; and (non-degenerate)

if g generates G, then e(g, g) �= 1. A more general

version of the bilinear map is the asymmetric bilinear
map e : G1×G2 → GT , where G1 and G2 are distinct

groups. We present our constructions in symmetric

groups (which are easier for readers to parse), but

then conduct our implementation in asymmetric groups

(which are more efficient).

Assumption 1 (Decisional Bilinear Diffie-Hellman):
Let g generate a group G of prime order p ∈ Θ(2λ)
with an efficient bilinear mapping e : G × G → GT .

For all non-uniform PPT adversaries A, the following

probability is negligible in λ:∣∣∣∣∣∣∣∣
1/2− Pr

⎡
⎢⎢⎣

a, b, c← Zp;x← {0, 1};
T0 ← e(g, g)abc;
T1 ← GT ;
x′ ← A(g, ga, gb, gc, Tx)

: x = x′

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
.

Roughly this assumption states that an adversary cannot

distinguish between e(g, g)abc and a random group

element when given (g, ga, gb, gc).
Assumption 2 (n-Decisional Diffie-Hellman Inversion):

Let h generate a group G of prime order p ∈ Θ(2λ).
For all non-uniform PPT adversaries A, the following

probability is negligible in λ:∣∣∣∣∣∣∣∣
1/2− Pr

⎡
⎢⎢⎣

b← Z
∗
p;x← {0, 1};

T0 ← h1/b;T1 ← G;

x′ ← A(h, hb, hb2 , . . . , hbn , Tx) :
x = x′

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
.

B. Scheme

The common input for all protocols is a description

of the bilinear mapping, together with generators g, h of

G, and a description of a CRHF H that maps {0, 1}∗ →
Zq . The values g, h can be chosen randomly by the RA.

The elliptic curve library that we use implements the

hash operation H differently depending on the curve

implementation.

Our scheme makes use of the Pedersen commitment

scheme [27], the Dodis-Yampolskiy pseudo-random

function [32], and a simplified signature scheme derived

from the Boneh-Boyen IBE [33]; all three are summa-

rized in Fig. 1.

Theorem 3 ([27]): The Pedersen commitment

scheme is a perfectly-hiding and computationally-

binding commitment scheme assuming the hardness of

the discrete logarithm problem in G.

Theorem 4 ([32], [12]): (informal) The Dodis-

Yampolskiy PRF is a secure pseudo-random function

for input space Z
∗
q in the generic group model.9

Theorem 5 ([33]): (informal) Under the Decisional

Bilinear Diffie-Hellman assumption in G, the Boneh-

Boyen scheme is adaptively secure for n bit messages

for “large groups” which can withstand a factor of 1/2n

reduction in security. 10

C. Sigma protocols for languages L1 and L2

In order to instantiate the remaining protocols, we

must specify the languages L1 and L2 defined in

9Dodis and Yampolskiy [32] showed that their PRF was secure
under the (parameterized) Decisional-Diffie-Hellman Inversion As-
sumption assumption in G for “small inputs”; they discuss [32,
Section 4.3] how the input to their PRF can be 160 bits for proper
choice of parameters and that arbitrarily-long strings can first be
hashed down to 160 bits using any collision-resistant hash function.

10Suppose that messages of n bits are signed using the scheme,
and recall that one can always sign messages of arbitrary length by
first applying a collision-resistant hash function to map them to n
bits. Then the adversary’s advantage in forging a message increases
by a factor of 2n. Thus, to be provably-safe in using this scheme
in applications that demand full security, one has to choose their
parameters carefully. Boneh and Boyen suggest, as one example, that
when n = 160 and the bilinear group is set so that no polynomial-
time adversary can break DBDH with advantage 2−240, then the
resulting signature scheme offers roughly 80-bit security.

(1) COMMITMENT SCHEME

Common Input: An algebraic group G of prime

order q with generators g, h.

Commit(m) S −→ R Sender chooses random s ∈
Zq , and sends α = gmhs to R.

Open(α): S −→ R Sender sends (m, s) to R.

Receiver checks α
?
= gmhs.

(2) DODIS-YAMPOLSKIY PRF Fy THAT MAPS

Z∗q → Gt WHERE y ∈ Zq .

Setup: An algebraic group G of prime order q with

generator g and PRF seed y ∈ Zq .

Fy(m): The user computes Fy(m) = g1/(y+m) for

any m �= 0 mod q.

(3) BB SIGNATURE SCHEME

Gen(1n) : Sample the secret key sk ← α ∈ Zq .

Sample random group generators u, v, g, h and

compute U = e(g, g)α. The verification key is

vk← (u, v, g, h, U).

Sign(sk,m0,m1): Choose r ∈ Zq randomly and

compute

σ1 ← gα(um0vm1h)r, σ2 ← gr

and output (σ1, σ2) as the signature.

Ver(vk,m0,m1, σ1, σ2): Accept if

e(σ1, g)
?
= U · e(um0vm1h, σ2)

Figure 1. A commitment, and PRF family, and signature scheme

the abstract section and provide cSE NIZKs for those

languages. Recall that languages L1 and L2 implicitly

depend on the specification of a signature scheme

(Gen, Sign,Ver), a commitment scheme Com, and a

pseudo-random function family {fs}. For the rest of

these sections, assume that these three dependencies are

instantiated with the BB-signature scheme, the Pedersen

commitment, and the Dodis-Yampolskiy function as

described above in Fig. 1. We now provide Σ-protocols

for L1, L2 and then apply the Fiat-Shamir heuristic in

the random oracle model as prescribed in Thm.1 to

produce the required cse-NIZK.

The language L1 corresponds to a standard Schnorr-

like [34] proof for knowledge of a representation of

a discrete logarithm. In the Camenish-Stadler nota-

tion [35], such a protocol is specified as follows:

L1 = PoK
{
(sid, d) : α = vsidgd

}
This denotes a “zero-knowledge proof of knowledge

of integers sid, d such that α = vsidgd holds” where

α, v, g are elements of some group G. Values not in the

parentheses are considered to be public.

Theorem 6 ([34]): There exists a 3-round honest-

verifier special-sound zero-knowledge protocol for L1.

In contrast, the language L2 is more compli-

cated to specify and requires a non-trivial protocol.

A statement in this language consists of the tuple

(sid, C, pkRA, pkSA) where pkRA = (u, v, h, e(g, g)x)
and pkSA = (uv, vv, hv, e(g, g)

y). The witness for an

instance is the tuple (sid, id, c, r, σ, σsidid) such that σ =
(σ1, σ2) forms a Boneh-Boyen signature on the values

(id, sid), σsidid = (σsidid,1, σsidid,2) forms a Boneh-

Boyen signature on (sid, id), and C = Fsid(sid) where F
is the Dodis-Yampolskiy PRF, for the signature schemes

above.

In the first step of the proof for L2, the prover re-

randomizes (σ, σsidid) by choosing random d1, d2 ∈ Zq

and computes

(s1 = σ1 · (uidvsidh)d1 , s2 = σ2 · gd1)

(s3 = σsidid,1 · (usid
v vidv h)

d2 , s4 = σsidid,2 · gd2).

The values s2, s4 are sent to the Verifier, and the

problem reduces to proving a simpler statement: (a)

(s1, s2) form a Boneh-Boyen signature on the values

(id, sid), (b) (s3, s4) form a Boneh-Boyen signature on

(sid, id), and (c) C = Fsid(sid) as follows:

PoK

⎧⎪⎪⎨
⎪⎪⎩

(id, sid, s1, s3) :
Exe(h, s2) = e(s1, g)e(u

idvsid , s2)
−1∧

Eye(usid
v hv, s4) = e(s3, g)e(v

id
v , s4)

−1∧
E · C−sid = Csid

⎫⎪⎪⎬
⎪⎪⎭

where E = e(g, g).

The Σ-protocol (P ′2, V
′
2) for this simpler language pro-

ceeds as follows:

1) P ′2 → V ′2 Prover picks random b1, b2 ∈ Zq and

J1, J2 ∈ G and computes

E1 ← e(J1, g) · e(ub1vb2 , s2)
−1

E2 ← e(J2, g) · e(vb2v , s4)
−1

E3 ← Cb2

2) P ′2 ← V ′2 Verifier picks a random c ∈ Zq .

3) P ′2 → V ′2 Prover computes a response

z1 ← b1 + c · id z2 ← b2 + c · sid
z3 ← sc1 · J1 z4 ← sc3 · J2

4) Verifier checks the following:

E1 · e(g, g)xc · e(h, s2)c = e(z3, g) · e(uz1vz2 , s2)
−1

E2 · e(g, g)yc · e(vsidv hv, s4)
c = e(z4, g) · e(vz1v , s4)

−1

E3 · e(g, g)c · C−c(sid) = Cz2

Theorem 7: The above (P ′2, V
′
2) is an honest-verifier

special-sound zero-knowledge protocol for L2.

Proof: (sketch) The completeness of the protocol is

standard. First we show honest-verifier zero-knowledge.

On input an instance and a random challenge c, the

simulator first chooses a random z1, z2 ∈ Zq and

random z3, z4 ∈ G and computes

E1 =
e(z3, g) · e(uz1vz2 , s2)

−1

e(g, g)cx · e(h, s2)c

E2 =
e(z4, g) · e(vz1v , s4)

−1

e(g, g)cy · e(vsidv hv, s4)c

E3 =
Cz2

e(g, g)c · C−c(sid)

and outputs (E1, E2, E3), c, (z1, z2, z3, z4) as the tran-

script. By inspection, it follows that the distribution of

transcripts is perfectly identical to a transcript from a

successful protocol execution.

We now show that the protocol is special-sound.

Consider two transcripts (E1, E2, E3), c, (z1, z2, z3, z4)
and (E1, E2, E3), c

′, (z′1, z
′
2, z

′
3, z

′
4) where c �= c′ that

both pass the verification test. It follows that

id =
z1 − z′1
c− c′

sid =
z2 − z′2
c− c′

s1 =

(
z3
z′3

)c−c′

s3 =

(
z4
z′4

)c−c′

since both transcript tuples satisfy the three equations

in Step 4) of the Σ-protocol.

Corollary 8: In the random oracle model, there exists

a BB cse NIZK for languages L1 and L2 for the sig-

nature schemes (Gen, Sign,Ver), commitment scheme

Com and PRF {Fs} describe above.

Proof: Follows from Thm. 1.

D. GenRA and GenSA protocols

The GenRA and GenSA methods are the key genera-

tion methods for the BB signature scheme. More specif-

ically, the RA picks random group elements u, v, h ∈ G
and a secret element x ∈ Zq . The RA’s public key

RAvk = (u, v, h, e(g, g)x) and RAsk = x. (RA will be

signing m1 as the id with u and m2 as the user’s secret

seed with v.)

The SA picks random group elements uv, vv, hv ∈
G and a secret element y ∈ Zq . The SA’s public key

SAvk = (uv, vv, hv, e(g, g)
y) and SAsk = y. (m1 will

be the sid and m2 will be the user id of a participant

authorized to submit in the survey.)

E. The Reg protocol

Common: Group (G, e, g), RAvk = (u, v, h, e(g, g)x)

RA Secret Key: x

User identity: id

User and RA establish a mutually authenticated secure

communication channel.

U → RA The user chooses a random PRF seed sid ∈
Zq and a random d ∈ Zq , computes α = vsidgd,

and sends (id, α) to RA.

The user also gives a (NI)zero-knowledge proof of

knowledge for (sid, d) ∈ L1 using the Σ-protocol

for L1 described above:

PoK
{
(sid, d) : α = vsidgd

}
U → RA User picks a random b1, b2 and sends γ = vb1gb2

to RA.

U → RA User generates a random challenge c ∈ Zq by

using the random-oracle H and the tag 0n as

c = H(g,RAvk, id, α, γ, 0
n)

U → RA User computes z1 = b1+ csid, z2 = b2+ cd and

sends (z1, z2) to RA.

RA verifies vz1gz2
?
= αcγ.

U ←− RA RA checks that the identity id has not

been registered before. RA chooses r ∈ Zq

randomly, computes the signature tuple σ1 ←
gx(uidαh)r, σ2 ← gr and sends R the signature

σid = (σ1, σ2).

U User verifies the signature by checking that

e(σ1, g) = e(g, g)x · e(uidvsidgdh, σ2).

If this verifies, the user removes the commitment

randomness by computing σ′1 = σ1/σ
d
2 and stores

the secret credential (id, sid, σid = (σ1, σ2)).

Note that at the end of this protocol, the user stores

a signature on s||id under the verification key RAvk

(instead of a signature on c||id where c is a commitment

as per the abstract protocol). As mentioned earlier in

section III-C, this choice of implementation preserves

security as long as the signature scheme remains un-

forgeable even if the adversary has oracle access to

the RegRA function. In this case, it is easy to show

that unforgeability holds by showing how to simulate

the RegRA function given access to a signing oracle.

At a high level, the simulation works by (a) using the

simulator-extractor to extract (sid, id) from the NIZK

proof that the user provides, and then submitting a

query for a signature (σ1, σ2) on s||id to the signature

oracle, and finally, multiplying an extra gdr term into

the σ1 term to produce messages for the adversary

that are indistinguishable from ones received in the

given interaction. The fact that the user must provide

a cse-NIZK with a tag 0n that is different from all

other tags used in all other protocol instances allows

simulation-extraction to function and thus enables a

proper simulation.

F. Survey Registration

SA Input: SAvk = (uv, vv, hv, e(g, g)
y), SAsk = y,

sid ∈ Zq

List of identies: L

SA For each id ∈ L, the SA computes the following:

Pick a random r ∈ Zq and compute

σsidid = (gy(usid
v vidv h)r, gr)

Publish the list Lsid = (sid, {idi, σsidid}i∈L)
Authorized: Anyone can verify that a user with identity

id is authorized to submit in survey sid by finding

the corresponding signature σsidid = (σ1, σ2) in

Lsid and then checking that

e(σ1, g)
?
= e(g, g)y · e(usid

v vidi
v h, σ2).

G. Submission

The Submit protocol is instantiated using the Σ-

protocol implementation for the L2 language.

Common Input: (G, e, g), the list Lsid, the public

keys SAvk = (uv, vv, hv, e(g, g)
y), and RAvk =

(u, v, h, e(g, g)x)

User Secrets: id, submission m, credential (σid, sid)

The user aborts if the user has already participated

in an survey with sid or sid = sid. The user and

SA establish a secure connection in which SA is

authenticated, but the user is anonymous.

U The user identifies the tuple (sid, idi, σ
(i)) in Lsid in

which idi = id. The user computes Fsid(sid) =
C ← e(g, g)1/(sid+sid).

U → SA User sends (sid, C,m, s2, s4) and an

NIZKPOK of the statement (id, sid, s1, s3) in L2

with tag 1||sid||m to the SA:

SA : If the proof verifies, record the submission (C,m)
replacing any prior occurrence of (C, ·).

Theorem 9 (Security of the Survey System):
Assuming the security of the Pedersen commitment

scheme, the Dodis-Yampolskiy PRF for input space Z
∗
q ,

the adaptive security of the Boneh-Boyen signatures,

and a collision-resistant hash function, the above

concrete instantiation is a correct (Def. 2) ad-hoc

survey scheme that is (multi-survey) unlinkable

(Def. 3) and secure against malicious users (Def. 4) in

the random oracle model.

Proof: Security of the each of the primitives fol-

lows from Thm. 5, Thm. 4, Thm. 3, Thm. 6, Thm 7,

and Cor 8. The rest then follows from Thm. 2.

V. IMPLEMENTATION OF CONCRETE SCHEME

Because practicality and efficiency were major goals,

the concrete instantiation of the system was imple-

mented in C++11 using the MIRACL big number

library [36], which provides support for pairing based

cryptography and is free for educational purposes. We

implemented with curves that MIRACL equates to 128

AES security, using a Barreto-Naehrig pairing friendly

curve, with embedding degree k=12, and the Ate pair-

ing. The implementation uses an asymmetric pairing,

which follows immediately from our protocol.11

We analyzed performance for both types of curves be-

cause large groups are necessary for the survey system

to be provably-secure based on “standard” bilinear as-

sumptions (e.g. DBDH). In particular, for the reduction

to standard assumptions to work, the Dodis-Yampolskiy

PRF needs a group much larger than its input size and

the Boneh-Boyen signature reduction uses a complexity

leveraging argument that also requires a large group

size. However, one can also analyze these building

blocks, and thus the larger system, in the generic group

model [37], which provides evidence that the scheme is

secure against generic attacks and is then traditionally

implemented with smaller groups.

Our implementations, which are not particularly op-

timized, show efficiency that is more than sufficient for

all practical surveys. In particular, our implementation

utilizes only 1 core of the CPU; it is straightforward

to parallelize user registration, and survey verification

over multiple cores and machines by simply having all

cores run the same processes and balancing the load

(i.e., the number of registrations or surveys to verify)

given to any particular core. Similarly, when generating

new surveys, we can split the participant list among a

number of different cores at the SA, and each would

sign the names of the individuals on its portion of the

list.

Our results show that one or two modern workstations

or server systems are sufficient to manage surveys

into the millions using the more efficient smaller sized

groups, and a small number of high-performance ma-

chines (on the order of 5 to 10) would easily handle

surveys of larger sizes or similar sizes using the larger

group size. User side computation is reasonably neg-

ligible. Submitting a survey, or verifying a submitted

survey, the most expensive operations a user might want

to do, took in the strongest security setting at most 2.5

seconds.

1) System: All tests were done on a 3.06 GHZ Intel

Core 2 Duo, Late 2009 iMac with 12GB 1067 MHZ

11During the user registration protocol, the verifier sends back
another element σ3 = gr , so that the user can compute σ′1 = σ1/σr

3 .
This is the only extra information needed to accommodate the
asymmetry, and clearly does not affect security.

DDR3 RAM with a 5400RPM SATA HD. This machine

is several years old and much slower than a modern

server.

A. Experiments

When considering survey life cycles, there are three

actions that are potentially computationally intensive:

i) mass registration of users, ii) generation of large

surveys by the SA, and iii) verifying ballots for large

surveys, as many ballots may need to be verified in

real time over a short time period. Generating RA

keys and SA keys is computationally efficient on our

system, and moreover they are done once per entity

and unlikely to be generated in large quantity. Similarly,

so long as submitting and user registration are not

so slow as to cause consternation, their performance

is relatively unimportant, as each user performs their

own computation in a decentralized manner. In contrast,

large surveys may be generated and run in a centralized

location, so it is important that the generation of the

survey list be scalable, and a reasonable system be able

to validate a large number of incoming submitters.

We performed the following experiments i) RA Key

Generation, ii) SA Key Generation, iii) User Registra-

tion, iv) survey Generation by the SA, and v) Submis-

sion. RA and SA generation is simple, and we simply

ran the protocols. For user generation we constructed

a large set of unique user names, and registered each

user sequentially. We report on the time taken per regis-

tration. We recorded the computation time for the user

and the RA separately. For survey registration we took

the user-names generated previously, and constructed

survey lists out of them. Since this is one large computa-

tion, we report on the aggregate time for a small survey

of 300 submitters, and the average time per submission.

We have verified that this time scales linearly with the

number of submitters as one would expect.12 Finally,

we consider actual submission, and measure the time

for the submitter to submit their response, and the time

necessary for the SA to verify the submission. These

measurements are done per submitter.

Each of the experiments below was performed 100

times, with mean and standard deviation of times re-

ported in milliseconds in Table I. The measured times

correspond only to the time necessary to compute the

appropriate cryptography and store the result to disk.

There is no network measurements involved. We discuss

this in the next subsection. The most expensive opera-

tion is the mass verification of surveys that should be

done by a survey authority when surveys are submitted,

12We have created surveys of 1 million users on our machine, but
due to time constraints only computed this once with the smaller
group: it took approximately 42 minutes, inline with the expected
linear extrapolation.

Table I
TIMING RESULTS FROM THE IMPLEMENTATION OF OUR CONCRETE SYSTEM.

Operation BN Curve BLS Curve

Mean (ms) StdDev (ms) Mean (ms) StdDev (ms)

RA Key Gen 55.30 2.69 882.94 147.41

SA Key Gen 14.54 1.93 224.21 60.23

User Side User Registration 3.35 0.71 6.11 18.67

RA Side User Registration 7.91 2.36 13.65 30.09

User Verification User Registration 58.25 25.62 69.69 103.49

SA survey Generation (300 submitters) 706.85 16.47 8,116.11 911.62

SA survey Generation (per Questnr.) 2.36 27.05

User Submission 88.20 4.97 1,482.98 144.02

SA Verify Submission 121.52 7.03 2,247.29 251.28

to ensure their legitimacy. In the more practical smaller

group sized implementation (i.e., the less stringent secu-

rity assumptions) we can verify 1 million submissions

in about 33 hours per core on our system. Assuming

a reasonable 4 cores per system gives us a little over

8 hours for 1 system. Or 3 systems could process

in about 2 hours. Even in the most stringent security

case, assuming we had to verify the submissions of 1

million people, we could use about 20 machines with 4

cores each, and compute the results in under 8 hours.

If there is no need to keep the survey results private,

this computing power can be rented from the cloud

(e.g., AWS), making the costs low. Verification does

not need private information, so there is less risk in

renting resources. Survey generation and the RA’s side

of user registration are other places where computing

costs are centralized with an authority. Both are at

least an order of magnitude less time intensive than

survey verification, and can be distributed over similar

resources efficiently.

Storage and Bandwidth Requirements: Storage and

bandwidth requirements are both very reasonable for

such schemes. Each element in the survey list output

during the Survey Registration is less thank 1KB, as

are the users’ secret tokens. The most expensive NIZK

used in the submission of the survey is smaller than

8KB. The above excludes the length of the IDs, which

are system dependent, but are reasonably on the order

of a few hundred bytes at most.

B. Anonymous Communication & Participant Lists

In practice, the user needs to anonymously submit a

single message to the SA during survey submission. In

moderate-security settings, proxy services can be used

to transmit the data, and in high-security settings, onion-

routing such as TOR [38] may be used. Another issue

that arises is the distribution of the survey participant list

for a survey. For small surveys, this is inconsequential,

but when participant rolls get into the millions, the file

of eligible submitters with corresponding information

can become large. Deploying this to each user is defi-

nitely feasible (a typical OS patch push hits millions of

people), but there are easy alternatives that can slacken

the requirement. E.g., wild-cards can be used to ease en-

rollment, or separate participant lists can be constructed

of smaller size: Anonymity is slightly weakened, but we

are not aware of any surveys where participants scale to

a million submitters with full anonymity, and thus some

weakening may be acceptable.

ACKNOWLEDGMENTS

All opinions expressed and implied in this work are

solely those of the authors and do not represent or reflect

the views of their respective universities.

REFERENCES

[1] S. Staff, “Security breach leaves 45,000 at
risk of identity theft,” 2009. [Online]. Available:
http://thetruthwillrise.wordpress.com/2009/06/25/security-
breach-leaves-45000-at-risk-of-identity-theft/

[2] P. C. A. for Submission., “Observations on the Course
Review System at the University of Virginia,” 2013.

[3] M. Riley, “U.s. agencies said to swap data
with thousands of firms,” 2013. [Online].
Available: http://www.bloomberg.com/news/2013-06-
14/u-s-agencies-said-to-swap-data-with-thousands-of-
firms.html

[4] D. Chaum and T. P. Pedersen, “Wallet databases with
observers,” in CRYPTO, vol. 740, 1992, pp. 89–105.

[5] K. Sako and J. Kilian, “Receipt-free mix-type voting
scheme – a practical solution to the implementation of
a voting booth,” in Eurocrypt 1995, 1995.

[6] A. Neff, “A verifiable secret shuffle and its application
to e-voting,” in CCS 2001, 2001.

[7] J. Benaloh, “Simple verifiable elections,” in EVT 2006,
2006.

[8] B. Adida, “Helios: Web-based open-audit voting,” in
USENIX 2008, 2008.

[9] R. Canetti, “Universally composable security: A new
paradigm for cryptographic protocols,” in FOCS ’01,
2000, see updated version at Cryptology ePrint Archive:
Report 2000/067.

[10] A. Juels, M. Luby, and R. Ostrovsky, “Security of blind
digital signatures (extended abstract),” in CRYPTO ’97,
1997, pp. 150–164.

[11] J. Camenisch and A. Lysyanskaya, “Signature schemes
and anonymous credentials from bilinear maps,” in
CRYPTO, 2004, pp. 56–72.

[12] J. Camenisch, S. Hohenberger, M. Kohlweiss,
A. Lysyanskaya, and M. Meyerovich, “How to win
the clonewars: Efficient periodic n-times anonymous
authentication,” in ACM CCS ’06, 2006, pp. 201–210.

[13] A. Sahai, “Non-malleable non-interactive zero knowl-
edge and adaptive chosen-ciphertext security,” in
FOCS’99, 1999, pp. 543–553.

[14] R. Pass and A. Rosen, “Concurrent non-malleable com-
mitments,” SIAM Journal of Computing, 2008.

[15] ——, “New and improved constructions of non-
malleable cryptographic protocols,” SIAM Journal of
Computing, 2008.

[16] A. Fiat and A. Shamir, “How to prove yourself: Practical
solutions to identification and signature problems,” in
CRYPTO ’86, 1986, pp. 186–194.

[17] D. Chaum and E. van Heyst, “Group signatures,” in
EUROCRYPT ’91, 1991, pp. 257–265.

[18] M. Bellare, D. Micciancio, and B. Warinschi, “Founda-
tions of group signatures: Formal definitions, simplified
requirements, and a construction based on general as-
sumptions,” in EUROCRYPT, 2003, pp. 614–629.

[19] D. Boneh, X. Boyen, and H. Shacham, “Short group
signatures,” in CRYPTO ’04, 2004, pp. 45–55.

[20] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak
a secret,” in ASIACRYPT ’01, 2001, pp. 552–565.

[21] M. Bellare, H. Shi, and C. Zhang, “Foundations of group
signatures: The case of dynamic groups,” in CT-RSA,
2005, pp. 136–153.

[22] D. Chaum, “Security without identification: Transaction
systems to make big brother obsolete.” Communications
of the ACM, vol. 28(10), pp. 1030–1044, October 1985.

[23] J. Camenisch and A. Lysyanskaya, “Efficient non-
transferable anonymous multi-show credential system
with optional anonymity revocation,” in EUROCRYPT
’01, vol. 2045, 2001, pp. 93–118.

[24] ——, “A signature scheme with efficient protocols,” in
SCN, 2002, pp. 268–289.

[25] J. Camenisch, S. Hohenberger, and A. Lysyanskaya,
“Compact e-cash,” in EUROCRYPT ’05, 2005, pp. 302–
321.

[26] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital sig-
nature scheme secure against adaptive chosen-message
attacks,” SIAM J. Computing, vol. 17(2), pp. 281–308,
1988.

[27] T. P. Pedersen, “Non-interactive and information-
theoretic secure verifiable secret sharing,” in CRYPTO,
1991, pp. 129–140.

[28] O. Goldreich, S. Goldwasser, and S. Micali, “How to
Construct Random Functions,” Journal of the ACM,
vol. 33, no. 4, pp. 792–807, 1986.

[29] O. Goldreich, The Foundations of Cryptography. Cam-
bridge University Press, 2001.

[30] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, and G. Per-
siano, “Robust non-interactive zero knowledge,” SIAM
Journal on Computing, vol. 20, pp. 1084–1118, 2001.

[31] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs
of partial knowledge and simplified design of witness
hiding protocols,” in CRYPTO, 1994, pp. 174–187.

[32] Y. Dodis and A. Yampolskiy, “A Verifiable Random
Function with Short Proofs and Keys,” in PKC ’05, vol.
3386 of LNCS, 2005, pp. 416–431.

[33] D. Boneh and X. Boyen, “Efficient selective-ID secure
Identity-Based Encryption without random oracles.” in
EUROCRYPT ’04, 2004, pp. 223–238.

[34] C.-P. Schnorr, “Efficient signature generation by smart
cards,” Journal of Cryptography, vol. 4, pp. 161–174,
1991.

[35] J. Camenisch and M. Stadler, “Efficient group signature
schemes for large groups,” in CRYPTO ’97, vol. 1296 of
LNCS, 1997, pp. 410–424.

[36] M. Scott, “Multiprecision Integer and Rational Arith-
metic C/C++ Library (MIRACL),” published by Shamus
Software Ltd., http://www.shamus.ie/.

[37] V. Shoup, “Lower bounds of discrete logarithms and
related problems,” in Proceedings of Eurocrypt ’97,
1997, pp. 256–266.

[38] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:
The second-generation onion router,” in USENIX 2004,
2004.

