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Abstract We study ways to restrict or prevent the dam-
age that can be caused in a peer-to-peer network by
corrupt entities creating multiple pseudonyms. We show
that it is possible to remotely issue certificates that can
be used to test the distinctness of identities. Our certifi-
cation protocols are based on geometric techniques that
establish location information in a fault-tolerant and dis-
tributed fashion. They do not rely on a centralized certi-
fying authority or infrastructure that has direct knowl-
edge of entities in the system, and work in Euclidean or
spherical geometry of arbitrary dimension. They tolerate
corrupt entities, including corrupt certifiers, collusion by
either certification applicants or certifiers, and either a
broadcast or point-to-point message model.

Keywords sybil attack · identity verification · overlay
networks · peer-to-peer systems · distance geometry

1 Introduction

In a large scale peer-to-peer overlay network, physical
entities that reside on different physical nodes communi-
cate with each other using pseudonyms or logical iden-
tities. In the absence of direct physical knowledge of a
remote entity or a certification by a central authority
that a particular identity resides in a particular node, an
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entity can appear in the system under different names
or counterfeit identities. Counterfeit identities are prob-
lematic in a peer-to-peer system because they can pre-
vent entities from performing a remote operation, such
as saving a file, multiple times to increase availability.
An entity might select different identities to perform an
operation, but these identities might all reside on the
same corrupt entity, resulting in a loss of redundancy.
Counterfeit identities can also prevent the formation of
reliable reputation-based recommendation systems. An
entity that can create counterfeit identities can also cre-
ate identities with fake reputations, thus making rep-
utations meaningless. Douceur [10] calls the forging of
multiple identities a Sybil attack.

In this paper we study ways to restrict or prevent the
damage that can result from corrupt entities performing
Sybil attacks. We are interested in mechanisms to re-
strict the damage due to the creation of pseudonyms,
while not relying on a centralized certifying authority
or infrastructure with direct knowledge of entities in the
system. While standard authentication techniques work
well to prevent impersonation of existing identities, they
do not address the issues arising from proliferation of
pseudonyms. The first work that studies counterfeit iden-
tities that we are aware of is the paper by Douceur [10].
He argues that under the strictest requirements, that is,
in a fully distributed system without a central author-
ity and in which entities communicate by broadcasting
messages, the only means to limit the generation of mul-
tiple identities is by exploiting the fact that resources of
individual entities are bounded.1 Douceur argues that,
by requiring entities to dedicate significant portions of
their resources to establish their identities, one could, at
least theoretically, limit the number of identities that are
forged by a corrupt entity. The three types of resources

1 The absence of a central authority precludes the use of
IP addresses to identify entities because they rely on the
authority of the Internet Corporation for Assigned Names
and Numbers (ICANN). Furthermore, in real systems IP ad-
dresses can be spoofed and a host might be provided dynamic
IP addresses by its ISP.
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he considers are: computation, communication and stor-
age.

Our main observation is that the damage caused by
Sybil attacks in Douceur’s model is not only due to the
fact that corrupt entities can forge multiple identities.
The damage caused by Sybil attacks is also due to the
fact that, in the absence of additional information, for
any two identities one of which resides on a corrupt en-
tity with unbounded resources, one cannot conduct a
test to determine that their entities are distinct. So, our
goal need not necessarily be to test that any two partic-
ular identities reside on distinct entities, but rather to
test that amongst a group of identities, a large enough
subset of them resides on a set of distinct entities. We
call the problem of determining the number of distinct
entities on which a group of identities reside the group
distinctness problem. When determining the exact num-
ber of distinct entities is not possible, we determine a
lower bound on that number. We call a test to solve
the group distinctness problem a group-distinctness test.
Realizing such a test would allow the remote execution
of remote operations and therefore circumvent the harm
done by Sybil attacks. An example illustrates this point.
Assume that one can divide identities into two separate
groups such that any two identities chosen from differ-
ent groups are distinct, but two identities from the same
group are not necessarily distinct (we will abuse termi-
nology and say that the identities are distinct when they
reside on distinct entities). For concreteness, also assume
that there is only one corrupt entity in the system. Un-
der these assumptions, if an entity asks n entities in one
group to perform an operation and another n entities in
the other group to perform the same operation, it can be
guaranteed that at least n distinct entities performed the
operation even though it cannot tell which ones they are.
If the operation consists of saving a file, the entity can be
assured that there are enough correct replicas of the file
in the system. The goal of this paper is to show group-
distinctness tests are possible and to explore conditions
under which such tests can be made accurate.

We develop our work by exploiting an ingredient that
was eliminated by the strong assumptions of Douceur,
namely that entities have locations. Most of the real dis-
tributed systems we can imagine are in some way embed-
ded in space with geometric properties. Moreover, enti-
ties in the system have (at any moment in time) their
own physical locations and no two entities share the ex-
act same location at any moment (our model will allow
entities to share locations if their locations cannot be dis-
tinguished by remote entities). In general, we can assume
that the underlying space (whose points include all the
participants in the protocol) has a geometric structure
of standard d-dimensional Euclidean space R

d or sphere
S

d. For sound or radio communication these assumptions
are quite realistic (even though accuracy of measurement
is always an issue) and they have already been exploited
for secure location verification [18], while in the case of

Internet-based overlay networks they are justified by re-
cent work on estimating network distances [19] (we fur-
ther discuss these assumptions as they relate to the In-
ternet in Section 2) . We distill our assumptions into the
following:

1. the actual distances between pairs of entities at least
approximately satisfy two of the three metric prop-
erties: symmetry and triangle inequality; and

2. the transfer of a message back and forth between two
identities takes time that is lower-bounded by a (non-
decreasing) function of the distance between the two
entities on which they reside.

We do not assume that logical identities are always hon-
est, and we place no bounds on the computational re-
sources of corrupt entities. However, since each entity
is located at a point in a geometric space, its commu-
nication with the rest of the identities in the system is
restricted by the geometry of the space. In particular,
a simple assumption of finite message propagation im-
plies our second assumption above: the time in which
a message is transmitted from point x to point y gives
an upper bound on the distance d(x, y) between the two
points. Note that our model allows multiple entities to
reside at the same point in the geometric space.

1.1 An example

To illustrate how physical locations can be used to pro-
vide a test of distinctness, consider two correct entities
A and B at a distance d from each other. Assume that
there is only one corrupt entity C in the system, that C
has unbounded resources, and that C is within a radius
of d/2 from A. Under these conditions, C can forge an
unbounded number of identities, but none of these forged
identities can pretend to be at a distance less than d/2
from B. In fact, for each identity c of C, one can request
from A and B an upper bound on their distance to c.
This bound can be obtained by having A and B broad-
cast probe messages to c and measure the time it takes to
receive a reply from c. Since the distance from C to A is
less than d/2 and the distance from A to B is d, it follows
from the triangle inequality that the roundtrip time of
probes sent from B to C (under any of its pseudonyms)
will always indicate a distance that is larger than d/2
and therefore none of C’s identities can prove that they
are within radius d/2 from B. Using this test of distinct-
ness, an entity can require that a remote operation be
executed by n identities that can prove that they are
within a radius of d/2 from A and another n identities
that can prove that they are within a radius of d/2 from
B and therefore be guaranteed that enough correct en-
tities executed the operation. One can use the distance
between A and B and their distance from c as a certifi-
cate of identity of c as follows. For a group of identities,
whose certificates are all computed with respect to the
same A and B and such that m of the certificates have
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distances from A that are less than d/2, n certificates
have distances from B that are less than d/2, and l cer-
tificates that have distances from A and B that are at
least d/2, then at least min{m,n, l} of the identities are
distinct. Note that for such a group of certificates one
can give a lower bound on the number of distinct enti-
ties in the groups while in many cases it is not possible
to determine the exact number of distinct identities in
the group. Our goal is to get as high a lower bound as
possible for such a group-distinctness test.

We should emphasize that A and B in the example
above are not the same as a centralized certifying au-
thority (we discuss this point further in Section 10). In
fact, A and B’s knowledge of C or its forged identities is
obtained solely through remote interaction with C’s var-
ious identities and with each other and the assumption
that they are both honest (which we will not require in
general), whereas a centralized certifying authority re-
quires some form of direct knowledge of C. Also, note
that A and B need not know each other’s location, they
only need to know the distance between them and that
they are both correct.

1.2 Paper Outline

The goal of this paper is to study various scenarios un-
der which entities such as A and B in the example above
can be used to significantly restrict the types of counter-
feit identities by corrupt entities and therefore eliminate
the harm caused by Sybil attacks. We show that one can
construct certificates that are much more powerful than
the one suggested above and that can be used under
stronger adversarial conditions. The rest of the paper is
organized as follows. Section 2 defines our system model.
Additional discussion of the model, mostly dealing with
issues that need to be resolved in a practical application
of our work, is presented in Section 10. Section 3 explains
how our model can be applied to a wireless network. Sec-
tion 4 introduces group-distinctness tests and geometric
certificates. Section 5 summarizes our results and con-
tributions and discuss related work. Section 6 collects in
one place the notation and terminology of the paper. Fi-
nally, in Section 7 we begin the technical development of
our results.

2 System Model

We consider a system consisting of a set B of n beacons
and a set of A of applicants. The set A ∪ B is the set of
participants. We assume the participants are points in
either the standard d-dimensional Euclidean space R

d or
the d-dimensional unit sphere S

d. In making statements
that hold for both R

d and S
d, we refer to the space as

X. We denote by ρ the metric in X, that is, if x, y ∈ X,
then ρ(x, y) is the distance between x and y. We assume

that participants are not mobile and that their locations
are fixed.

Our model is not tied to any particular underlying
system. It can be applied to overlay as well as wireless
or other networks as long as the basic assumptions are
satisfied. A particular system might satisfy the assump-
tions only for a subset of its points. For instance, a sys-
tem might satisfy the metric assumptions only for sets of
points that are a minimum distance θ of each other. We
discuss how our assumptions map to a particular system
in Section 3.

In what follows we list our remaining assumptions
about various aspects of the system, namely: communi-
cation, synchrony, and failures.

2.1 Communication

Beacons communicate with each other and with appli-
cants by exchanging messages. We assume that beacons
communicate always using broadcast messages. This is
in keeping with the beacons’ a priori ignorance of the
locations of applicants. In what follows we detail our as-
sumptions about communication between beacons and
applicants.

2.1.1 Broadcast and Point-to-Point

We distinguish two models for the messages transmit-
ted by the participants: broadcast and point-to-point.
We assume that our broadcast (or multicast) primitive
is an indivisible operation that cannot be split into mul-
tiple point-to-point operations. In other words, a beacon
will be able to tell if a message it receives is a broadcast
message and an applicant cannot make a point-to-point
message look like a broadcast message. A number of our
results assume that applicants must communicate using
broadcast; these results do not hold if the broadcast op-
eration cannot be distinguished from multiple point-to-
point operations. By restricting applicants to broadcast
communication, we are able to tolerate more adversar-
ial conditions. It is interesting to note, though, that re-
stricting communication to broadcast makes it harder
for faulty applicants to benefit from colluding, whereas
in Douceur’s argument, broadcast makes it harder to pre-
vent Sybil attacks. The broadcast model is meaningful
in general overlay networks in which a message flood-
ing primitive is available for communication. Certificates
can then be established using flooding exclusively. The
broadcast model is also meaningful if the applicants can-
not modify the underlying communication interface and
a broadcast or multicast primitive is available for com-
munication. Finally, the broadcast model is natural for
wireless networks in which nodes do not have directional
antennas [15].
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2.2 Bounded-range Broadcast

We also consider a model in which beacons can bound
the range of a broadcast. In such a model, a broad-
cast will only reach applicants that are within a given
radius from the broadcaster. We distinguish two vari-
ants on this model. In the basic model, a recipient of
a broadcast message with bounded range can determine
the range of the broadcast (note that the distance be-
tween a recipient and a broadcaster might be smaller
than the range of the broadcast). In another model, we
assume than an applicant that receives a bounded-range
broadcast message can only tell that the range of the
broadcast is at least equal to the distance between itself
and the broadcaster. In other words, an applicant cannot
tell the ultimate reach of a signal it receives. These mod-
els of communication are motivated by wireless sensor
networks. While the main thrust of our work emphasizes
overlay networks, our techniques are also applicable to
other settings in which communication delay has geomet-
ric properties. As we noted in the introduction, wireless
communication systems present such a setting and our
techniques are applicable to such systems. In such sys-
tems, there exists the additional capability of limiting
the range of communication by reducing the transmis-
sion power. This corresponds to our idealized model in
which messages are received by all applicants within a
given radius from a broadcaster and no applicants be-
yond that radius. In practice, the range does not have the
shape of a step function, but rather the signal strength
tapers off exponentially with distance. The main model
we are interested in is one in which applicants are not
able to use measurements of the power of a signal to de-
termine the ultimate range of the signal (we still assume
though that the broadcasting beacon’s location is known
to all applicants, which only makes it harder for beacons
to tolerate faulty applicants).

This model can also be meaningful in computer net-
works if corrupt applicants do not have access to the
routing functionality. In that case, a bounded-range broad-
cast can be implemented with a time-to-live (TTL) field
in the message header. That field gets decremented as
the message is forwarded from one node to the other in
order to reflect the elapsed time since the message was
sent. This idea is similar to that of packet leashes [13]
which have been proposed to handle wormhole attacks.

2.3 Failures

Some applicants and some beacons might be faulty (or
corrupt). When we consider corrupt beacons, we assume
that no more than f of them are corrupt and the remain-
ing are correct (honest). A corrupt beacon can report
fake distances to any participant, and these distances
can be smaller or larger than the actual distance to the
participant. An applicant can also be corrupt and it can

delay its responses for probes from the beacons therefore
making it appear farther away than it really is. We con-
sider cases in which applicants might collude and cases in
which corrupt applicants do not collude. To strengthen
our adversarial model, and unless otherwise noted, we
assume that corrupt applicants and beacons know the
locations of all beacons and that correct beacons know
about each other’s locations only what can be inferred
from the time it takes to receive replies from probes.
We assume that the distance between two correct enti-
ties is a non-decreasing function of the roundtrip mes-
sage delay between them (we discuss this and our other
assumptions in detail in Section 10). We use µ for the
distance as measured by exchanging messages between
points. Thus µ(A,B) is the distance A can deduce from
the roundtrip time of a message transmitted from A to B
and back. For correct participants A and B, we assume
that µ(A,B) = ρ(A,B) that is, the distance can be accu-
rately measured by observing the roundtrip delay. Note
that in the presence of faulty participants µ is not nec-
essarily symmetric. For a participant A in the system,
we denote by x(A) the location of A in the underlying
geometric space.

Throughout, we assume that corrupt entities have
unbounded computation power. Our protocols implicitly
assume that an entity cannot anticipate probe messages
and send replies before the receipt of the actual probes.
This assumption can be easily enforced by using the stan-
dard technique in which each probe message includes a
randomly generated string that only the sender knows
and that must also be included in the reply. This way,
an entity would have only a very small probability of
successfully being able to reply before receiving a probe.

2.4 Synchrony and Reliability

We assume that the system is asynchronous and that
message transmission is not reliable, but that there are
periods of time during which message transmission is
synchronous and reliable. We assume that for large enough
time intervals, the system will enter a synchronous pe-
riod. While these assumptions do not really simplify on-
line communication between peers in an overlay network,
because peers cannot wait for the periods of synchrony,
they are necessary for establishing geometric certificates.
The idea is to have participants probe each other for a
somewhat long period of time in order to get an accurate
measure of distance. In fact, we expect that the mea-
surements during periods of synchrony (low congestion
periods) accurately reflect the distances between correct
participants. Once certificates are obtained, we do not
require any synchrony assumptions for communications
between participants. Beacons have local clocks and the
rate of drift of these clocks is small enough so that clock
drift is negligible during the time it takes to establish a
certificate.
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3 Specific System Model

We illustrate the applicability of our model by explic-
itly mapping our assumptions to wireless networks. Sec-
tion 10 further discusses the applicability of our results
to overlay networks in the Internet. For this section, we
use terminology from [16].

Metric Assumptions In wireless sensor networks there
are multiple possible candidates for the distance mea-
sure. The Time of Flight (ToF) or Time of Arrival (TOA)
is the equivalent of our roundtrip delay and it readily
satisfies the metric assumptions. Accurately measuring
the time of flight is possible [16] and it requires synchro-
nization between applicants and beacons. An alternative
measure used in wireless networks is Time Difference of
Arrival (TDOA) which, instead of measuring ToF, mea-
sures the difference between the times of arrivals of sig-
nals from a given sensor to beacons. The advantage of
using TDOA is that it only requires synchronization be-
tween beacons, but it still assumes that ToF defines a
metric. The Receiver Signal Strength Indicator (RSSI)
is another possibility for measuring distance. It is based
on a model of signal fading with distance, but it is not
as accurate as TDOA.

As long as the overhead imposed by the protocols is
not large, the time of flight satisfies metric assumptions.

Communication In wireless networks, both broadcast and
point to point communication is possible. Broadcast re-
quires no special hardware support, while point to point
communication is possible with the use of directional an-
tennas [15].

Synchronization Synchronization is possible in wireless
networks. Synchronization between applicants and bea-
cons is more difficult to achieve, especially if applicants
have limited resources. Synchronizations between bea-
cons is easier to achieve.

Failures Our model of failures encompasses all kinds of
malfunctions that can occur in a wireless sensor network,
including sensor nodes and beacons being taken over by
an adversary.

4 Geometric Certificates

4.1 Geometric Certificates

An applicant can request a geometric certificate from a
set of beacons. When an applicant requests a geometric
certificate, the beacons and the applicant execute a pro-
tocol that might require the applicant (as well as other
beacons) to respond to probe messages. The protocol
might also require the applicant to send probe messages
to the beacons and report distances to various beacons.

The result of these exchanges will be a geometric certifi-
cate: a set of distance values between the beacons and
the applicants that are signed by the beacons as well as
the applicant. We assume that the beacons’ public keys
are known to applicants. An applicant’s public key is
provided by the applicant. Its function is to simply tie
the applicant’s identity to a key. In Section 10 we explain
why our assumption about the beacons’ public keys does
not imply that we need a central certification authority
to verify the identities of applicants.

4.2 Group-Distinctness Test

A group-distinctness test is a function D : 2C → N that
assigns to a group of certificates a number that is a lower
bound on the number of entities that were involved in
obtaining these certificates. A trivial lower bound for any
group is 1 and our goal is to get as high a lower bound
as possible.

A special case of a group-distinctness test is a test
in which the group is restricted to two elements. In that
case, we define a 2-distinctness test as a function D :
C×C → {true, unknown} that assigns to a pair (c1, c2)
of geometric certificates a value in the set {true, un-

known}. If D(c1, c2) = true, then the entities that ob-
tained these certificates are distinct.

Our approach is conservative. The distinctness tests
we propose are sufficient but not necessary to establish
distinctness of identities. For example, different machines
that reside on the same LAN would likely appear to be
at the same location to remote beacons. In fact, such
machines would appear to be at the same location in the
geometric space. This does not mean that we can only
use one machine from a set of machines that appear to
be at the same location. As our introductory example
shows, to execute a remote operation, one can choose
multiple groups of machines such that machines in each
group appear to be at the same location. If the number of
corrupt entities in the system is smaller than the number
of groups of entities that are collocated, then a group-
distinctness test applied to certificates of entities from
these groups would reveal that there are multiple entities
in the groups without necessarily identifying the entities
that are different and the collection of groups would be
guaranteed to contain at least as many entities as in the
smallest amongst them.

5 Contributions and summary of results

5.1 Contributions

The main contribution of this work is the identification
and introduction of the group-distinctness problem as a
problem whose solution can mitigate or eliminate the ef-
fects of Sybil attacks and to show that it is possible to
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remotely issue certificates that can be used to test the
distinctness of identities. To our knowledge this is the
first work that shows that remote anonymous certifica-
tion of identity is possible under adversarial conditions.

For various settings, we exhibit 2-distinctness tests.
For some settings we only provide general group-distinctness
tests. Typically, we implement 2-distinctness tests by
verifying the locations of identities, but one should not
confuse the location verification problem with the group-
distinctness problem. These two problems are somewhat
related, but are fundamentally different. Verifying the
location of identities is one way to establish their dis-
tinctness, but the converse is not true and distinctness
tests are a more general approach to dealing with Sybil
attacks because in many instances it is possible to come
up with distinctness tests, even when it is not possible
to do location verification; the introductory example is
a case in point.

The following is a summary of our results. We present
geometric certification protocols, which issue compact
and easily-checkable certificates to applicants. Some pro-
tocols issue certificates that can be used in 2-distinctness
tests and others issue certificates that can be used in
group distinctness tests for groups of more than 2 ele-
ments. Protocols that issue certificate for 2-distinctness
tests are basically location verification protocols and they
outperform existing location verification protocols pre-
sented in the literature (we expand on this in the next
section). Given two certified entities, a distinctness test
may be performed, and if the two entities’ geometric lo-
cations are distinguishable from the point of view of the
beacons that participated in the certification protocol,
the distinctness test will succeed and certify that the
two entities are indeed distinct. Protocols that issue cer-
tificates to be used in group distinctness tests have no
counterpart in the literature. The certification protocols
we present work for several different settings. In all cases,
we assume the number of beacons is at least d+1, where
d is the dimension of the space; also, unless otherwise
specified, the applicant entity or entities should be in the
convex hull of the certifying beacon set; finally, beacons’
messages are always broadcast.

1. 2-distinctness tests

(a) Correct participants. The applicant’s identity can
be established with no restriction on the appli-
cant’s location or additional restrictions on the
number of beacons.

(b) Corrupt applicants that do not collude and cor-
rect beacons. The applicant’s identity can be es-
tablished if it is in the convex hull of beacons (in
R

d), or the set of beacons is “sufficient” (in S
d)

without restriction on the applicant’s location (for
an exact definition, see Section 7.1.2).

(c) Multiple colluding applicants. The applicants’ iden-
tities can be established if they are restricted to
the broadcast message passing model. In the point-
to-point message passing model, the applicant’s

identities can be established in two dimensions if
there are no more than 2 corrupt applicants in
collusion. We also consider the case of multiple
corrupt applicants in two dimensions.

(d) Up to f corrupt beacons. We require at least f +
d + 1 correct beacons in order to identify appli-
cants; this is in addition to the requirements for
the correct beacons case (single corrupt applicant
or multiple colluding applicants).

2. Group distinctness tests

(a) Multiple colluding applicants in the point to point
model. We present a protocol that establishes a
lower bound on the number of distinct applicants
amongst a group of applicants and in the presence
of multiple beacons.

(b) Multiple colluding applicants in the point-to-point
model and with bounded-range broadcasts used
by beacons. In a system in which beacons can
limit the range of their broadcasts and applicants
cannot determine the reach of a message they re-
ceive, we show that in R

2, and in the presence
of three correct beacons, k faulty entities cannot
simulate more than k2 distinct points.

(c) Multiple colluding applicants with a grid of bea-
cons in the point-to-point model (no bounded-
range broadcast). We present a protocol for the
setting where a set of beacons are equally spaced
around the perimeter of a square and we give a
lower bound on the number of entities correspond-
ing to a group of certificates. The protocol has the
desirable feature that the number of corrupt ap-
plicants needed to simulate any point inside the
square is quadratic in the number of beacons.

5.2 Related work

There is a substantial body of literature that is related
to the results in this paper. Giving an overview of related
work is difficult and presents many subtle problems, be-
cause of the differences in terminology and assumptions
made in various works. We do not aim to give an exhaus-
tive overview of related work and we only present work
that is most closely related to the results of this paper.

5.2.1 Coordinate-based network distance prediction

Ng and Zhang [19] model the Internet as a geometric
space by using measurements of roundtrip delay for ICMP
ping messages between a set of known hosts probes and
several sets of targets. They assign the targets to points
in a coordinate system, by defining each coordinate of a
node as its distance from one of the probes. This embed-
ding into a low-dimensional Euclidean space allows them
to derive simple lower and upper bounds on distances be-
tween targets from their probe-target measurements by
using the triangle inequality. Our work is motivated by
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these results in considering embeddings of overlay net-
works in Euclidean space.

5.2.2 Triangulation and embeddings

Kleinberg et al. [14] design algorithms that try to infer a
complete distance matrix of a finite set of points, given
only the distances from a small number of selected points
(beacons in their terminology) to every other point. They
show that it is possible to reconstruct most of the dis-
tances, but also that arbitrary distortion of a certain
fraction of all distances is unavoidable. They use some
of the powerful recent results on metric embeddings and
provide very general algorithms, however their results
do not seem to have immediate applications to the Sybil
attack problem.

5.2.3 Sybil attack

The Sybil attack was introduced by Douceur [10]. We
already discussed that work in the introduction and we
further discuss it in Section 10. After Douceur’s paper
there were a few attempts to deal with the Sybil attack.

Newsome et al. [18] study the Sybil attack in the
context of sensor networks. They describe several ap-
proaches to Sybil attack prevention, designed to cope
with the limited resources of sensor nodes. For exam-
ple, one of their approaches relies on radio resource test-
ing (assuming no node can listen simultaneously on sev-
eral frequencies). Another is random key predistribution,
where neighboring nodes establish secure links, which is
more useful for maintaining a Sybil-attack-resistant in-
frastructure, than for building one. They describe loca-
tion verification as an open problem.

Sastry et al. [21] describe a protocol that uses node
location verification to establish node identities. How-
ever, their methods only use single beacons (verifiers in
their terminology). More precisely, the verifiers in their
approach can only test whether a given node is within
a given region that surrounds the verifier. They do not
describe ways to determine the exact location of a node.
Also, they do not consider adversarial conditions such as
faulty verifiers or collusion by applicants.

5.2.4 Node replication prevention

Parno et al [20] study protocols for prevention of node
replication. In their model, an adversary can take control
of a node and any private keys it might have and then
attempt to clone it. Surprisingly, their model restricts
the clones to follow the original protocol and their work
does not tolerate corrupt nodes. More importantly, the
work assumes that “the adversary cannot readily create
new IDs for nodes”, so in effect it does not deal with
Sybil attack.

5.2.5 Beacon-based location verification

Independently of our work, Čapkun and Hubaux [7,8]
consider the problem of establishing the location of a
sensor in a wireless network through the measurement
of distances from multiple verifiers. They show how in 2-
dimensional (respectively, 3-dimensional) space having
upper bounds from 3 (respectively, 4) verifiers suffices
to establish the location of a node or detect cheating.
This is a special case of our Theorem 1. Most of their
work focuses on the case where beacons (verifiers) are
correct and honest, and sensors do not collude. They
also give an example of a collusion attack where three
colluding nodes, positioned so that one is very close to
each of three verifiers, can appear to these verifiers as a
single node whose position may be anywhere within the
triangle spanned by the three colluding nodes. This is
the situation we discuss in Section 7.2.2. In Theorem 4
we show that fewer than three colluding nodes cannot
achieve the same by giving a protocol to deal with the
problem. Further, we show in Section 8.2 that in the
bounded-range broadcast model where applicants can-
not determine the range of the broadcast, it is possible
to tolerate any number of corrupt beacons inside the tri-
angle formed by three beacons in two-dimensional space.

At first, our work might seem to be closely related to
theirs. The common idea motivating both papers is the
observation that when message roundtrip time is used
to estimate the distance of a remote entity, that entity
can only cheat by pretending to be farther from the ver-
ifier than its real distance, not closer. In fact, this idea
appears even earlier, in the report by Waters and Fel-
ten [22]. What distinguishes our work is the ability to
deal with multiple colluding entities controlled by an
adversary. Čapkun and Hubaux do consider collusion
by corrupt sensors, and the approaches they propose
to solve the problem are (1) tamper-proofness of au-
thentication information within each device, and (2) fre-
quency fingerprinting—both reliable methods for prov-
ing uniqueness. However, both of these assumptions re-
ally claim that each device is uniquely identifiable by
some “black-box” method. In the presence of such an as-
sumption, again, as in the case of Parno et al. [20], Sybil
attack prevention becomes trivial. Their work considers
only location verification and does not consider the more
general problem of group-distinctness testing that we in-
troduce in this paper. Finally, Čapkun and Hubaux do
not deal with corrupt verifiers, nor consider the general
Sybil attack problem.

Thus, despite certain similarities, our results are much
more general, especially as we consider corrupt beacons
as well as colluding participants. Furthermore, instead
of focusing on specific technologies and making detailed
assumptions (that may or may not persist as new tech-
nological developments are made), we study the funda-
mental limitations of localization protocols in a more ab-
stract setting. The one basic assumption that we make
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is that the participants lie in a metric or almost-metric
space in which communication delays depend on the ge-
ometry of the space. We do focus on a few specific classes
of metric spaces (Euclidean, spherical geometry) because
they seem most relevant to real-life applications.

6 Notation and terminology summary

For easy reference, in Table 1 we summarize most of the
notation used in the statements and proofs of Theorems
and Lemmas, as well as in some discussions throughout
the paper.

7 Geometric certification protocols:

2-distinctness tests

In this section we present our results under various sys-
tem assumptions. For each set of assumptions, we state
our results in the form of a theorem that specifies con-
ditions under which a participant (or group of partic-
ipants) is incapable of pretending to be in a location
other than the real location of the participant or one
of the group members. We say that a participant (or a
group of participants) simulates a point, if it can make
all its communications appear to come from the point.

These results can be readily used to construct geo-
metric certificates for the applicant. In each case, a cer-
tificate would consist of the set of measurements that is
sufficient to uniquely identify the location of an entity,
and a test of distinctness is simply a comparison between
the two locations defined by two certificates.

All our results are stated assuming the distance be-
tween correct participants is accurately measured using
roundtrip delays (as explained in Section 2). These re-
sults can be extended to the case in which measurements
are not accurate. For that case, the statements of the the-
orems will change to specify conditions under which an
applicant is incapable of pretending to be outside of a
well-defined neighborhood of its actual location. In the
presence of inaccuracies, a certificate consists of the mea-
surements that establish a neighborhood of the appli-
cant’s location, and a test of distinctness is simply the
test of disjointness of two such neighborhoods. While we
do not describe such protocols here, our results can be
generalized to account for small inaccuracies (as outlined
in Section 9).

In our model, we assume only that the distances be-
tween beacons can be calculated, while the locations of
beacons are unknown. Given a distance matrix Md whose
entries are the pairwise distances between points in a ge-
ometric space, it is possible to find a set of points ex-
pressed in an orthonormal coordinate system and whose
distance matrix is identical to Md [4,9]. If all beacons
are correct, these methods can be used to transform a
distance matrix representation into a coordinate system

representation. In the presence of faulty beacons, the
computed distance matrix might not be realizable in a
geometric space and a coordinate representation consis-
tent with all the beacons might not be possible. Still,
even in the presence of faulty beacons, the distance ma-
trix is realizable if it is restricted to the set of correct
beacons. Our goal is then to find a realization that is
guaranteed to be consistent with the set of correct bea-
cons. Assuming that the set of correct beacons is in gen-
eral position (that is, no (d + 1)-subset is contained in a
d-dimensional hyperplane, and no (d + 2)-subset is con-
tained in a d-sphere), this can be easily achieved by con-
sidering either all sets of d+1 or all sets of d+f +1 bea-
cons (depending on which of the two families is smaller).
In the first case, we use each (d + 1)-set to build a co-
ordinate representation and then check if there are an-
other f beacons consistent with this representation. In
the second case, we look for a consistent (d + f + 1)-set
of beacons. In case such a set is found, it must contain
at least d + 1 correct beacons, therefore the coordinate
representation defined by this set is consistent with all
the correct beacons and every beacon inconsistent with
this representation can be discarded as faulty.

It is important to note that, while the procedure
described above is expensive—being exponential in the
(usually small constant) d, and including a verification of
the positive-semidefiniteness of a matrix—it is only per-
formed once for an applicant to establish the certificate.
The size of the certificate itself is small, and the test of
distinctness efficient.

7.1 Honest beacons with known locations

7.1.1 Trilateration in an honest world

If all participants in the protocol are honest, then the
problem is easy. To determine the exact location of a
point x(A) in d-dimensional space, it is enough to know
all the distances ρ(x(A), x(Bi)) between x(A) and d +
1 other affinely independent points x(B1), . . . , x(Bd+1).
With this information, the point x(A) can be recon-
structed as follows: let Si be the sphere of diameter
ρ(x(A), x(Bi)) around x(Bi). The point x(A) belongs to
Si for every i. A sphere with center c = (c1, . . . , cd) and
radius r is the set of all points x = (x1, . . . , xd) that sat-
isfy the equation

∑

i(xi−ci)
2−r2 = 0. Equating the left-

hand sides of the equations for Si and Sj gives a linear
equation in xi, thus the intersection of two spheres be-
longs to a hyperplane. Since we assume general position,
each pair S1, Si defines a hyperplane, which we denote
by Hi. Since S1 ∩ Si ⊆ Hi, it follows that x(A) ∈ ⋂

i Hi,
and we can determine x(A) by solving a linear system.

7.1.2 Trilateration against cheaters

In the situation where the applicant may cheat by pre-
tending to be at a different location, the protocol should
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Table 1 Notation summary

Symbol Meaning
B set of beacon entities (verifiers)
A set of applicant entities
n (usually) the number of beacons; n = |B|
f upper bound on the number of faulty beacons
d dimension of underlying geometric space (most proofs)
d distance between two objects (early discussions)

R
d d-dimensional Euclidean space

S
d d-sphere (boundary of unit ball in R

d+1)
ρ(x, y) distance between points x and y
µ(A, B) observed distance between entities A and B
x(A) the location of participant A in the space

Bi for various i (usually) beacon
Ai for various i (usually) applicant

B(x, r) ball around x of radius r
X (in most proofs) the host metric space, usually Euclidean or spherical

conv(S) the convex hull of set S
ei the standard i-th coordinate vector (in Euclidean space)

compute the applicant’s position or detect the cheating.
We first discuss the case where a single point attempts
to cheat without colluding with other entities.

Consider an applicant at A that attempts to im-
personate a point x′ 6= x(A). The applicant contacts
d + 1 beacons B1, . . . , Bd+1 and exchanges a message
with each of them. Let µi = µ(Bi, A). If A can suc-
cessfully impersonate x′, then µ(Bi, A) = ρ(x(Bi), x

′)
for every i. Since µ(Bi, A) ≥ ρ(x(Bi), x(A)), it follows
that ρ(x(Bi), x(A)) ≤ ρ(x(Bi), x

′) for every i, that is,
x′ ∈ D1 ∩ · · · ∩ Dk, where Di = B(x(Bi), µ(Bi, A)), the
ball of radius µ(Bi, A) around Bi. For a set Z, we use
int Z to denote its interior, and convZ its convex hull.

Theorem 1 Let X = R
d. Let Bi be a beacon with x(Bi) =

bi for each i = 1, . . . , d + 1. If {b1, . . . , bd+1} is affinely
independent and x′ ∈ int conv{b1, . . . , bd+1}, then x′ can-
not be simulated by any other point.

Proof First, the set S of all points that can simulate
x′ can be written as S = {x | ∀i ρ(bi, x) ≤ ρ(bi, x

′)}.
If S 6= ∅, take x∗ ∈ S. Since S is an intersection of
closed balls, it is convex and so xλ = λx∗ + (1 − λ)x′ ∈
S for all 0 ≤ λ ≤ 1. Take λ > 0 small enough that
xλ ∈ conv{b1, . . . , bd+1}. If we can show that for some i∗,
ρ(bi∗ , xλ) > ρ(bi∗ , x

′), it will follow that xλ 6∈ S, and the
proof by contradiction will be complete. So assume that
ρ(bi, xλ) ≤ ρ(bi, x

′) for all i. Let H be the hyperplane
through 1

2 (x′ + xλ) with normal vector xλ − x′. H is
exactly the set of points at equal distance to x′ and xλ.
This implies that for every i, bi is on the same side of
H as xλ, in other words, the hyperplane H separates x′

from bi for every i. This contradicts the fact that x′ ∈
conv{b1, . . . , bd+1}.

If the underlying geometric space X is R
d, then the

theorem above gives necessary and sufficient conditions
for a set of beacons to be able to detect a cheating point.
If x′ is not in the convex hull of the beacon set, it may
be impossible to detect cheating.

However, on the sphere S
d, the situation is different,

and in fact much better. Note first that on a sphere,
the distance between a pair of points is measured along
a geodesic curve (great circle) that connects the pair.
The notion of convexity can then also be defined for the
sphere. Given two points x, y ∈ S

d, we would like to
define their convex hull as the set of all points on the
shorter segment of the geodesic between x and y. We will
refer to the shorter of the two segments of the geodesic
between two points as the segment between these points,
and we will write [x, y].

Note that there is a unique x-y geodesic as long as x
and y are not antipodal points. (If x and y are antipodal,
then there are infinitely many geodesics between x and
y, and in fact every point on the sphere lies on one of
them.)

Now consider a set of points X ⊂ S
d. We say that X

is convex, if

1. X is contained in some half-sphere, and
2. For every a, b ∈ X, the segment [a, b] is a subset of

X.

It is easy to see that convex sets under this definition
satisfy some of the same properties as standard convex
sets in Euclidean space.

Lemma 1 Let {Xα | α ∈ I} be a family of convex sub-
sets of S

d. Then the intersection ∩α∈IXα is also convex.

Let x, y ∈ S
d be such that ∠x0y ≤ π/2, where ∠x0y

is the angle formed by x, the origin 0 and y. We use this
angle as the measure of distance between x and y, that
is, ρ(x, y) := ∠x0y.

Let B(x, r) = {y | ρ(x, y) ≤ r}. We call B(x, r) the
ball around x with radius r.

Lemma 2 If r is smaller than a quarter of the length of
a great circle, then B(x, r) is a convex set.
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As a justification for our claim that the situation on
the sphere is even better than in the Euclidean space,
consider the following theorem.

Theorem 2 Let X = S
d−1. Let b1, . . . , b2d (the loca-

tions of beacons B1, . . . B2d) be the points defined by the
coordinate unit vectors +e1,−e1,+e2,−e2, . . . ,+ed,−ed

in both orientations (that is, if S
d−1 is considered as a

subset of R
d, the beacons are at the vertices of the po-

lar of the inscribed d-dimensional cube). Then no point
x′ ∈ S

d−1 can be simulated by any other point.

Proof First, we can assume without loss of generality
that x′ is in the interior of the positive orthant.

Indeed, suppose this is not true. Then we first project
the whole space to the subspace spanned by coordinate
axes in which x′ is zero. After this step, all of the compo-
nents of the projected x′ are nonzero. Then we rename
the coordinate axes so that x′ belongs to (the interior of)
the positive orthant. Now x′ satisfies our assumptions.
We next prove that such an x′ cannot be simulated. In
order to then generalize this result to unrestricted x′, one
need only observe that the only effect of the projection
is that we restrict ourselves to using even fewer beacons.

We will use only the d beacons located at +e1, . . . ,+ed,
We claim that for any x∗ 6= x′, there exists an i such that
ρ(bi, x

∗) > ρ(bi, x
′). For the most interesting case, where

the simulating point is also located in the positive or-
thant, the proof is completely analogous to the proof of
Theorem 1 for Euclidean space.

First, the set S of all points that can simulate x′ can
be written as S = {x | ∀i ρ(bi, x) ≤ ρ(bi, x

′)}. If S 6= ∅,
take x∗ ∈ S. Since S is an intersection of closed balls, it is
convex and so contains the whole segment [x′, x]. Since x′

is in the interior of conv{b1, . . . , bd}, we can take a point
xλ close enough to x′ that xλ ∈ conv{b1, . . . , bd+1}. If we
can show that for some i∗, ρ(bi∗ , xλ) > ρ(bi∗ , x

′), it will
follow that xλ 6∈ S, and the proof by contradiction will
be complete. So assume that ρ(bi, xλ) ≤ ρ(bi, x

′) for all
i.

Let H be the hyperplane through the midpoint of the
spherical segment [x′ + xλ] with normal vector xλ − x′.
H ∩ S

d−1 is exactly the set of points at equal distance
to x′ and xλ. This implies that for every i, bi is on the
same side of H as xλ, in other words, the hyperplane H
separates x′ from bi for every i. This contradicts the fact
that x′ ∈ conv{b1, . . . , bd}.

As we saw from the proof of Theorem 2, the bound-
edness of the sphere makes it possible to use a single
“universal” set of beacons of fixed size (depending lin-
early on the dimension of the space) to distinguish any
point from any other. We do not claim that we can al-
ways place beacons exactly at the locations used in Theo-
rem 2. However, this theorem gives a sufficient condition
to ensure that every point in the space is contained in
the convex hull of some set of beacons, and therefore
cannot be simulated by any other point. (As long as the

number of beacons is finite, this cannot be done in Eu-
clidean space because the applicant can always be far
enough to be outside of the convex hull of the beacons).
In practice, we may use any appropriate beacon set, but
distinguishability may be more difficult to guarantee if
the beacons used are not all within a single half-sphere
because then we must be very careful about convexity.

7.2 Multiple colluding entities

We have seen that it is impossible for a single applicant at
point x∗ to impersonate any other point x′ in the convex
hull of a sufficiently large set of active beacons. However,
the proof was based on the fact that the distance from x∗

to some beacon would have to be greater than from x′ to
the same beacon and so x∗ couldn’t return messages in
time. If several entities located at different points collude
to jointly impersonate another point, our protocols from
Section 7.1.2 don’t work anymore. In fact, in this setting
there is a significant difference between the broadcast
and the point-to-point communication models.

7.2.1 Broadcast messages

In the broadcast model the applicant cannot send a mes-
sage to a single recipient. Instead, every message sent is
broadcast and thus received by every other entity (or at
least every entity expecting a message). More precisely,
every message sent by an applicant A at time t is received
by every beacon Bi at time t + ρ(x(A), x(Bi)).

Theorem 3 Let x′ be a point surrounded by an indepen-
dent set of beacons {B1, . . . , Bd+1}, either in the sense
of Theorem 1 in R

d or in the sense of Theorem 2 in S
d.

In the broadcast model, x′ cannot be simulated by any set
{A1, . . . , Ak} of entities unless x(Ai) = x′ for some i.

In the proof of the theorem, we simply use A to denote
the entity of the applicant. The first reason for this is that
no beacon can tell which Ai sends the message just by the
content of the message since A1, . . . , Ak are in collusion.
The second reason is that the broadcast model ensures
that each message sent by any of the entities A1, . . . , Ak

is received by all beacons.

Proof The protocol begins by beacon B1 sending a probe
at time 0. The applicant responds (broadcasting to all
the beacons). Upon receiving the response, each beacon
immediately forwards it to B1. Now B1 records µ(B1, A)
and the times at which it receives the responses from the
other beacons. Given the distances ρ(x(B1), x(Bi)), the
beacon can deduce the time it took the message from
A to arrive to each beacon by subtracting µ(B1, A)/2 +
ρ(x(B1), x(Bi)) from the time ti at which the response
from Bi arrived. Therefore, the beacon B1 can calculate
the distance µ(A,Bi) for each i. Now by Theorem 1 for
R

d or by Theorem 2 for S
d, the point x′ cannot be sim-

ulated by any other point.
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7.2.2 Point-to-point messages

The case in which an applicant can send a message to
any single beacon appears to be substantially more dif-
ficult in the case of colluding entities. For example, our
protocols from the previous section fail because the sim-
ulating entities A1, . . . , Ak can reply to the beacons se-
lectively, so that Ai sends a message to Bj only if Ai is
closer to Bj than x′. Thus a point x′ can be simulated
whenever for each beacon Bi there exists an Aj such that
ρ(x(Aj), x(Bi)) ≤ ρ(x′, x(Bi)). Intuitively, the commu-
nication to each beacon may be controlled by a single
adversary. We present a protocol that forces the adver-
sary to do just this, namely, a protocol that can only be
cheated with the number of entities equal or greater than
the number of beacons, and located in small bounded re-
gions, one per beacon.

The protocol consists of two rounds. In the first round,
the beacons exchange the initial messages with the ap-
plicant and each other, accumulating enough informa-
tion to compute x′ from the values of µ(Bi, A), i =
1, . . . , d+1, and to compute their own locations in some
fixed frame of reference. In the second round, the bea-
cons synchronize clocks and broadcast special messages
M1, . . . ,Md+1. For each i, the message Mi is sent by
beacon Bi, so that at time t0 all d + 1 messages simul-
taneously reach x′. Each of these messages should be
impossible to forge for an entity who has not received it.
A simple way to achieve this is for each beacon to send a
random message to the applicant. The applicant is then
required to immediately combine the d+1 messages into
a single one, and forward this to each beacon. This mes-
sage is constructed so that it is difficult to forge it with-
out having received all d + 1 of the beacons’ messages.
Finally, the beacons verify that from the forwarded mes-
sage they can indeed reconstruct the original messages
that were sent to the applicant.

The critical observation is that unless the applicant
receives all d + 1 messages, it cannot forge the combina-
tion message.

If the protocol is completed and the beacons decide
to accept the participant, then it must be true that every
beacon receives the combination message on time. Since
we assume that if a beacon receives a single message, the
message must have been sent by a unique entity (multiple
messages cannot combine themselves on the fly into a
single message), we may denote by Ai the participant
in charge of forwarding the combination message to Bj .
From the definition of the protocol, if Ai can forward the
required message to Bj on time, it must be true that

ρ(x(Bk), x′) + ρ(x′, x(Bj)) ≤
ρ(x(Bk), x(Ai)) + ρ(x(Ai), x(Bj))

(1)

for all k 6= j.
We claim that if the protocol is completed success-

fully from the beacons’ point of view, then either one of

the entities is at the claimed applicant location, or there
are at least d + 1 entities controlled by the adversary.

Before we discuss the protocol in general, we take
a look at the two-dimensional case and prove that no
two entities can simulate a third point in the convex
hull of three beacons. This implies that if the protocol is
completed successfully from the beacons’ point of view,
then either one of the entities is at the claimed applicant
location, or there are at least 3 entities controlled by the
adversary.

Theorem 4 Let X = R
2 and let x′ be a point in the

convex hull of 3 affinely independent beacons B1, B2, B3.
Then no 2 entities can simulate x′ unless one of them is
located at x′.

Note that, just as in the broadcast model, we do not
assume the entities controlled by the adversary are in
the convex hull of the beacons.

Proof Denote the two entities under adversary’s control
by A1 and A2 and assume that the protocol is completed
successfully. Since A1 and A2 successfully simulate x′ ,
it follows that for every j, the beacon Bj receives the
combination message by time t0 + ρ(x′, x(Bj)). Let Ai

be the participant in charge of forwarding the combina-
tion message to Bj . From the definition of the protocol,
if Ai can forward the required message to Bj on time,
equation (1) must be satisfied.

For convenience, for all j 6= k define Ejk to be the
ellipse with focal points Bj and Bk that passes through
x′, and for all i, define Ei =

⋂

j 6=i Eij .

The equation (1) is satisfied by Ai exactly if Ai can
forward the combination message to beacon Bj on time.
On the other hand, the set of points that satisfy this
equation is exactly the set Ej . In other words, Ai can
forward the message to Bj on time, if and only if Ai ∈
Ejk for each k 6= j.

Let hjk be the line tangent to the ellipse Ejk at the
point x′. Note that, since x′ is in the convex hull of
{B1, B2, B3}, for any j, k, the beacons Bj and Bk are on
the same side of hjk, but Bi is on the other side. Denote
by Hjk the halfplane bounded by hjk that contains the
two points Bj and Bk. The discussion in this paragraph
can now be summarized by writing

Bi 6= Hjk

for all i 6= j, k.
In order to show that at the adversary needs at least

three participants to simulate a point distinct from each
of the participants, we will now argue that each beacon
requires a distinct participant. This will follow directly
if we can show that the set of points that can reach Bi

on time and the set of points that can reach Bj on time
have only x′ in common. Indeed, we will now show that
Ei ∩ Ej = {x′} for all i 6= j.

First, instead of Ei we consider the set Hi = ∩j 6=iHij

for each i. Since Eij ⊂ Hij , it is clear that Ei ⊂ Hi and
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it will suffice to show that Hi ∩ Hj = {x′} for all i 6= j.
We show this stronger statement by simple enumeration
of all possible cases. Let B1, B2, B3, x′ be four points
in the plane with x′ ∈ conv{B1, B2, B3}. Draw any line
through x′ that has B1 on one side and B2 and B3 on
the other. Then draw a line (again through x′) that has
only B2 on one side and the other two beacons on the
other. Finally, draw a third line that has B3 on one side
and B1 and B2 on the other. The properties just stated
related to the separation of beacons by these three lines
are certainly true of the lines h12, h13 and h23. Therefore,
we may safely infer properties of the sets H1, H2, H3

from considering the halfspaces bounded by these three
lines.

The three lines drawn as specified in the previous
paragraph all pass through x′. Hence they divide the
plane into six wedges. Label these in clockwise order,
starting with the one that contains B1, by W1, W2, . . . ,W6.
First, B1 ∈ W1 and this is the only beacon in W1, for
otherwise two beacons would not be separated by any of
the three lines. More generally, any one wedge Wj may
contain at most one beacon. Consider now the wedge
W2. If there exists an i such that Bi ∈ W2, then B1

and Bi are together on the same side of two of the three
lines. However, this too is impossible by the separation
requirements. Therefore, W2 contains no beacons. Sim-
ilarly, W6 contains no beacons and, more generally, for
any j, at most one of Wi, Wi+1 may contain a beacon.
From all this, we may conclude that exactly W1, W3

and W5 contain one beacon each. If the three lines were
really drawn in the same position as h12, h13 and h23,
then three of the wedges would be exactly H1, H2 and
H3, namely we would have W1 = H1 for B1 ∈ W1, and so
on. Now clearly, W1∩W3 = W1∩W5 = W3∩W5 = {x′},
and thus our proof is complete.

In the conference version of this paper, we claimed
the analogous result for arbitrary dimension. While this
still appears true, we have not been able to formalize a
proof for this general case.

Conjecture 1 Let X = R
d and let x′ be a point in the

convex hull of d+1 affinely independent beacons B1, B2,
. . . , Bd+1. Then no d entities can simulate x′ unless one
of them is located at x′.

The reason for the difficulty here seems to be that
the statement relies on more than just affine (projec-
tive) properties of d-dimensional space, and so polyhe-
dral arguments (such as the one in our proof of the two-
dimensional case) will not suffice. On the other hand,
some special cases of the conjecture are relatively easy
to prove—such as when the beacons are equidistant.

Theorem 5 Let X = R
d and let x′ be at the center of

the regular simplex spanned by d + 1 beacons B1, B2,
. . . , Bd+1. Then no d entities can simulate x′ unless one
of them is located at x′.

Bk Bd+1

Bi, Bj

x′

Fig. 1 The projection of two Ei,j and Ek,d+1. is exactly
{x′}.

Proof Let A1, . . . , Ad be d entities that can successfully
simulate x′. As in the proof of Theorem 4, for all j 6= k
define Ejk to be the ellipsoid with focal points Bj and Bk

that passes through x′, and for all i, define Ei = ∩j 6=iEij .
Our goal is to show that Ei ∩ Ej = {x′} for i 6= j.

Since Ei must contain an Aj for every i, this will imply
that, unless one of the Ai is at x′, at least one will be
needed for every Ej , and thus at least d + 1 entities will
be necessary to complete the protocol.

By symmetry, it is enough to show that Ed+1 ∩Ei =
{x′} for i ≤ d. Since d > 3, we can find j 6= i and k 6= d+1
such that j 6= k. For such a choice of j and k, consider
Ei,j and Ek,d+1. Since Ei ⊆ Ei,j and Ed+1 ⊆ Ek,d+1, we
have Ei ∩ Ed+1 ⊆ Ei,j ∩ Ek,d+1. Thus, if we can show
that Ei,j ∩ Ek,d+1 = {x′}, the theorem will follow.

Project the simplex to a 2-dimensional plane spanned
by the segment [Bk, Bd+1] and the point x′. In this pro-
jection, Ek,d+1 is mapped to an ellipse, and Ei,j to a
circle, as in Figure 1. In the projection, the intersection
of Ei,j and Ek,d+1 is exactly {x′}. If Ei,j ∩ Ek,d+1 con-
tained an open ball, then this ball would project to either
an open disk or an open segment in any 2-dimensional
projection. Since this is not the case, the intersection
Ei,j∩Ek,d+1 does not contain an open ball. Suppose there
was another point x′′ 6= x′ contained in Ei,j ∩ Ek,d+1.
Then also the segment [x′, x′′] must be contained in the
intersection. However, since every point on the boundary
of an ellipse is an extremal point (cannot be written as
a convex combination of other points within the ellipse),
any point in the interior of the segment [x′, x′′] is also in
the interior of both Ei,j and Ek,d+1. This contradicts our
previous conclusion that Ei,j ∩Ek,d+1 doesn’t contain an
open ball.

Hence, x′ is the only point in Ei,j ∩Ek,d+1, thus also
the only point in Ei ∩ Ed+1, which proves the theorem.

7.2.3 Point-to-point messages, the case of many beacons

In the previous section we showed that the adversary
needs at least three participants to simulate any point in
the convex hull of three beacons. Intuitively, what hap-
pens is that every beacon must be cheated by a distinct
point in order to avoid detection. This intuition is justi-
fied by our next result, that shows that if a larger num-
ber n of beacons is available, it is possible to formulate
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B1

B2 B3

B4

B5

Fig. 2 The points within the inner pentagon satisfy the
condition of Theorem 6.

a protocol that cannot be cheated by fewer than n par-
ticipants.

Theorem 6 Let X = R
2, and let B = {B1, . . . , Bn} be

a set of n beacons in convex position (that is, no beacon
is in the convex hull of the others). Let x′ be a point
in the convex hull of these n beacons. If for any pair of
beacons Bi, Bj there exists a third beacon Bk with x′ ∈
conv{Bi, Bj , Bk}, then no n− 1 entities can simulate x′

unless one of them is located at x′.

Notice that this condition is generally not satisfied
when n is even. Also, in most cases the region in which
the applicant point can be decreases as the number of
beacons grows. For some examples, consider Figure 2.

Proof First, let us describe the protocol. For this theo-
rem, we use a straightforward generalization of the three-
point protocol from Theorem 4. In the first phase of the
protocol, the beacons determine the unique claimed loca-
tion x′ of the applicant. In the second phase, each beacon
Bi sends a message mi at a time determined so that all
the messages arrive at x′ simultaneously. The applicant
is then required to combine all the messages received and
immediately forward the resulting combination message
to all the beacons.

To analyze the protocol, we imagine the beacons as
grouped into triples. Each triple contains the applicant
point in its convex hull, and each triple is considered as
if it were running the three-point version of the proto-
col. For any of these triples, the combination message
contains all the information in the three messages of the
triple, so any conclusions derived about the triple from
the proof of Theorem 4 hold for the n-beacon protocol as
well. In particular, if the beacon Bi receives the correct
combination message on time, then the participant who
sent it to Bi is contained within Ei, where Ei is the set
of all points x such that d(x,Bi)+d(x,Bj) ≤ d(x′, Bi)+
d(x′, Bj), for all Bj that are contained in any triple to-
gether with Bi. For any i and j, there exists a triple
of beacons Bi, Bj , Bk such that x′ ∈ conv{Bi, Bj , Bk}.
Therefore, Ei ∩ Ej = {x′}. If the protocol is completed,
then each beacon receives the combination message on
time, and so either a participant in the protocol is lo-
cated at x′ or each beacon receives the message from a
different location. In the former case, no cheating is go-
ing on and the protocol should succeed; in the latter, at
least n participants are required.

B1

B2B3

B4

B5

x′

A

Fig. 3 Beacon B5 is faulty and, together with A, may create
an entity at x′.

7.3 Trilateration with corrupt beacons

In the presence of faults, we cannot rely on the operation
of any single beacon to work as specified by the protocols.
For example, a corrupt beacon may report an applicant
as being further away than the actual distance, violat-
ing one of our basic assumptions and creating a situation
where µ(x(B), x′) < ρ(x(B), x′). Note that an honest ap-
plicant may recognize this situation and we assume that
a correct applicant will probe a beacon to establish its
distance to the beacon and compare it to the distance
reported by the beacon to the applicant. If the applicant
is correct, then it will accept the value reported by the
beacon if it matches its own value. This will have the
effect of preventing a beacon from making a correct ap-
plicant look like it is closer to the beacon than it really
is.

We now show how to tolerate beacon failures.

Theorem 7 Let x′ be the location claimed by the ap-
plicant A. Consider a set S of n ≥ d + 1 + 2f beacons
arranged so that either: (first case) for every (n − f)-
element subset S′ ⊂ S, x′ ∈ convS′, or (second case),
for every (d + 1)-element subset S ′ ⊂ S, x′ ∈ convS′. If
at most f of the beacons in S are faulty, then no appli-
cant A can simulate x′ unless x(A) = x′. A certificate
for the applicant can be constructed in time

(

n
f

)

(in the

first case) or
(

n
d+1

)

(in the second case).

The convex hull condition may appear quite restric-
tive, but if n is large compared to f , then the intersec-
tion of convex hulls of all the (n − f)-subsets will still
be considerably large. A condition such as this is needed
because of examples such as the one in Fig 3. Here, the
top beacon (B5) is faulty and it may collude with the
applicant. Since the applicant is not in the convex hull
of the set of correct beacons, they may be fooled by the
collusion of the applicant and the faulty beacon into be-
lieving the applicant is farther away from the square than
it really is.
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Note that a set of d + 1 + 2f beacons contains at
most f faulty, and therefore at least d + 1 + f correct
beacons. The f faulty beacons may, together with at
most d correct ones, determine an incorrect value for
x(A). However, there are more correct beacons and so the
maximum subset of beacons agreeing on a location for x′

is correct. Unfortunately, finding a maximum consistent
subset of a set of n linear equalities is not only NP-hard,
but also hard to approximate within an nε factor for
some ε > 0 [2].

Proof We check either all sets of d+1 or all sets of n−f
beacons (depending on which of the two conditions in
the theorem is satisfied, or if both are, which of the two
families is smaller).

In the first case, for every (d + 1)-set of beacons, we
find a candidate point for x′ (by solving a linear equality
system as in Section 7.1.1). Then for each beacon B,
we check if µ(B,A) = ρ(x(B), x′). If there are at least
n− f such beacons (and x′ is in their convex hull), then
x(A) = x′ and the certificate is issued.

In the second case, if each beacon in a set of n − f
beacons is consistent with x′ (and x′ is in their convex
hull), then this set of beacons defines a unique point,
which must be the location of the applicant, because a
(d+1)-subset of this set consists of correct beacons, and
so also defines the actual location of A.

Theorem 8 Let d = 2. Let x′ be the location claimed by
the applicant A. Consider a set of n ≥ d+1+2f beacons
surrounding x′, such that for every (n−f)-element subset
S′ ⊂ S, x′ ∈ convS′.

If at most f of the beacons in S are faulty, then no
set A of at most d entities can simulate x′ in the point-
to-point model unless x(Ai) = x′ for some applicant Ai.

Proof We first determine a unique claimed location for
the applicant, by running the protocol from (case 1 of)
the proof of Theorem 7.

In the second phase, we run the relay protocol from
Theorem 4. After the messages are all received, we exam-
ine the (n − f)-subsets of beacons and their conclusions
about the location of the applicant. Consider a set of
n − f beacons. If all are correct, then they will detect
an adversary trying to simulate x′ with fewer than d + 1
entities. If all are correct, they will also issue a certificate
to an honest applicant. Thus, we need only argue that
an (n−f)-subset containing some faulty beacons cannot
agree on an incorrect location for the applicant. But this
is true, since in the first phase we determined the unique
location claimed by the applicant.

8 Certification protocols: groups-distinctness

tests

8.1 Group distinctness: general results

In this section, we consider a general group-distinctness
test using a protocol in which applicants are required to
relay messages between pairs of beacons. We show how
to find a lower bound on the number of applicants needed
to simulate a number of observed relay times by reducing
the problem to a set cover problem.

In the relay approach, beacons do not attempt to de-
termine the locations of the applicants directly, rather
they determine the time it takes for a message sent by
one beacon to be received by the applicant and then re-
layed to another beacon. For a pair of beacons, the time
to relay a message defines an ellipse whose foci are the
two beacons and whose diameter is equal to the relay
time. An applicant that is on or inside the ellipse can
simulate the relay time observed by the two foci by intro-
ducing appropriate delay. Applicants outside the ellipse
cannot simulate the observed relay time.

For the distinctness test, we assume we have as input
a set of relay times between applicants and pairs of bea-
cons, and the goal is to determine the minimum number
of applicants that could have produced this set of relay
times.

Given two ellipses that have a nonempty intersection,
there could be an applicant in their intersection that can
simulate the observed relay times between their foci. We
will take a conservative approach and assume that for a
set of ellipses that have a common non-empty intersec-
tion there is a point in the intersection that can simulate
the relay times for all the ellipses in the set. We call
this assumption the conservative assumption. By abuse
of terminology, we identify such a point with the inter-
section itself, and say that an intersection of a set of
ellipses can simulate the relay times for the ellipses in
the set.

Given a set of ellipses, we say that an intersection
of a subset (of ellipses) is minimal if the intersection is
not empty and does not have a proper subset that is a
nonempty intersection of ellipses (equivalently, no proper
superset of that set of ellipses has a nonempty intersec-
tion). For example, if an ellipse does not intersect any
other, then the whole ellipse is itself a minimal intersec-
tion. We will show that our problem reduces then to de-
termining a set of minimal intersections that are enough
to simulate the observed relay times. In fact, assume that
a number of applicants can simulate the observed relay
times and that some applicants are not in minimal in-
tersections. For every applicant that is not in a minimal
intersection, the applicant must be in some ellipse and
possibly in the intersection of a number of ellipses. Let S
be the smallest intersection of ellipses to which the appli-
cant belongs. Since S is not minimal, we can replace the
applicant with another applicant in the minimal inter-
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section contained in S (such a minimal intersection ex-
ists because the number of ellipses and therefore of their
intersections is finite). The replacement does not affect
the ability of the set of applicants to simulate or achieve
the observed relay times because, by our conservative as-
sumption, some applicant in the minimal intersection in
S can simulate any relay time for all ellipses to which S
belongs, which is at least as much as can be simulated by
an applicant in S that is not in the minimal intersection.

So, our problem reduces to finding a set of mini-
mal intersections that can simulate all the observed relay
times.

This problem is an instance of set cover [12]. To see
this, define a set X = {x1, . . . , xn}, each of whose ele-
ments corresponds to a unique ellipse, and for each mini-
mal intersection of ellipses from X, define a set {xi1 , . . .,
xit

} containing exactly the elements corresponding to
the ellipses that form the intersection. Denote these sets
by S1, . . . , Sm. Now our problem is exactly that of find-
ing a minimum-size family of sets {Si1 , . . . , Sic

} such that
the union of all the sets in this family contains every el-
ement of X.

In general, set cover is NP-hard, and even hard to
approximate to a factor better than log n [11]. However,
our problem is restricted by the fact that ellipses are not
arbitrary subsets of the plane, and also by the fact that
we only consider minimal intersections. In fact, if we had
to consider arbitrary intersections of ellipses, we might
have to create exponentially many sets. Since ellipses
are convex and we only consider minimal intersections,
the number of sets is bounded by O(n2), where n is the
number of ellipses in the instance. Furthermore, since
all the sets have a special geometric structure (they are
“pseudo-disks” in terminology of [17]), the results of Ma-
toušek et al. [17] imply that the set system {S1, . . . , Sm}
allows ε-nets of size only O(1/ε). For such set systems,
Brönnimann and Goodrich [6] give a constant-ratio ap-
proximation algorithm for the set cover problem (for a
discussion of these results, see also the survey by Bern
and Eppstein [3] and the Thesis of Brönnimann [5]).

8.2 Group-distinctness with point-to-point messages
and bounded-range broadcast

In this section we consider a system in which applicants
can communicate with point-to-point messages and bea-
cons can communicate with bounded-range broadcast
and applicants cannot determine the range of a broad-
cast message they receive. We show that in R

2, and in
the presence of three correct beacons, k faulty entities
cannot simulate more than k2 distinct points. This re-
sult can be used in the way suggested in the introductory
example (Section 1.1) to mitigate the damage of Sybil at-
tacks. If there are no more than k faulty entities in the
system, then from a set of applicants that appear to be
at m different locations, at least m− k2 applicants must
reside on correct entities.

B1

B2

B3x′

A1

A2

A3

Fig. 4 Three applicants can potentially simulate x′.

To achieve our result, we modify the second phase
of the protocol for the point-to-point case. The second
phase is replaced with m phases, where m is a secu-
rity parameter (the protocol will fail with probability
inversely proportional to an exponential in m). We de-
scribe one of the m phases. First, each beacon sends a
message that reaches x′ with probability 1/2 and does
not reach x′, but reaches all points that are closer to the
beacon than x′, with probability 1/2. As in the proto-
col for the point-to-point case, all messages that reach x′

arrive at the same time, say t0.
Consider the message sent by the beacon Bi. If there

is no applicant whose distance from Bi is equal to the
distance between x′ and Bi, it follows that no appli-
cant knows whether the message of Bi reaches xi. It
also follows that the colluding applicants, as a group,
do not know which messages x′ must combine and for-
ward to all beacons. So, regardless of the times at which
the applicants receive the messages sent by the beacons,
any combination of messages they forward might be the
wrong combination with probability 1/23. By repeating
the phase m times, the probability of forwarding the cor-
rect messages m times is 1/8m. This is only true if there
are no applicants on the three circles centered at the
beacons and passing through x′. If there are applicants
on these three circles, then those applicants would know
if a particular message reaches x′ because they are at
the same distance (separately) from the beacons. This
situation is illustrated in Figure 4.

So, in order for a location to be simulated by faulty
entities, there must be three entities, each of which re-
sides on a circle going through the simulated point and
centered at the beacons. The question we are interested
in becomes the following: given a set of entities, how
many points can be simulated by them? We give a loose
upper bound on this number. Let k be the total num-
ber of corrupt entities in the system. A point x′ can be
simulated by these k entities if there are three entities
A1, A2, and A3 such that ρ(x(Ai), x(Bi)) = ρ(x′, x(Bi)).
In other words, x′ is at the intersection of three circles
centered around the beacons and each containing one of
the k entities. The set of points that can be simulated by
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A1

A2

A3

A4

Fig. 5 Beacons around the perimeter of a square and k
applicants that can appear to be anywhere.

the k entities are points that are at the intersection of
such three circles. This set is a subset of the set of points
that belong to the intersection of the sets of circles cen-
tered at B1 and each containing an entity in the system
and set the of the circles centered around B2 and each
containing an entity in the system. Those circles have at
most 2k2 points in common (any two circles with differ-
ent centers intersect at most in two points) and at most
k2 of these points are inside the triangle formed by the
beacons.

In the foregoing discussion we assume that the bounded
range broadcast can be made to reach only points whose
distance to a beacon is strictly less than a given value. A
more practical assumption would require that a message
reaches no point that is more than ε + R from a beacon
for some ε and some R. This will modify the result to the
following: k entities cannot simulate points in more than
k2 disjoint small neighborhoods centered around the k2

points defined by the intersection of circles, and where
the area of a neighborhood is in O(ε2).

8.3 Group-distinctness with a grid of beacons

In this section, we show how the result of Section 8.1 can
be applied in a specific setting. We show how applicants
can be severely limited in the number of identities they
can simulate. We consider a system in which beacons are
evenly spaced on the perimeter of a square as shown in
Figure 5. There are 4k beacons, k beacons on each edge.

Without loss of generality, let k be the length of an
edge of the square (in other words, beacons that are ad-
jacent are at a distance 1 apart). Let BLi

, BRi
, BUi

and
BDi

be the i-th beacons on the left edge, right edge, up-
per edge, and lower (down) edge respectively. We use a
coordinate system with center at the top left corner of
the circle with the coordinates of the bottom right cor-
ner being (k, k) and the horizontal axis being the x axis.
For two beacons BLi

and BRi
, we can define a horizon-

tal ellipse EHi
with foci BLi

and BRi
and with diameter

just under
√

k2 + 1. Similarly we define a vertical ellipse

A
BL BR

BU

BD

Fig. 6 Two-dimensional protocol: A must forward the com-
bination of messages from BU and BL to both BD and BR.

EVi
with foci BUi

and BDi
and with diameter just un-

der
√

k2 + 1. Every point inside the square belongs to at
least one, but no more than two horizontal ellipses and at
least one, but no more than two vertical ellipses. In fact,
a horizontal band of width 1 around the line segment
joining BLi

and BRi
is completely contained in EHi

. A
similar statement is true for vertical ellipses.

If we only consider vertical and horizontal ellipses,
then k applicants are sufficient to cover all the ellipses.
For example, place an applicant at (i, i) for each i. This
is illustrated in Figure 5. The situation can be improved
drastically, though, if we modify the protocol. In the
modified protocol, after the apparent location of an ap-
plicant is determined, say (x, y), the applicant receives
two nonces (random messages) from BUbx/lc

and BLby/lc
.

These nonces arrive at the apparent location at the same
time as in the protocol of Section 8.1 and the applicant is
required to combine then and forward the combined mes-
sage to BDbx/lc

and BRbx/lc
(Figure 6). In order for an

applicant to successfully forward the messages on time,
it has to be in the intersection of EHby/lc

and EVbx/lc
. It

follows that to cover all the ellipses, we need (k/2)2 ap-
plicants. Indeed, only adjacent ellipses have non empty
intersections and we need one applicant to cover the in-
tersection of two adjacent horizontal ellipses and two ver-
tical adjacent ellipses. Since there are k/2 disjoint pairs
of adjacent horizontal ellipses and an equal number of
disjoint pairs of vertical adjacent ellipses, we need at least
(k/2)2 applicants to cover all of them.

With this result, we can define the following group
distinctness test when the maximum number of faulty
applicants is f and the total number of applicants is
m > f . For every applicant, determine an intersection
of a vertical ellipse and a horizontal ellipse in which
the applicant is located. Each intersection would have
a group of applicants, possibly empty. Let m(f) be the
number of applicants in the f largest groups (assuming
there are at least f groups). Then, there must be at least
m − (m(f) − f) distinct applicants amongst the m ap-
plicants.
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This result is interesting because it confines corrupt
applicants to simulating points in a small region. It is a
significant improvement over the introductory example,
where we needed one beacon per corrupt applicant. In
this example, the number of corrupt applicants needed
to cover the whole space of interest is quadratic in the
number of beacons.

9 Inaccuracies

In this section we very briefly describe a generalization
of the problem that allows inaccuracies in measured dis-
tances. We only consider the simplest case, where mea-
sured distance may vary by a small constant fraction
(known in advance) from the actual distance. This as-
sumption may not be as restrictive as it appears, espe-
cially in view of our suggestion in Section 2.4 that each
distance be measured more than once over a period of
time to ensure accuracy (for example, if the measure-
ments deviate from the true value according to a reason-
able probability distribution, the smallest of the multiple
measurements will generally tend to the true value fairly
quickly).

9.1 Inaccurate distance measurements

To account for the inaccuracies in measuring the dis-
tance, we consider the variant of the problem where the
measured distance µ(Bi, A) is allowed to exceed the ac-
tual reported distance by a small multiplicative factor: as
long as there exists a point x′ that satisfies ρ(x(Bi), x

′) ≤
µ(Bi, A) ≤ (1 + ε)ρ(x(Bi), x

′) for each i, the protocol
should not reject the applicant.

The problem of validating an applicant becomes equiv-
alent to identifying an intersection of thin (because we
assume ε to be small relative to the measured distances)
spherical shells (one around each of the beacons).

The goal of all our protocols is to distinguish between
different applicants. Therefore a natural measure of how
badly a protocol fails might be the smallest distance be-
tween points that cannot be reliably distinguished using
the protocol. Now imagine a region E such that no two
points in E can be reliably distinguished. Since E is an
intersection of shells around beacons and the thickness
of each shell is small compared to its radius, we may
think of E as bounded by almost straight planar sur-
faces. Consider as an example the two dimensional case,
and focus first on just two of the beacons, B1 and B2.
The straight line segments from their locations to the
applicant’s location meet at an angle, say θ. If θ is close
to the right angle, then the indistinguishability region is
close to a square (actually, two disjoint squares, because
two circles around B1 and B2 intersect in two points).
If θ is very small, the indistinguishability region looks
more like a thin parallelogram, and in such a case it can

B3

B1 B2

x′

Fig. 7 The small angle case.

happen that two points a large distance apart cannot be
distinguished. When the third beacon is included, it may
still be the case that the indistinguishability region has
a large diameter.

For this case, if the shell boundaries are replaced by
straight lines, we see that the distance between the two
points farthest apart in the indistinguishability region

is at most D = 2dε cos(θ/2)
sin θ , where d is the distance be-

tween B1 and x′. In other words, the diameter of the
indistinguishability region may increase proportionally
to 1/ sin θ.

9.2 Inaccurate clocks in beacons

Some of our protocols depend on quite accurate clocks.
For example, in the proof of Theorem 4 we describe
a protocol that requires beacons to send messages in-
dependently, but at precisely timed moments, in order
to prevent several colluding points from simulating a
nonexistent applicant. Clock inaccuracy in such a pro-
tocol translates directly into increased inaccuracy of dis-
tance measurement (because the beacon that sends the
message is not the same as the beacon that measures
the arrival time). A very similar problem is solved in
the existing Global Positioning System (GPS) [1] using
redundant information. A GPS receiver reads the times-
tamps in signals sent by several satellites to measure its
distance from each, and given a table of ephemerides de-
duces its own geographical location. The satellite signals
travel at the speed of light, and the Earth is small enough
that even slightly inaccurate clocks may lead to inaccu-
rate measurements. (Highly accurate clocks are built into
the satellites, but are too expensive for mass-produced
GPS receivers.) Therefore, instead of four signals (which
would be enough to identify the receiver’s location), five
or more are used to allow for correction of clock drift.
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10 Discussion of model

10.1 Adversary Model

The adversary model is particularly important for the
accuracy of measured distances. In fact, a corrupt entity
that is used to route messages between non-corrupt bea-
cons can artificially increase the distance between them
as well as between corrupt entities and beacons. Later,
the calculated distance could be shortened which violates
a main assumption of our model. We do not have a fully
satisfactory solution to this problem, but we have two
approaches to deal with it. The first approach applies to
peer-to-peer systems that exhibit locality characteristics.
In such systems, the distance between nodes is propor-
tional to the actual network distance between the nodes.
If the overlay network exhibits locality characteristics,
we can calculate the network-distances between beacons
directly without going through the overlay network and
therefore without risking that the routing is compro-
mised (assuming the routing on the underlying network
cannot be easily compromised). These distances will be
smaller than the distances on the overlay network, but
one could then use solutions that tolerate inaccuracies in
the measured distances. The second approach makes lim-
iting assumptions on the disruption power of the adver-
sary. If we assume that any two nodes are connected by
a path that does not go through a corrupt node, then we
can use multiple paths to calculate the distance between
two nodes. The shortest among the calculated distances
would be chosen as the distance between two nodes.

Another potential difficulty can be cause by corrupt
nodes trying to flood the network with message in order
to prevent accurate measurements of distances. Dealing
with such denial of service attacks is beyond the scope
of this paper.

10.2 Certificates

It is important to realize that the set of beacons in our
model is not the same as a central certifying author-
ity. In fact, all we need to assume about the beacons is
that they are distinct and that a certain number of them
are correct. In principle, a given entity can establish the
distinctness of an initial set of beacons by using some
of the resource-consuming challenge-response described
in [10] without requiring any certifying authority. The
assumption that a certain proportion of beacons chosen
at random is correct is a system assumption for we can-
not expect a system with an arbitrary number of faulty
entities to be able to function.

Once an initial set of beacons is established, our re-
sults show that they can be used remotely to establish
the distinctness of identities created by entities with un-
bounded computing power. This shows that the following
lemma from [10] (his notation is different from ours, but

should be clear from the context) does not hold once the
geometric properties of communication are considered.

Lemma 3 Lemma 4 [10] If the correct entities in set C
do not coordinate time intervals during which they ac-
cept identities, and if local entity l accepts any identity
vouched for by q accepted identities, then even a min-
imally capable faulty entity f can present g = b|C|/qc
distinct identities to l.

This lemma basically says that accepted identities
cannot be used to accept further entities. We showed
that, if we take the geometric properties of communi-
cation into account, we can use accepted identities to
accept additional entities. In fact, in one of our results
we showed that a set of d+1+2f , at most f of which are
faulty, can prevent one faulty entity efaulty in their con-
vex hull from presenting distinct identities even if efaulty

has unbounded resources. This result is achieved without
assuming a central authority.

In practice, the beacons can be certified by a central
certifying authority to bootstrap the system. Once a set
of beacons is certified, it can be used to provide certifi-
cates remotely. In that case, an applicant that wants to
obtain a certificate from the set of beacons would iden-
tify beacons that have valid public certificates obtained
from the central authority. Then, the applicant can initi-
ate a geometric certificate request which will result in the
beacons probing the applicant as explained in the vari-
ous protocols we presented. These probes will be started
by multiple beacons to obtain the distances as required
by the protocols. At the end of the probing period, the
beacons will present the applicant with pieces of the ge-
ometric certificate (distances from beacon to applicant
or location of applicant as calculated by a beacon) that
the applicant can put together to obtain the geometric
certificate.

10.3 Limitation of distinctness tests

Some of the distinctness tests we presented assume that
the entity under consideration is in the convex hull of the
beacons in the system. If an entity is outside the convex
hull of the beacons, then some of the theorems we prove
do not hold. It is reasonable to question whether the
convex hull condition is only of theoretical interest and
if anything can be done if an entity is not in the con-
vex hull of the beacons. The answer to the first part of
the question would depend on the actual network under
consideration. We have answered the second part when
we presented group-distinctness tests for various scenar-
ios and under different system assumptions. We believe
that more work is needed in this direction to further gen-
eralize the results.
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10.4 Accuracy of measured distances

Ng and Zhang [19] show that on the Internet the roundtrip
delays can be used to measure distances between en-
tities if enough measurements are taken and the min-
imum amongst the measured delay is used as the dis-
tance measure. These measurements were done using
ICMP ping messages. In our model, communication is
done in an overlay network that does not necessarily ex-
hibit the same delay characteristics as those of the In-
ternet. Nonetheless, we can expect that in periods of
low congestion, the distances will reflect the underlying
network distances. In our work, establishing a geometric
certificate can be done over a period of time and multi-
ple measurements can be taken and the smallest times be
included in the certificates. If the participants belong to
common congestion zones (which can be correlated with
time zones), then we can expect that the minimal de-
lay measured by participants will exhibit metric charac-
teristics. Nevertheless, studying delay characteristics in
Internet-based overlay networks is a subject that needs
further study and our work is based on the assumption
that these characteristics are similar to those of the In-
ternet.

11 Conclusion

We have shown that it is possible to exploit the geo-
metric properties of message transmission delay in order
to reduce the effects of Sybil attacks. We believe that a
lot more work is still needed to make this work of more
practical value. In particular, we believe that extensions
of the protocols in Section 8 can have a good chance of
leading to solutions that can be used in practice.
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