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ABSTRACT
Low-latency anonymity systems such as Tor, AN.ON, Crowds,
and Anonymizer.com aim to provide anonymous connections
that are both untraceable by “local” adversaries who control
only a few machines, and have low enough delay to sup-
port anonymous use of network services like web browsing
and remote login. One consequence of these goals is that
these services leak some information about the network la-
tency between the sender and one or more nodes in the sys-
tem. This paper reports on three experiments that partially
measure the extent to which such leakage can compromise
anonymity. First, using a public dataset of pairwise round-
trip times (RTTs) between 2000 Internet hosts, we estimate
that on average, knowing the network location of host A
and the RTT to host B leaks 3.64 bits of information about
the network location of B. Second, we describe an attack
that allows a pair of colluding web sites to predict, based on
local timing information and with no additional resources,
whether two connections from the same Tor exit node are
using the same circuit with 17% equal error rate. Finally,
we describe an attack that allows a malicious website, with
access to a network coordinate system and one corrupted
Tor router, to recover roughly 6.8 bits of network location
per hour.

Categories and Subject Descriptors
C.2.0 [Computer Networks]: General—Security and pro-
tection; K.4.1 [Computers and Society]: Public Policy
Issues—Privacy ; E.3 [Data]: Encryption

General Terms
Security, Latency, Anonymity, Measurement

1. INTRODUCTION
The goal of every anonymous communication scheme is

to allow users to communicate while concealing informa-
tion about who communicates with whom. The notion of
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anonymous communication schemes was first introduced by
Chaum [5], who proposed sending messages through a “Mix
server” that mixes together messages from several senders
before forwarding these messages to their destinations, con-
cealing the relationships between senders and receivers. Since
then, a wide variety of anonymity schemes have been pro-
posed, yet all practical, deployed schemes rely to some extent
on this idea of forwarding messages through“mixing” relays.

Current, widely-used anonymity schemes can be catego-
rized as either high- or low-latency. High-latency systems
like Mixmaster and Mixminion [10, 25] deliver messages at
a significant delay - around 4 hours, on average - with the
goal of ensuring anonymity against a strong adversary that
can see all network traffic and control some nodes partici-
pating in the anonymity scheme. In order to ensure secu-
rity against this type of adversary, these schemes implement
countermeasures that increase delay, such as pool mixing,
and consume additional bandwidth, such as cover traffic.
There is a wide range of literature [11,12,22] on how to fur-
ther strengthen such high-latency systems against various
types of attacks.

In contrast, low-latency protocols such as Tor [13], I2P [21],
AN.ON [15], Crowds [31], Anonymizer.com, and various com-
mercial proxy aggregators, actively seek to limit process-
ing delay and bandwidth overhead. Providing low-delay
anonymity enables anonymous use of more interesting appli-
cation services such as remote login and web browsing, but
this functionality comes at the cost of reduced anonymity
guarantees. In particular, most of these services are eas-
ily defeated by a global passive adversary using relatively
straightforward attacks such as packet counting [34]. Fur-
thermore, using these same attacks, an adversary that con-
trols fraction f of the nodes in the system can trace fraction
f of the connections made to colluding servers and fraction
f2 of all connections running through the system [36]. Thus,
these systems focus on offering security against a “local” ad-
versary, such as a small coalition of malicious servers that
see only their own network traffic.

A “local” adversary is thus extremely limited, since he is
unlikely to have access to any traffic of interest before it exits
the anonymity service and arrives at his malicious servers.
A natural question to ask is: What information, outside of
the actual bits of data packets delivered to the adversary,
does a low-latency anonymity service leak, and to what ex-
tent does this leakage compromise the anonymity offered by
the service?

Several recent works have explored the impact of the lo-
cal adversary’s access to information about the timing of



events in a low-latency anonymity scheme, such as packet
arrival times. An example of this is the “circuit clogging”
attack variant of Murdoch and Danezis [27], which relies on
the observation that a sudden increase in the load of a Tor
server will increase the latency of all connections running
through it. Murdoch and Danezis show how a corrupt Tor
node and web server can exploit this property to determine
the nodes in a Tor circuit, i.e., the nodes that forward a
given connection through the network. In the attack, the
corrupt Tor node regularly sends packets on a loop through
each Tor server, measuring the time the packets spend in
transit. Then when the malicious server wishes to trace a
connection, it modulates its throughput in a regular, on/off
burst pattern. By correlating the delay at each Tor server
against the timing of these burst periods, the attacker learns
which nodes are in the circuit. Since the estimated number
of Tor users (on the order of 105 as of April 2007) is less
than the number of possible circuits (on the order of 108)
seeing two connections that use the same circuit nodes is
a strong indicator that the connections are from the same
user. Thus at a minimum, timing information can leak the
linkage between Tor connections.

In this paper, we make use of a similar observation: mali-
cious servers acting as local adversaries can observe the net-
work latency of a connection made over a Tor circuit. While
it has been suggested before that this information might be a
potential avenue of attack [3], we are not aware of any work
reporting on the feasibility of performing an attack using
this information, or even suggesting a concrete attack mech-
anism. As a consequence, it was not known whether leaking
this information had any adverse effect on the anonymity
provided by schemes like Tor. We address this issue by re-
porting on three experiments that measure the extent to
which this information leakage compromises the anonymity
of clients using a low-latency anonymity scheme:
• Analysis of noise-free anonymity leakage. Suppose
that an anonymity service could impose no delay at all on
a circuit, so that the only difference between a client con-
necting to a server normally and over the anonymity service
would be that in the latter case, the client’s IP address is
somehow missing. This would represent the best possible
case for an attack based solely on round-trip time (RTT)
information. We analyzed the publicly available MIT King
data set [17], a collection of pairwise RTTs between 1950 In-
ternet hosts, to estimate the average amount of information
that is leaked by knowing the RTT between a given host and
an unknown host. We found that, on average, knowing the
RTT to a host from one known server yields 3.64 bits of in-
formation about the host (equivalently, reduces the number
of possible hosts from n to n/23.64 ≈ 0.08n).

Of course, many hosts on the Internet will be essentially
indistinguishable by RTTs since they are located on the
same subnet; without a more detailed study it is difficult
to estimate the number of such equivalence classes. A rea-
sonable estimate would seem to be the number of routable
IP address prefixes, currently around 200, 000, or about 218.
Thus on average, we estimate that an Internet host can be
uniquely identified, up to RTT equivalence, by knowing its
RTT to 5 other (randomly chosen) hosts. (Further work is
necessary to more precisely determine the extent to which
conditional entropy decreases with each measurement.)
• A passive linkability attack. When latency “noise” is
introduced in the form of additional delays due to forward-

ing and mixing with other streams, it is no longer clear how
to use latency or RTT information to identify anonymous
clients. We observe that even in this scenario, if a client
attempts to connect to two malicious servers (or make two
connections to the same malicious server) using the same cir-
cuit, then the server-client RTTs of these connections (mi-
nus the RTT from the last node to the server) will be drawn
from the same distribution, whereas other clients connecting
to the server will have different RTTs.

Based on this observation, we develop an attack on Tor
that allows two colluding web servers to link connections
traversing the same Tor circuit. The attack uses only stan-
dard HTTP, the most commonly mentioned Tor application
layer, and requires no active probing of the Tor network and
has very minimal bandwidth requirements. Thus it can be
seen as a “lower cost” alternative to circuit clogging.

We report on an implementation and test of this attack us-
ing several hundred randomly chosen pairs of clients and ran-
domly chosen pairs of servers from the PlanetLab wide area
testbed [6], communicating over the deployed Tor network.
Our results suggest that we can classify pairs of connections
with an equal error rate of roughly 17%, and the test can be
tuned to support a lower false positive or false negative rate.
• An active client-identification attack. Finally, we
show how latency information can be used to extend the
reach of the Murdoch-Danezis clogging attack, allowing a
malicious server to take advantage of repeated visits from a
client to gradually locate the client, up to RTT equivalence.
As with the clogging attack, our attack requires minimal
resources – one corrupted Tor server, plus access to a “la-
tency oracle” that can be used to estimate RTTs between
Tor servers and nodes in the RTT equivalence class of a sus-
pected client’s location – and uses only standard protocols.

We show that a latency oracle can be implemented with a
“network coordinate system,” [7,8,28] which could be imple-
mented using publicly available resources such as the Scrip-
tRoute [35] service or traceroute.org.

We evaluate our attack using over 200 runs with randomly
chosen client/server pairs from the PlanetLab wide area
testbed, using randomly chosen circuits among the currently
deployed Tor nodes (as of Jan./Feb. 2007). Our results sug-
gest that a malicious server with a periodically reloading
web page can recover, on average, about 6.8 bits of informa-
tion about a client’s location per hour. Thus a client’s RTT
equivalence class can be determined in 3 hours, on average.

We stress that both attacks are tested under real-world
conditions against the deployed Tor network using a stan-
dard protocol (HTTP), and very little has been done to op-
timize these attacks for speed or accuracy. It is our expecta-
tion that we could make improvements in both of these cat-
egories by using less widely-supported tools, such as persis-
tent HTTP over Tor. This would improve the performance
of the attack, while simultaneously limiting its scope; we
leave further investigations along these lines for future work.

These results have serious implications for the design of
low-latency anonymity schemes. In particular, they suggest
that, without new ideas for path selection, adding delay to a
connection may be unavoidable for security considerations.
In turn, this has implications for design decisions: for exam-
ple, if latency must be uniformly high, then TCP tunneling
over such services will provide extremely low bandwidth; or
if the latency of circuits can be masked with noise in the
short term, then circuit lifetimes may need to be shortened.



The remainder of this paper is organized as follows: in
section 2, we give an overview of Tor, review the details
of the Murdoch-Danezis attack, and survey related work.
Section 3 presents the results of our analysis on the MIT
King dataset, estimating the average amount of information
leaked by the RTT between two nodes. We present details
of our passive linking attack and its evaluation in section 4,
and more details about our client-identification attack in
section 5. Finally, we discuss countermeasures and future
work in section 6.

2. BACKGROUND AND RELATED WORK

2.1 An overview of Tor
Tor is a low-latency and bandwidth-efficient anonymiz-

ing layer for TCP streams. Its growing popularity and the
availability of a test-bed deployment have proven to be a
fertile ground for research on implementing and attacking
low-delay anonymity schemes.

Tor works similarly to a circuit-switched telephone net-
work, where a communication path, or circuit, is first estab-
lished, over which all communication during a given session
takes place. Anonymity is achieved by establishing that cir-
cuit through three nodes: an entry node, an intermediary
(middleman), and an exit node. Only the entry node knows
the identity of the client contacting it, in the form of its IP
address. The middleman node knows the identities of both
the entry and exit nodes, but not who the client is or the des-
tination he or she wishes to reach over the circuit. If the Tor
server is an “exit” node, which provides a gateway between
the Tor network and the Internet, it is responsible for making
application-layer connections to hosts on the Internet, and
serves as a relay between potentially non-encrypted Inter-
net connections and encrypted Tor traffic. Thus, it knows
the destination with whom the client wishes to communi-
cate, but not the identity of the client. In this manner, no
single node in the Tor network knows the identities of both
communicating parties associated with a given circuit. All
communications proceed through this encrypted tunnel.

Circuits are established iteratively by the client, who gets
a list of Tor nodes and long-term keys from a directory ser-
vice, selects a Tor node from that list (preferably one with
high uptime and bandwidth), negotiates a communication
key, and establishes an encrypted connection. To avoid sta-
tistical profiling attacks, by default each Tor client restricts
its choice of entry nodes to a persistent set of three ran-
domly chosen “entry guards”. The circuit is then extended
to additional nodes by tunneling through the established
links. Link encryption, using ephemeral Diffie-Hellman key
exchange for forward secrecy, is provided by SSL/TLS. To
extend the circuit to another Tor node, the client tunnels
that request over the newly-formed link.

Traffic between Tor nodes is broken up into cells of 512
bytes each. Cells are padded to that size when not enough
data is available. All cells from the client use layered (or
“onion”) encryption, in that if the client wishes for a mes-
sage to be passed to example.com via Tor nodes A, B, and C
(C being the exit node), the client encrypts the message with
a key shared with C, then again with a key shared with B,
and finally A. The message is then sent over the previously-
established encrypted tunnel to A (the entry node). A will
peel off a layer of encryption, ending up with a message en-
crypted to B (note that A can not read this message, as A

does not have the key shared between the client and B). A
then passes on the message to B, who peels off another en-
cryption layer, and passes the message to C. C removes the
final encryption layer, ending up with a cleartext message
to be sent to example.com. Messages can be any communi-
cation that would normally take place over TCP.

Since there is significant cryptographic overhead (such as
Diffie-Hellman key exchange and SSL/TLS handshake) in-
volved with the creation and destruction of a circuit, circuits
are reused for multiple TCP streams. However, anonymity
can be compromised if the same circuit is used for too long,
so Tor avoids using the same circuit for prolonged periods
of time, giving circuits a client-imposed maximum lifetime1.

2.2 Attacks against Tor
Timing-based attacks. There have been a number of at-
tacks mentioned in the literature that exploit the low la-
tency of anonymity systems such as Tor. Several of these
seem to have first been proposed, without implementation
or evaluation, by Back et al. [3], including an earlier, more
expensive, version of the Murdoch-Danezis clogging attack
based on flooding nodes and looking for delay in the con-
nection, and using network delays as a potential method to
identify senders.

In [27], Murdoch and Danezis describe an attack that al-
lows a single malicious Tor server and a colluding web server
(or other service provider), to identify all three nodes of
a Tor circuit used by a client for a given session (ideally,
only the exit node’s identity should be known to the ser-
vice provider). However, this system does not identify the
client directly, only its entry node into the Tor network2.
The attack works as follows: when a client connects to the
malicious web server, that server modulates its data trans-
mission back to the client in such a way as to make the
traffic pattern easily identifiable by an observer. At least
one Tor server controlled by the adversary builds “timing”
circuits through each Tor server in the network (around 800
as of January/February 2007 [1]). These circuits all have
length one, beginning and terminating at the adversarial Tor
node. By sending traffic through timing circuits to measure
latency, the adversary is able to detect which Tor servers
process traffic that exhibits a pattern like that which the
attacker web server is generating. Since Tor does not re-
serve bandwidth for each connection, when one connection
through a node is heavily loaded, all others experience an
increase in latency. By determining which nodes in the Tor
network exhibit the server-generated traffic pattern, the ad-
versary can map the entire Tor circuit used by the client.

Øverlier and Syverson [30] discuss locating Tor hidden ser-
vices. Hidden services allow a server to offer a service anony-
mously via Tor, by maintaining an open circuit to an “intro-
duction point,” which the client contacts through a circuit
ending in a “rendezvous node,” that the server also contacts
through a fresh circuit. Their attack makes use of a mali-
cious client and a single malicious Tor node. The main idea
is to make many connections to the hidden server, so that
it eventually builds a circuit to the rendezvous point using
the malicious Tor node as an entry point. The malicious

1This value is configurable. In the latest version (0.1.1.26-
alpha), the maximum circuit lifetime is 10 minutes.
2The client can be directly identified only if its entry node
is also corrupted, but the success of this attack requires
corrupting a proportionally large number of Tor nodes.



Tor node uses a simple timing analysis (packet counting) to
discover when this has happened.

In another attack against Tor hidden services, Murdoch
shows how to identify them based on clock skew [26], en-
abling us to estimate the load of a given Tor node (as tem-
perature rises when CPU load increases) as well as the rough
physical location of the node (as the temperature is gener-
ally higher during the day than at night, with a clear pattern
visible if clock skew is measured over at least one 24-hour
period). This attack may allow us to uniquely map a hid-
den service to a Tor node, if that node is in a geographically
unique location compared to other Tor nodes. More im-
portantly, this attack counters the reserved-bandwidth de-
fense (used to make it harder for Tor nodes to determine
other nodes’ throughput), as CPU load indirectly measures
throughput of a node (based on how busy it is). A node can
defend against this by constantly running the CPU at 100%,
but this may not be universally acceptable.

Syverson et al. [36] suggest that an adversary may de-
anonymize any stream for which that adversary controls the
entry and exit nodes. The probability of this occurrence in
the short term (transient client connections) is c(c − 1)/r2,
where c is the maximum number of nodes corruptable by
the adversary in a fixed period of time, and r is the number
of available Tor routers in the network. An adversary can
determine if he or she controls the entry and exit node for
the same stream by using a number of methods mentioned
below, including fingerprinting and packet counting attacks.

Other attacks within Tor’s threat model. In [20],
Hintz shows how to determine the remote web site that a
given stream is connecting to by fingerprinting the pattern of
traffic carried by the stream. This attack requires maintain-
ing an up-to-date catalog of website fingerprints, and com-
paring observed connections against this catalog. The fin-
gerprint may be stable for certain websites where either the
format or the content does not change much over time. This
attack is particularly detrimental when mounted by a ma-
licious entry node, since it allows for the de-anonymization
of the client (who is directly connecting to the entry node)
as well as the remote web server.

The packet-counting attack is a less time-precise version
of the attacks in [30] – it relies on time intervals as opposed
to timestamps. In this attack, discussed in [3, 4, 34, 38], the
adversary estimates the load level of a node by measuring
the packet flux across that node (the number of packets en-
tering and the number emerging). This attack can be used
as a starting point for other attacks mentioned above, such
as detecting whether an adversary controls nodes that are
part of the same circuit.

Attacks outside the Tor threat model. A well-known
class of attacks against anonymity systems – called statisti-
cal disclosure, or long-term intersection attacks [9,24] – also
use coarse-grained timing, treating the entire anonymizing
network (be it a single mix, a group of mixes, or another
system) as a black box, and correlating traffic that enters
and exits the system to determine communication patterns.
This attack essentially learns about all of the communica-
tion relationships between the set of nodes it can monitor.
Since Tor is mainly concerned with a “local adversary” that
can only monitor the communications of its own nodes, the
attack, while a serious consideration, is essentially outside
of Tor’s threat model.

Figure 1: Cumulative distribution of expected infor-

mation gain from RTT per host, for MIT King data set

and PlanetLab nodes.

3. LATENCY WITHOUT NOISE
The possibility of using latency data in traffic analysis has

been mentioned several times in previous works, apparently
originating in a 2001 paper by Back et al. [3]. However,
neither this work nor subsequent works seem to have ad-
dressed the basic question of How much information does
network latency leak? Of course the answer is highly de-
pendent on both the network topology – latency in a star
topology would leak no information about a host’s location
– and the protocol in question, since it is conceivable that
so much noise is added to the network latency that the sig-
nal is undetectable. In order to get an upper bound on the
amount of information that can be leaked under the current
Internet topology, we measured the amount of information
about a host that can be gained given a precise estimate of
its RTT to a randomly chosen host. Thus this evaluation
represents a “best case” scenario for the adversary wishing
to locate clients using latency information.

We performed our analysis on two different data sets. For
the general Internet, we used the MIT King data set [17].
King [19] is a method for estimating the latency between
two arbitrary Internet hosts, by making recursive queries
through their associated nameservers. While this method
has some flaws when used to estimate arbitrary latencies,
it produces highly accurate estimates of round-trip times
between the nameservers. The MIT dataset consists of mul-
tiple pairwise RTT measurements between 1950 randomly
selected nameservers. Second, because our wide-area exper-
iments use only PlanetLab nodes as clients, we analyzed the
amount of information present in the RTTs between Plan-
etLab nodes.

Our analysis worked as follows: for each RTT we con-
sidered, there were several measurements; we calculated an
85% confidence interval for each of these by taking the aver-
age plus or minus one standard error. Then for each source
host A, we computed the expected number of bits in the
RTT to a random destination host B by counting, for each
B, the number of hosts C such that the confidence intervals
for AB and AC overlapped. Taking this count as NB and
the total number of hosts as N we computed the information
gain for AB as log2(N/NB).

The results of our analysis for both data sets are shown
in Figure 1. For the King data set, the average number of
bits from RTT per host is 3.64, the median is 3.8, and the



Figure 2: Circuit linking scenario: client A connects via

circuit E-M-X to server Y, and client B connects via N-

R-X to server Z. Y and Z collude to determine if A-E-M

and B-N-R are distinct (left) or identical (right) paths.

10th percentile is 2.8. Thus 90% of Internet hosts leak 2.8
or more bits of location data by their RTT. The information
gain from RTT among the PlanetLab nodes is more concen-
trated, with an average of 3.08 bits from RTT, a median of
3.02, and a 10th percentile of 2.89.

The results also reveal an interesting aspect of the King
data set: of the ten hosts whose RTTs give the least in-
formation gain, all but two have Chinese domain names; in
contrast, the 10 nodes with the highest amount of informa-
tion per RTT appear to be located primarily in western or
central Europe. We speculate that the high information gain
for these European nodes is due to the fact that most Inter-
net routes from Europe to Asia must transit through North
America, so that there are more possibilities for network la-
tency times to these nodes, while the need to transit one
of a few bottleneck links from China adds enough “random”
variability to mask the variation in latency between other
locations external to China.

4. CIRCUIT LINKING VIA LATENCY
The basic setup of our circuit linking attack is shown in

Figure 2. In this scenario, two colluding servers, Y and
Z, both accept connections from the same Tor exit node,
X. A truly unlinkable anonymity scheme should prevent
the servers from being able to distinguish between the case
that (a) two distinct clients have made the requests and (b)
the same client makes both requests. Conversely, the goal
of the servers Y and Z is to determine whether they are
communicating with different clients or the same client.

4.1 Attack Description
Our attack works as follows: we assume that Y commu-

nicates with client A over a Tor circuit involving nodes E,
M , and X, and server Z communicates with client B over
a Tor circuit involving nodes N , R, and the same exit node
X. If we denote by TUV a random variable that denotes
the RTT between nodes U and V , and by TU a random
variable that denotes the “queueing” time at Tor node U ,
then the idea behind our attack is to take several samples
from both TAX = TAE + TE + TEM + TM + TMX + TX and
TBX = TBN + TN + TNR + TR + TRX + TX . If A = B,
E = N , and M = R, then the sample sets should appear
to come from the same probability distribution, and if not,
they should appear to come from different distributions. The
primary obstacles to overcome are how to obtain samples of
the random variables TAX and TBX , and, to a lesser extent,
what test to use on these samples.

The process of actually sampling the latency of a Tor cir-
cuit is somewhat complicated by the fact that Tor is a proxy
protocol, rather than a tunneling protocol: when the exit

Figure 3: Measuring Tor circuit time without

application-layer ACKs: the estimate for TAX is

t3 − t1. We abuse notation and write TXY for the

one-way delay from X to Y .

node X receives TCP packets from Y , it acknowledges them
immediately, then buffers the results into cells, and relays
the cells through the circuit. Thus the usual TCP mecha-
nisms for estimating RTT only estimate the RTT from the
server to the exit node, which will not help with our at-
tack. One possible avenue of attack would be to explore
application-level protocols that have explicit acknowledge-
ments, such as IRC [29], but since the most widely used ap-
plication protocol in Tor seems to be HTTP, which does not
explicitly support application-level ACKs [16], this would
restrict the scope of our attack. Instead we use a less-
efficient but more widely-applicable approach targeted at
web browsers.

Our attack works as follows: when Y (or Z) gets an HTTP
request from a Tor node and decides to attack the con-
nection, it responds with an HTML page with 1000 <IMG

height=1 width = 1 src= ...> tags, pointing to uniquely
named empty image files. This causes most existing browser
/ privoxy combinations to eventually make 1000 separate
connections to Y 3. For each of these connections, Y will
get a SYN packet from X, and send a SYN/ACK packet;
this packet is ACKed by X and X sends a “RELAY CONN-
ECTED” cell to the client. When the client A receives the
“RELAY CONNECTED” cell, it forwards an HTTP “GET”
request to X, who forwards the request to Y . The time be-
tween the arrivals at Y of the “ACK” and “GET” packets is
a sample from TAX . See Figure 3 for an illustration of this
procedure.

There are many methods for testing similarity of two sam-
ple sets. We used two different tests for our evaluation:

• The comparison of means test constructs a confidence
interval for the mean of each sample population, under
the assumption that the time to traverse a Tor circuit
is some fixed time (based on wire speed) plus an ex-
ponentially distributed random variable; two sample
sets are classified as identical if their confidence inter-
vals overlap. The accuracy of this test depends both

3The amount of concurrency varies, but in the Firefox
browser, for example, by default only 24 concurrent con-
nection attempts are allowed; thus optimistically, these
requests come in 42 “rounds.”



Figure 4: Cumulative distribution of sample size per

run for clients A (left) and B (right).

on the degree to which this model is correct, and the
width of the confidence interval used.

• The Kolmogorov-Smirnov, or K-S, test computes the
largest difference in cumulative probability density be-
tween two sample sets, and classifies two sample sets as
identical if this value is smaller than some rejection pa-
rameter. The K-S test is nonparametric, i.e. it makes
no assumption about the distributions of the sample
sets (except that the samples are i.i.d.), and can differ-
entiate distributions based on “shape” and “location”,
but generally requires more samples than a parametric
test with a correct model of the data.

Both tests have a tunable rejection region, giving a tradeoff
between false positive and false negative error rates, so no
single number characterizes the performance of either test.
Thus, we evaluate them using Receiver Operating Charac-
teristic (ROC) curves: each point on a classifier’s ROC curve
corresponds to the true positive and false positive rates for
one setting of the rejection threshold. This curve illustrates
the different tradeoffs between false positive and false neg-
ative rates for a classifier: a perfect classifier would corre-
spond to the single point in the upper left corner, while a
classifier that cannot distinguish between positive and nega-
tive examples will result in (a subset of) the line from (0, 0)
to (1, 1). This tradeoff is sometimes summarized by calculat-
ing area under the ROC curve (AUC), where higher values
indicate a“superior”classifier; the perfect classifier has AUC
1, while the nondiscriminating classifier has AUC 0.5. See
Fawcett’s tutorial [14] for a more comprehensive treatment.

4.2 Evaluation
We tested the effectiveness of this attack using clients and

servers from the PlanetLab wide-area testbed. Our evalua-
tion consisted of 641 “runs”, where each run performed the
following experiment. First, two random PlanetLab nodes
were chosen to be the clients A and B, and two random
PlanetLab nodes were chosen to be the servers, Y and Z;
a random high-bandwidth, high-uptime Tor exit node was
chosen for X and each client picked its own entry and mid-
dleman nodes. After A and B established their respective
Tor circuits, both clients connected to both servers using
the wget HTTP client, and the servers sampled these cir-
cuit times as described in Figure 3. These four circuit times
were used in six comparisons: comparing samples from TAX

to TAY and TBX to TBY gave two true positives, while com-
paring samples of TAX to TBX , TAX to TBY , TAY to TBX ,
and TAY to TBY gave four true negatives. Counting the
number of misclassified streams for various threshold values
allowed us to calculate false positive and false negative rates.

Figure 5: ROC curves for comparison of means tests

(left, AUC 0.85) and K-S test (right, AUC 0.89).

One important note is that the current version of Tor recy-
cles a used circuit after 10 minutes. Thus we set our experi-
ments to stop after 10 minutes as well, regardless of whether
the run had completed. Figure 4 shows the cumulative dis-
tribution function of number of circuit samples for both of
the client nodes - the median number of samples after 10
minutes was approximately 200.

Because both tests we used have tunable rejection regions,
there is no single statistic that completely summarizes the
effectiveness of our classifier. Instead, by varying the rejec-
tion region, we produce the Receiver Operating Character-
istic (ROC) curves for each of our tests, which summarize
the tradeoffs each test supports, in Figure 5. For the simple
comparison of means test (left), we find that the test sup-
ports an equal error rate of 22% and has a total area under
curve (AUC) of 0.85. When dealing with a low base rate
of true positives, the K-S test offers a much better trade-
off, supporting, for instance, a 37% false negative rate when
the test is tuned to support a false positive rate of 5%, and
achieving equal error rate of 17%; the K-S test has a total
area under curve (AUC) of 0.89. In contrast, if Tor circuits
were unlinkable, we would expect any linking test to have
performance similar to the random classifier, which has an
ROC curve consisting of a straight line from the origin to
(1, 1) and AUC of 0.5.

While these results sug-

Figure 6: ROC with 500+

samples of both circuits.

gest that latency data com-
promise the unlinkability of
Tor connections to some de-
gree, there is definitely room
for improved attacks. To
determine if more time effi-
cient methods of sampling
circuit RTT would improve
performance, we also plot-
ted the ROC curve for K-
S tests where both circuits
had at least 500 samples, shown in Figure 6. The total num-
ber of such tests4 was 299, with 110 true positives and 189
true negatives. We found that these K-S tests had an equal
error rate of 6% and AUC of 0.98. When the rejection re-
gion for the K-S test was set to 0.13, the classifier had a
false negative rate of 11% with only a single false positive.
These results strongly suggest that more efficient methods of
obtaining circuit RTT samples will lead to stronger attacks.

5. CLIENT LOCATION VIA LATENCY
The basic scenario of our client location attack is shown

in figure 7. In this attack, the adversary consists of three

4Recall that each run can result in as many as six tests.



Figure 7: Client location: client V connects to malicious

server A via circuit E-M-X; A determines E-M-X and

connects to A via E-M-X.

logical entities, AServer, a malicious web server; AClient, a node
posing as a Tor client; and ATor, a corrupted Tor server capa-
ble of carrying out the Murdoch-Danezis attack. The attack
starts when the “victim” node V connects to AServer over a
Tor circuit consisting of nodes E, M , and X. AServer and
ATor collude to carry out the Murdoch-Danezis clogging at-
tack and learn the Tor nodes in the circuit E − M − X.
Thereafter, AServer and AClient collude to gain information
about V ’s network location. The goal of the attack is, af-
ter several repetitions with different circuits, to identify V ’s
network location with increasing precision.

5.1 Attack Description
The basic idea of our client location attack is to try to

measure – using a Tor connection – TV E , the RTT between
the victim V and the Tor entry node, E. The attacker then
estimates, for several candidate victim nodes C, the RTT
TCE . Candidates that lie outside the probable range for TV E

are discounted, and the attack is repeated. If the fraction of
candidates in an iteration that are not discounted is c, then
the information gain from that iteration is − log2 c. After
several iterations, the list of remaining candidates should in-
clude only nodes with close network proximity to the victim.
We now explain how we implement each step of this attack.

Measuring first hop latency. In section 4, we describe
our technique for sampling the RTT of an entire Tor circuit,
TV X . Since TV X = TV E + TE + TEM + TM + TMX + TX ,
the circuit time contains some information about TV E , but
does not directly measure the time of interest. In order to
do this, we leverage the information gained in the Murdoch-
Danezis attack: specifically, when V connects to AServer via
Tor, we assume that AServer and ATor collude to discover the
circuit nodes E − M − X that V uses for the connection.
Initially, this attack will only reveal the nodes in the circuit
rather than their order, but since any given client uses only
three entry nodes, and as the server, AServer knows which
node is the exit node, after several iterations it will be easy
to infer the circuit order; before such time, the attacker can
carry out the attack under both possible orderings and then
eliminate the incorrect data later.

Given this information, AClient can open a connection to
AServer using the same circuit nodes E −M − X. We mea-
sure the RTT of these connections as well, obtaining several
samples from both TV X and TAX . Using these samples as a
basis for estimating the “true” circuit times TV X and TAX ,
along with knowing TAE , the RTT between AClient and E,
allows us to estimate TV E by TV X − TAX + TAE . We found

that Tor circuit times carry enough noise, even with hun-
dreds of samples, that the difference in mean measurements
was not very reliable at predicting TV E ; however, taking the
difference in minimum measurements for each circuit was a
fairly reliable estimate.

Estimating candidate RTTs. Once we have estimated
the RTT from the victim to the Tor entry node E, the next
step is to compare this measurement to the RTT between
candidate nodes and E. If we control either the candidate
or E, we could compute this directly via ping, but doing so
would make it easy for us to determine the victim, and is
outside the Tor threat model. Thus for the attack to work,
we need a method to obtain (or at least estimate) the RTT
between two hosts without the explicit cooperation of either.
Our attack measures this quantity via network coordinates.

Network coordinate systems were originally introduced in
the context of peer-to-peer networks, for predicting which
hosts will provide better routing or download service. The
basic idea behind such systems is for each node to measure
its RTT to several other nodes; using these RTTs, the entire
network is embedded into a coordinate space such that given
the coordinates of two nodes it is possible to predict the RTT
between them. A number of such systems exist [7,8,23,28],
using various coordinate systems and embedding algorithms.
We chose to use the Vivaldi [8] embedding algorithm, with
four-dimensional Euclidean coordinates, due mainly to ease
of implementation. The primary disadvantage of using net-
work coordinates is that in order to be accurate without the
cooperation of the candidate nodes, several nodes must be
used for the service; however, several freely accessible re-
sources provide RTT measurements from a group of hosts
to arbitrary Internet hosts, including ScriptRoute [35] and
traceroute.org.

Several alternate possibilities exist for the implementation
of this step, that we did not evaluate empirically. One exam-
ple is the King technique [19], which measures the latency
between hosts A and B by asking the name server respon-
sible for A’s reverse DNS entry to do a recursive lookup for
B’s reverse DNS entry; Gummadi et al. [19] report that this
technique has accuracy competitive with the GNP [28] net-
work coordinate system and found that over 90% of name
servers will carry out such recursive queries. Another pos-
sibility that we did not empirically evaluate is “asking” the
entry node E to ping the candidate nodes by trying to ex-
tend a circuit from E to a service other than Tor running
on a (node proximal to a) candidate node. If the attacker
runs the same service on a corrupted node D and asks E to
extend a circuit to D at the same time, then the time dif-
ference between error messages for the two requests should
be a good estimator for the difference in RTT.

Eliminating candidates. Once we have estimated the
true victim’s RTT to E and the RTT between each of the
candidate locations and E, we must decide for each can-
didate location whether it is consistent with the estimated
TV E . There is an inherent tradeoff in setting the threshold
for what nodes to include: if too many candidates are in-
cluded, the attack will take longer to complete, but if too
few are included we could reject the true location of the vic-
tim due to noise in the estimated RTTs. Our approach is
to construct an 85% confidence interval for TV E (computed
under the assumption that Tor circuit times are distributed
according to an exponential distribution added to a mini-



V AClient

Number of Runs 216 216
Connections/Run 685 1022
RTT Mean/Stdev (ms) 5078.24/4305.96 3817.2/1933.38

Table 1: Basic run statistics

mum network latency) and “conditionally” reject candidate
locations with estimated latencies outside of the confidence
interval. Locations are only “conditionally” rejected in that
we continue to consider these candidate locations in later
runs, and finally compute the most likely locations as those
that fall within the confidence interval most often. In our
empirical evaluations, we know the true location and when it
is conditionally rejected we consider the run to give us no in-
formation gain, so that we do not overstate the information
gain per experiment.

5.2 Evaluation
We measured the effectiveness of the client location attack

(in terms of information gain per unit time) by performing
an experiment on the PlanetLab wide-area testbed, during
January and February 2007. The data collected from the
experiment consisted of 216 runs. At the start of the exper-
iment, two PlanetLab nodes were randomly chosen to play
the roles of AServer and AClient as in Figure 7. For each run,
a new victim node V was randomly selected from a set of
about 100 North American PlanetLab nodes, and V and
AClient both built identical Tor circuits using three nodes
selected randomly from around 60 high-uptime and high-
bandwidth onion routers. V and AClient both attempted to
download 1500 1 × 1 images from AServer over this circuit,
with the experiment cut off after 10 minutes. Network co-
ordinates were established by using 72 PlanetLab nodes to
ping all other PlanetLab nodes (704 at the start of the ex-
periment) and the entry node in the Tor circuit. As with
the previous evaluation, AServer recorded all connections from
the Tor exit node at the network level, and to simplify dis-
tinguishing between the attacker and victim streams, dif-
ferent ports were used by each5. At the conclusion of a
run, the number N of PlanetLab nodes that were candi-
date client locations was computed, and the information gain
was computed as 0 if the true client was not included, and
log2(704/N) otherwise.

Basic statistics about the experimental results are shown
in Table 1, and the cumulative distribution of information
gain is shown in Figure 8. In terms of basic statistics, there
is a large discrepancy in average connections per run be-
tween the victim and attacker circuits; we speculate that
this is due to a lighter-than-average load on the PlanetLab
host we chose for AClient. In terms of information gain, the
average number of bits obtained per run was 0.68, with a
standard deviation of 0.86 and standard error 0.059. To as-
sess whether the conditional information remains stable for
additional runs, we also collected a set of 5 runs using a
single client node V . Among these 5 runs, the average con-
ditional information gain from a second run was 0.62 bits,
with a standard error of 0.14. Translated to bits per unit
time, the statistics suggest that we can recover 4.08± 0.702
bits of client location per hour.

5The port numbers – 5190 for the victim and 6667 for the
attacker – were chosen arbitrarily among those commonly
allowed by Tor exit nodes.

Figure 8: Cumulative distribution of information gain.

Figure 9: Expected bits per hour vs. 100-connection

standard error threshold.

On closer examination of the data, we found that 100 out
of the 216 runs yielded 0 bits of information about the client
location. This includes the expected 30 runs in which the
true client latency did not fall within the 85% confidence in-
terval, but also 70 runs in which no candidate locations were
eliminated. In these cases, the variability of the Tor circuit
RTT was so high that every PlanetLab node’s RTT to the
entry node was within the confidence interval for TV E . We
hypothesized that it might be possible to detect early on
that a run would be bad in this sense and discontinue the
attack, dedicating the remaining time to a different client.

To test this, we looked at the correlation between stan-
dard error of a run after measuring the first 100 connections,
which on average required less than 1 minute to collect, and
after the run was completed. We found that standard error
after 100 connections was an excellent predictor of ending
standard error (coefficient 0.96, intercept −199.85, p-value
0.014). Thus, we can increase the bits per unit time obtained
through our attack by setting a threshold value T such that,
if the first 100 connections have standard error at least T ,
the attack is stopped with no output.

Setting the value of T requires optimizing a tradeoff be-
tween the probability of finding a good run (one where the
standard error after 100 connections is less than T ) and the
information gain from a good run. Low values of T will
cause an attacker to abort early on too many runs, while
high values of T will cause the attacker to waste time on
too many useless runs. Figure 9 shows the tradeoff between
the value of T and bits/hour for our data set. Although
the exact tradeoff curve will likely differ somewhat based on
the distribution of candidate-to-entry node RTTs, we found



that setting the “early abort” threshold to roughly 200ms
provided the best tradeoff for our data set. Intuitively, this
makes sense: trace-based measurement studies suggest that
70% of Internet connections have median RTTs less than
200ms, and 80% have median RTTs less than 400ms [2], so
a circuit with such a high standard error will almost always
yield less than − log2 0.8 = 0.3 bits of information gain. In
our measurements, 153 of 216 runs – about 70% – had a stan-
dard error greater than 200ms after the first 100 connections,
and 115/216 runs (53%) had “early” standard error at least
400ms. Setting the threshold to this latter value yielded an
estimated information rate of 6.25 bits per hour of work.

6. DISCUSSION
Limitations. There are several limitations in the attack
as currently described. The most serious of these is the lim-
ited data on conditional information gain, that is, we cannot
conclusively evaluate, from our data, how much additional
information each run of an attack provides. This is due in
part to limitations of our experimental method, which did
not re-use clients; thus a “longitudinal” study is needed to
more accurately assess conditional information gain. An-
other reason we could not accurately assess conditional in-
formation is due to the somewhat coarse-grained handling of
information: our measure of information gain essentially al-
ways assumes a uniform distribution over “plausible” clients,
so that repeated measurements in which a client is plausible
but unlikely (for example, lies within two standard errors of
our estimated RTT but not one) do not increase the infor-
mation as measured by our experiment.

Another limitation is that our client location attack as-
sumes that a user repeatedly accesses a server from the same
network location. This assumption may sometimes be in-
valid in the short term due to route instability, or in the
long term due to host mobility. It seems plausible that the
attack can still be conducted when circuits originate from
a small set of network locations, such as a user’s home and
office networks, but the attack would be of little use in case
of more frequent changes in network location.
Other Applications and Extensions. We evaluated our
attacks in the context of the Tor anonymity scheme, but we
expect that they should be generalizable to other low-delay
anonymity protocols. Indeed, we expect that single-hop
proxy services will leak more information about the client-
proxy RTT, allowing fairly precise linking attacks, although
the strength of the client location attack will be somewhat
diminished against services that have a single proxy server
location. We also expect that peer-to-peer designs such
as Crowds [31], MorphMix [32] and I2P [21], with lightly-
loaded relays and multiple entry points, would yield cleaner
RTT measurements, allowing the attacker to locate clients
with higher precision. We are uncertain how the attacks pre-
sented here will interact with low-delay mix cascades such as
AN.ON; in principle some network latency information should
leak but we lack empirical data on the distribution of the
noise in this scheme.

As we previously mentioned, we believe the speed and
precision of our attacks can be increased by using a different
measurement procedure when appropriate application-layer
protocols are utilized. Examples of protocols that can be
exploited to yield application layer acknowledgements in-
clude persistent HTTP [16], IRC [29], and SIP [33]. There
is likewise still room for evaluation of alternative methods of

implementing RTT oracles, and perhaps for a more sophisti-
cated testing procedure that avoids the expense of querying
the RTT oracle for every pair of Tor entry node and candi-
date location. Finally, it would be interesting to study the
impact of various Tor parameters on our attacks, such as
circuit lifetime, circuit length, and path selection.

Our attack may also be applicable to a recently proposed
defense mechanism for hidden services, although it has not
been tested. In particular, Øverlier and Syverson [30] have
described an attack on Tor hidden services that exploits the
ability to make many requests to a hidden service, so that
eventually the hidden service connects to a malicious Tor
router as the first hop. They recommend using a small set
of trusted “entry guards” as first hops to prevent the attack.
However, using essentially the same techniques, a malicious
Tor node and hidden service client should be able to rec-
ognize when it is the second hop router, and obtain very
precise estimates of the hidden server’s RTT to each of its
guard nodes. These estimates can be compared against can-
didate locations as in our client location attack, and if there
are sufficiently few and widely spread candidates compared
to the number of entry guards, it should be possible to locate
the hidden server. Thus one layer of entry guards should not
be considered sufficient to protect a hidden server’s location.

Finally, several systems have recently been developed to
geolocate an Internet client given its RTTs from a set of
landmark nodes [18, 37]. In cases where candidate clients
cannot be associated with IP addresses, it may be possible
to apply these techniques to our attack, leaking information
about the client’s physical location.

Mitigation. There are a number of techniques and best
practices that can reduce the attacker’s probability of suc-
cess in the client location attack. For example, onion routers
can minimize the success probability of the Murdoch-Danezis
attack by allocating a fixed amount of bandwidth to each
circuit, independent of the current number of circuits, and
doing “busy work” during idle time; this may be an unde-
sirable tradeoff between anonymity and efficiency but will
prevent the client location attack from succeeding. Out-
side of such considerations, Tor nodes can prevent being
used as RTT oracles by refusing to extend circuits to nodes
that are not listed in the directory; they can drop ICMP
ECHO REQUEST packets in order to raise the cost of es-
timating their network coordinates; and if Tor node admin-
istrators have control over their DNS or reverse DNS hosts,
they can ensure that recursive lookups from “outside” nodes
are disabled. Tor clients and their network administrators
can likewise drop ping packets and deny other attempts to
learn their network coordinates to the necessary accuracy.

Both client location and circuit linking can be prevented
by adding sufficient delays to make the RTT and timing
characteristics of Tor servers independent of the underlying
network topology; this can be accomplished by delaying the
forwarding of data at the client. Alternatively, we can note
that in our evaluation, about half of the circuits we sampled
already had enough timing noise to essentially defeat the
client location attack. Given the limited time period over
which a Tor circuit is available for sampling, it may be an
effective countermeasure for each node to introduce high-
variance random delays in outgoing cells. Selecting delays
from an identical distribution at each Tor node would also
make the timing distributions from different circuits look
more alike, possibly thwarting the circuit-linking attack.



Of course, if the only way to thwart attacks based on la-
tency and throughput is to add latency and restrict through-
put, this would have serious implications for the design of
low-latency anonymity systems and the quality of anonymity
we can expect from such schemes. We believe that our at-
tacks are effective enough to motivate searching for other
possible countermeasures. One interesting possibility is to
make the Tor path selection algorithm latency-aware, by
incorporating some notion of network coordinates into di-
rectory listings. Clients could then construct circuits with
the explicit goal of having an RTT close to one of a small
number of possibilities. Doing so could help reduce the high
average circuit RTTs we observed (5 sec), reduce the effec-
tiveness of latency-based attacks, and allow clients to explic-
itly trade-off some anonymity for better efficiency. However,
more research is clearly needed to understand the security
implications of such an approach.
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