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ABSTRACT
Onion routing protocols allow users to establish anonymous
channels to preserve their privacy over a public network.
Several protocols implementing this primitive have been pro-
posed in recent years, and TOR, a real-life implementation,
provides an onion routing service to thousands of users over
the internet.

This paper presents Certificateless Onion Routing a new
approach to the problem. Starting from the identity based
solution (PB-OR) of Kate et al. [23], we adopt the certifi-
cateless setting introduced by Al-Riyami and Paterson [2].
Such a setting is particularly well suited in practice as it
retains the good aspects of identity based cryptography (no
PKI is required) and traditional public key cryptography
(there is no key escrow). Next, we present a novel certificate-
less anonymous key-agreement (KA) protocol and we show
how to turn it into a very efficient (and provably secure!)
certificateless onion routing protocol. When compared with
Tor and PB-OR, our protocol offers better performances,
especially when current security levels (i.e. 128 bits) are
considered. In particular, our scheme significantly improves
the computational costs required from each router. In this
sense our solution is up to 7 times faster than PB-OR and
up to 11 times faster than Tor.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection

General Terms
Security

1. INTRODUCTION
Imagine that some user wishes to anonymously communi-

cate with other parties using a public network (like the in-
ternet). Here by anonymously we mean that the user wishes
to hide her identity and also her network information (e.g.
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her network address). Achieving this level of anonymity is of
primary importance in many real life applications, where a
user’s identity should be decoupled from her network activ-
ities (e.g. voting, e-cash, anonymous credentials, etc.). The
notion of anonymous communication was first introduced by
Chaum in 1981 [10], with a solution to achieve an anony-
mous channel. Very informally, the basic idea there was to
”wrap” messages in several layers of encryptions and send
them through a sequence of nodes. Each node, when receiv-
ing a ciphertext, peels off a layer of encryption and sends the
resulting value to the next node. Anonymity derives from
the fact that the order in which the nodes are selected is
random and that each node should learn nothing more than
its two adjacent nodes in the sequence.

Goldschlag et al. introduced in [20] the notion of Onion
Routing that extends Chaum’s idea as follows. An onion
routing protocol is defined by a service provider, users and
a set of nodes (called onion routers). A user that wishes
to send a message selects a random set of nodes, wraps the
message with several layers of encryption, one for each node,
and sends it through these intermediate nodes (a circuit).
When a node receives a message, it decrypts it and sends the
resulting value to the next node. Because of their layered
composition such wrapped messages are called onions.

This very simple and elegant idea led to several other con-
structions and implementations (e.g. [20, 11, 29, 21, 18, 30,
15]). Perhaps the most famous of such solutions is the so-
called Onion Routing Project, recently replaced by Tor [15]
(the second generation onion router). The goal of Tor is to
provide anonymity to users over the Internet. At the mo-
ment it counts, roughly, 1000 onion routers and hundreds of
thousands of users over the world.

The most important component of an onion routing pro-
tocol is how a user builds a circuit, namely how a secure
channel is established through each onion router. In the con-
struction given in [20] the user sends to each onion router a
message encrypted with its public key, containing a random
symmetric key (used to encrypt the corresponding onion
layer) and the name of the next node in the circuit. An
obvious drawback of this solution is that it cannot toler-
ate corruptions. Indeed, imagine an adversary that corrupts
some router O in order to get its private key. Using this
information the adversary can then decrypt all the cipher-
texts received by O thus obtaining all the session keys (past
and present) of the router. We would like to have a protocol
with a forward secrecy property, in which a router’s corrup-
tion does not reveal anything about communication prior to
the corruption.



A simple way to achieve forward secrecy is to frequently
change the keys, so to minimize the period in which the at-
tack can be successfully done. However such a solution can
be very complicated in practice as it forces users to repeat-
edly obtain new keys for the routers; similarly routers have
to generate such keys and also corresponding valid certifi-
cates must be issued.

Dingledine et al. [15] proposed for Tor a solution which
relies on using the routers’ public keys only to establish a
temporary session key via an (interactive) Diffie-Hellman
[13] key agreement. The Tor Authentication Protocol (TAP)
uses a technique called telescoping to construct the circuit,
and was formally proven secure by Goldberg [19]. Although
Øverlier and Sylverson [27] further improved the efficiency
of telescoping, the main issue of this technique is the band-
width cost. Indeed, building a circuit of length n requires
the exchange of O(n2) (symmetrically encrypted) messages.

In 2007 Kate et al. [22, 23] proposed a new approach to
the problem, that they called pairing-based onion routing
(PB-OR). In their work they exploited the features of two
identity based schemes: the one of Boneh and Franklin [4]
and the protocol of Sakai et al. [33].

Identity-based cryptography was introduced by Adi Shamir
in [31] to simplify certificate management in traditional pub-
lic key cryptography. The basic idea of this notion is that
parties use their identities as public keys. In this setting each
party receives his secret key from a trusted Key Generation
Center, whose public parameters are publicly known.

The result of Kate et al. [23] is an onion routing proto-
col in the identity-based setting where the service provider
acts as a Key Generation Center for routers’ private keys.
This approach has several advantages: the circuit construc-
tion is non-interactive and requires only O(n) messages to
be exchanged. Moreover certificates management (and ver-
ification) can be avoided. The authors also showed that the
performance of building a circuit in PB-OR is better than
in Tor. On the negative side, to achieve forward secrecy
Kate et al. require to frequently change the keys of both
the KGC and the routers. Although KGC’s keys can have
a long validity period, the KGC is involved in the expensive
and interactive process of generating the private keys of all
routers (which occurs very frequently, e.g. every hour as
suggested in [23]).

Our contribution In our work we propose a new onion
routing protocol in the certificateless encryption setting.

Certificateless encryption is an hybrid setting that lies be-
tween public key and identity-based cryptography. It was
first introduced by Al-Riyami and Paterson in [2] (see [12]
for a nice survey on the subject).

In the certificateless setting, as in the identity-based one,
each user has a string ID, representing his identity, and a
matching secret key produced by a KGC. Furthermore each
user also has a public/secret key pair, as in the traditional
public key model. Certificateless encryption gets the ad-
vantages of both identity-based and traditional public key
cryptography (while avoiding their drawbacks). In particu-
lar, (i) the KGC cannot decrypt ciphertexts of users and (ii)
public keys do not need to be certified. The only require-
ments is that the public parameters used by the KGC must
be trusted by all the parties.

We construct our protocol in two steps. First, we define
the notion of certificateless anonymous key-agreement (KA)
and propose two constructions. The first one is very efficient

and it is proven secure under the Strong-Diffie-Hellman As-
sumption [1]1. The second solution is slightly less efficient,
but it can be proved secure under the standard Computa-
tional Diffie-Hellman Assumption. Roughly speaking, an
anonymous KA protocol allows a user (e.g. Alice) to estab-
lish a session key with another user (e.g. Bob) in such a way
that Alice authenticates Bob, without revealing her identity.

Next, we present a certificateless onion routing protocol
and show how to use our certificateless anonymous KA pro-
tocol for building the circuit. In our construction a user
chooses a set of onion routers and runs the KA protocol
to (non-interactively) establish a session key with each of
them. These session keys are later used to form an onion in
the usual way.

In order to achieve forward secrecy we also follow the ap-
proach of periodically changing keys. More precisely we
require only onion routers to frequently update their keys
but, unlike all previously known constructions, our scheme
allows for a very simple and efficient update process. This
is because in our protocol routers can generate keys on their
own without interacting with the KGC. Moreover such keys
do not need to be certified. Thus no additional interaction
with trusted entities (either KGC or CA) is needed, with a
significant reduction on their workload.

We compare the efficiency of our protocol with that of
PB-OR [23] and Tor [14] and show that we achieve better
performances, especially when high security levels (i.e. 128
bits) are considered. An additional important advantage of
our protocol, with respect to PB-OR, is that we do not need
expensive pairings computations. In particular we signifi-
cantly improve (see section 4.2 for details) on the cost of
running the protocol for each onion router. We stress that
reducing the computational cost required from each onion
router is very important in practice as the routers are re-
quired to perform much more operations than the user.

Other related work We refer the reader to the work in [26,
5] for formal security definitions for the problem of onion
routing.

2. PRELIMINARIES
Let N the set of natural numbers. We denote with ` ∈ N

the security parameter. The partecipants to our protocols
are modeled as probabilistic Turing machines whose running
time is bounded by some polynomial in `. If S is a (finite)

set, we denote with s
$← S the process of selecting an element

uniformly at random from S.
Informally we say that a function is negligible if it vanishes

faster than the inverse of any polynomial.

2.1 Onion Routing
An onion routing protocol is characterized by a service

provider, a set of onion routers and users. The goal of users
is to obtain anonymous access to the network by sending
their traffic through a circuit of (randomly chosen) onion
routers. A protocol is typically defined by the following
phases:

Setup and Key Generation In this phase the service
provider sets up some public parameters for the system and
1We remark that in recent papers the name Strong Diffie-
Hellman was used to denote a different conjecture defined
over bilinear groups [3]. In this paper, we refer to the original
terminology from [1]



each user generates a pair of keys. Public keys need to be
certified: this is typically done by the service provider. This
phase can be slightly different if we are in an identity-based
setting, such as the protocol of Kate et al. [23], or in a
certificateless setting (as in our case).

Circuit construction The main goal of an onion routing
protocol is to allow users to build a circuit of onion routers.
This is typically done by establishing with each router a
random session key. Once such a circuit is established, it
can be exploited by users to route their traffic through it.
In particular the user sends a message with several layers of
encryption (one for each onion router) to the first router in
the circuit. Then each onion router ORi “peels off” a layer
of encryption and obtains: (1) the name of the next router
in the circuit, ORi+1 and (2) another ciphertext which is
then forwarded to ORi+1.

The ways in which a circuit is constructed can be different,
but the common idea is that the onion routers are randomly
chosen according to some strategy and the user anonymously
establishes with each of them a session key that is used to
encrypt the messages. Informally speaking, users achieve
anonymity because each onion router learns only the identi-
ties of the two nodes adjacent to him in the circuit, or that
he is the last node. Even the first node cannot recognize if it
is receiving a message from a user or from an onion router.

A more formal and detailed definition of security for onion
routing protocols is given in the next section.

2.1.1 Security of onion routing
Camenisch and Lysyanskaya [5] defined security for onion

routing protocols in the universally composable (UC) frame-
work and gave also a generic construction from CCA2 en-
cryption with tags and pseudorandom permutations. Se-
curity in the UC framework is very strong as it automati-
cally considers all possible attacks. Unfortunately, however,
meeting such a security requirement often leads to inefficient
schemes. Since we are primarily interested into practical so-
lutions we follow the approach proposed by Kate et al. [23].
In particular we define security of onion routing protocols
using the same properties stated in [23] and we replace ses-
sion key secrecy with a stronger property: onion-security.

Cryptographic Unlinkability Informally speaking, this
property states that it should be infeasible for an attacker to
recognize a link between the sender and the receiver. Here
“cryptographic” means that network-level attacks are not
considered. Kate et al. gave a formal definition of this
property and they also proved that it is implied by the IND-
CPA security of the symmetric encryption scheme used in
the protocol to form the onions. For lack of space we defer
the interested reader to [23] for more details.

Integrity and Correctness Correctness guarantees that
if all the parties correctly execute the protocol, then the
recipient receives the message contained in the original onion
prepared by the sender and forwarded through the circuit.
In addition, an onion routing protocol has integrity if it is
possible to recognize those onions that are longer than a
pre-specified upper-bound.

Onion-security Informally, a protocol has onion-security if
the session keys established between users and onion routers
remain “secure” against an attacker that controls all but one
honest node in the network. More formally we define below a
security game between a PPT adversaryA and a Challenger.

At the beginning the Challenger generates the public pa-
rameters of the system and gives them in input to the ad-
versary. Then A is allowed to corrupt parties, namely it
learns their secret keys and controls their actions. At some
point the adversary chooses a circuit and a specific (honest)
node O in it. The Challenger gives to A either the real ses-
sion key between an anonymous sender and O or a random
one. Then the adversary can continue to perform its actions
without corrupting O and, at the end of the game, it must
recognize which session key it received.

An onion routing protocol has onion-security if any PPT
adversary A has at most (1/2 + negligible) probability of
winning the above game.

A formal definition of this security game is presented in
the next section. It follows the Canetti-Krawczyk (CK)
model [7, 8] for key-agreement protocols, adapted to the
certificateless model.

Circuit Position Secrecy When a protocol satisfies this
property, an onion router cannot learn its position in the cir-
cuit. This means that exchanged messages should not reveal
this information. In general it is not easy to achieve this
property: if onions are constructed encrypting a message
with several keys (e.g. C=EK1(EK2(. . . EKn(m) . . .)) then,
as showed by Camenisch and Lysyanskaya in [5], the cipher-
text grows proportionally to the number of times it is en-
crypted. This is because in randomized encryption schemes
ciphertexts are longer then the messages. However some
solutions for this issue are given in [5, 23].

3. CERTIFICATELESS ANONYMOUS KEY
AGREEMENT

In this section we present the notion of non-interactive
one-way certificateless anonymous key agreement (KA) that
is derived from that of pairing-based key agreement with
users anonymity presented by Kate et al. in [23]. While
the protocol given in [23] is in the identity-based setting,
ours is in an hybrid setting called certificateless2. In such
a setting a user is defined by a string ID representing its
identity and receives a partial secret key dID associated to
ID from a trusted entity, called the Key Generation Center
(KGC). From dID the user can later derive a pair of keys
which can be used as in the usual public key way.

The main advantage of certificateless encryption is that
it retains the good aspects of identity-based encryption and
traditional public key encryption while avoiding their draw-
backs: the KGC cannot decrypt ciphertexts of users and
public keys do not need to be certified. Only the public
parameters of the KGC must be trusted by all parties.

A one-way anonymous KA protocol allows a user (e.g. Al-
ice) to establish a session key with another user (e.g. Bob) in
such a way that Alice authenticates Bob, without leaking her
identity. It is also possible to consider a two-way protocol in
which both the parties are anonymous, but this is out of the
interest of this work. We consider a non-interactive version
of such protocols where there is a single message sent by the
(anonymous) sender to the (non-anonymous) receiver. In
what follows we use the term “certificateless anonymous key
agreement” to refer to this non-interactive one-way version.

2In [12] Dent gives a nice survey presentation of this
paradigm (restricted to encryption schemes) and analyzes
several definitions



The protocol has a setup phase in which the KGC gener-
ates the public parameters of the system and issues partial
secret keys to users associated with their public identities,
e.g. the KGC generates a partial secret key dID associated
to ID. Then each user can generate on its own a pair of keys
as a function of the received partial secret key. We assume
that the system has a list in which each user can publish its
identity and the associated public key. Such a list can also
be used by users to know the set of the available parties in
the protocol.

Once the setup phase is over, a user U can choose a ran-
dom pseudonym PU and run the protocol with another party
ID chosen from this public list. In particular the anonymous
user computes the session key as a function of its pseudonym
and the other party’s public key and then sends PU to ID.
The recipient can later use its secret key and the received
pseudonym to derive the same session key computed by U .

Following Kate et al. [23] we require that an anonymous
certificateless KA protocol must satisfy the following prop-
erties:
Unconditional Anonymity: It should be impossible to learn
the identity of an anonymous party running the protocol.
Session Key secrecy. Kate et al. required in [23] that an
attacker should not be able to recover session keys of uncor-
rupted parties. We adopt a much stronger (and standard)
notion of security: we require that any PPT attacker A
should not be able to distinguish a random session key from
a real one for an adaptively chosen recipient. More formally
we define two games, Type I and Type II, and we require
that A should have at most negligible advantage in these
games. We point out that the third property stated in [23],
no impersonation, is captured by our session key secrecy.

Type I security

Setup The Challenger generates (MPK,MSK), a pair of
keys for the KGC and gives MPK to A.

Phase 1 In this phase the adversary is allowed to adap-
tively perform the following actions:

• asking partial private keys of users. On input
ID the challenger extracts dID using MSK and
provides dID to A.

• issuing private key extraction queries. When the
challenger receives such query with input ID, it
extracts dID (if it was not generated before) and
then computes a pair of keys (pkID, skID) using
dID. It gives skID as response to A.

• requesting public keys of users. In this case the
challenger proceeds as in the previous case and
returns in output pkID.

• asking session keys. After receiving an identity
ID and a pseudonym P from the adversary, the
challenger outputs a valid session key for a proto-
col session between P and ID.

• replacing the public key of a user. The adver-
sary provides an identity ID and a public key
pk′ID meaning that it wants to replace a previ-
ously generated public key with pk′ID. Note that
the adversary will not be later allowed to ask the
private key related to pk′ID nor a session key of a
session involving ID.

Challenge At some point A outputs a target identity ID∗.
The challenger picks a random pseudonym P and de-
fines K0 as the real session key between P and ID∗

while K1 is taken at random. Then it picks a random
bit b ∈ {0, 1} and gives Kb to the adversary. Note that
A is not allowed to choose an identity ID∗ for which
a private key was extracted in the previous phase.

Phase 2 This phase is executed as Phase 1 except that the
adversary cannot query ID∗ to the private key extrac-
tion oracle.

Guess At the end of the game the adversary outputs a bit
b′ as its guess for b.

We define the advantage of an adversary A in the game
above as AdvI

A = |Pr[b = b′]− 1/2|.

Type II security. Type II security models the fact that a
KGC should not be able to break the security of the proto-
col when it is passive, namely in the case when it does not
replace public keys trying to actively impersonate users.

To formalize Type II security we define a game which
consists of the same phases as that of Type I security with
the following different rules:

• A receives in input the master secret key MSK;

• A cannot query the partial private key extraction ora-
cle (observe that it can generate such keys on its own);

• A cannot replace public keys.

We define the advantage of A in this game as AdvII

A =

|Pr[b = b′]− 1/2|.
We point out that this kind of definition of security (Type

I and Type II) follows standard cryptographic definitions for
certificateless encryption schemes (see Dent’s survey [12] for
more details).

3.1 Our certificateless anonymous KA proto-
col

In this section we present our protocol for certificate-
less anonymous key-agreement whose security relies on the
Strong-DH Assumption [1] in the random oracle model. The
protocol uses techniques similar to that used by Fiore and
Gennaro in [17] to construct an identity-based key-agreement
protocol.
Protocol setup. The KGC chooses a group G of prime
order q (where q is `-bits long), a random generator g ∈ G
and two hash functions H1 : {0, 1}∗ → Zq and H2 : Zq ×
Zq → {0, 1}`. Then it picks a random x

$← Zq and sets
y = gx. Finally the KGC outputs the public parameters
MPK = (q,G, g, y,H1, H2) and keeps the master secret key
MSK = x for itself.
Partial Secret Key Extraction. A user with identity ID
receives, as its partial secret key, a Schnorr’s signature [34]
of the message m = ID under public key y. More specif-
ically, the KGC after verifying the user’s identity, creates
the associated secret key as follows. First it picks a random

k
$← Zq and sets r = gk. Then it uses the master secret key

x to compute s = k + H1(ID, r)x. The partial secret key
returned to the user is dID = (r, s).
User’s key generation. Once a user ID has obtained a
partial secret key dID from the KGC, it can generate its



own pair of keys. It picks a random t
$← Zq and sets u = gt.

Then it defines pkID = (r, u) and skID = (s, t).
A protocol session. When a user U wants to establish a
session key with Bob, it proceeds as follows. U selects a ran-

dom w
$← Zq and defines PU = gw as its pseudonym. Then it

searches Bob in the public list of the system and gets Bob’s
identity B and public key pkB = (rB , uB). U computes

the session key K = H2(z1, z2) where z1 = (rBy
H1(B,rB))w

and z2 = uw
B and sends its pseudonym PU to Bob. Upon

receipt of PU Bob can recover the same session key by com-
puting z1 = P sB

U and z2 = P tB
U . It is easy to see that both

the parties are computing the same values z1 = gwsB and
z2 = gwtB .

Theorem 1. The protocol given above is a secure certifi-
cateless anonymous key-agreement protocol under the Strong-
DH Assumption if H1 and H2 are modeled as random ora-
cles.

3.2 Proof of security
We prove the security of our anonymous key agreement

protocol under the Strong-DH Assumption (and in a slightly
slower variant under the weaker CDH Assumptions). These
computational assumptions are recalled in the Appendix.

The proof uses a typical reduction argument. In the fol-
lowing sections we show how to reduce the existence of an
attacker that breaks the security of the protocol into an al-
gorithm (i.e. the simulator) that is able to break the Strong-
DH Assumption with non-negligible probability.

The proof of Theorem 1 is splitted into two lemmas: one
for Type I security and the other one for Type II security.
For lack of space some proofs are deferred to the final ver-
sion.

3.2.1 Exponential Challenge-Response Signatures
Before proving Type I security, we introduce the notion

of Challenge-Response Signatures which are instrumental in
obtaining a reduction for this case.

Exponential Challenge-Response (XCR) Signatures were
introduced by Krawczyk in [24] as a building block for the
proof of the HMQV key-exchange protocol. Variants of
such signatures were also used in [17] to prove the secu-
rity of their identity-based key-agreement protocol. Roughly
speaking XCR signatures consist of an interactive signing
process where the recipient of a signature gives a challenge
to the signer and the latter generates the signature on a mes-
sage with respect to this challenge. Only who creates the
challenge will be able to verify the correctness of the signa-
ture. We briefly recall the XCR = (XKG,XSIG,XV ER)
signature scheme by Krawczyk [24] which is based on the
Schnorr’s signature scheme.

XCR signature scheme. The key generation algorithm
XKG(1`) takes as input the security parameter `, chooses
a `-bit prime q and a group G of order q. Then it picks a

random x
$← Zq and outputs the verification key y = gx and

the secret key x.
A user wishing to receive a signature, first generates a

challenge value T = gw for random w
$← Zq and gives T

to the signer. To produce a signature on a message m the

signer runs XSIG(x,m, T ) which chooses random k
$← Zq,

sets r = gk and s = k+H(m, r)x where H : {0, 1}∗ → Zq is
an hash function. Finally it computes z = T s and outputs
the pair (r, z) as the signature for m.

The recipient can verify the signature (r, z) with respect
to a message m, public key y, and challenge (T = gw) for

which it knows w by checking if z
?
= (ryH(m,r))w (this is the

verification algorithm XV ER).
An interesting property of this scheme which is important

in our work is that a signer can pre-compute (or receive) a
signing-token (r = gk, s = k + H(m, r)x) for a message m
and then is able to generate signatures on that message for
every challenge T (i.e. to compute the signature it outputs
(r, z = T s)).

Definition 1 (Security of XCR ). The XCR signature
scheme is said to be secure if any PPT forger algorithm F
has at most negligible probability of winning the game below.

Setup The Challenger runs the key generation algorithm
(y, x) ← XKG(1`), generates a challenge T = gw for ran-

dom w
$← Zq and runs the forger F on input (y, T ).

Signing queries F is provided access to a token-signing or-
acle TokSig(x, ·) that, given in input a message m, outputs
a signing-token (r, s) for m.
Forgery The forger wins the game if it outputs a tuple
(m∗, r∗, z∗) such that: (i) (r∗, z∗) is a valid signature with
respect to the message m∗ and the challenge T and (ii) m∗

was not queried to the oracle TokSig(x, ·).
We point out that this definition of security is slightly

different from the one given in [24] and follows the same
modifications proposed in [17]. More precisely we provide
the forger with access to the more generic oracle TokSig(x, ·)
instead of an oracle that outputs signatures when queried on
a message-challenge pair.

Theorem 2. The XCR signature scheme is secure accord-
ing to Definition 1 under the CDH Assumption if H is mod-
eled as a random oracle.

3.2.2 Type I Security
Now we can prove that our protocol achieves Type I secu-

rity. We point out that, although XCR is secure under the
CDH assumption, our reduction holds under the Strong-DH
Assumption (as we need access to a DH oracle in the reduc-
tion).

Lemma 1. Our certificateless anonymous KA protocol is
Type I-secure if the XCR signature scheme is secure and H2

is modeled as a random oracle.

Proof. Let A be an adversary that has non-negligible
advantage ε into breaking Type I security of the protocol.
Then we show how to build a simulator S that succeeds into
breaking the security of XCR with non-negligible probability.

The simulator acts as a forger for XCR and at the same
time has to simulate the environment for the execution of A
in each phase.

Setup S receives in input a tuple (q, g,G, y, T ) and is also
given access to the random oracle H and a token signing or-
acle TokSig. S runs A on input MPK = (q, g,G, y,H1, H2)
where (q, g,G, y) is S’s input, H1 = H and H2 is a random
oracle controlled by S as described below. When the simu-
lator receives in input a query H2(z1, z2) it picks a random

string R
$← {0, 1}`, outputs R and stores 〈z1, z2, R〉 into a

table H2. At the beginning of the game S guesses the user
that the adversary will ask in the challenge phase. Assume



it is Bob. If n is an upper bound to the number of par-
ties in the protocol, where n is polynomial in the security
parameter, then S’s guess is right with probability 1/n.

Phase 1 In this phase S has to simulate all the oracles
provided to A.

• To respond to a partial private key extraction query
for user ID, S queries TokSig on input ID and obtains
(r, s). It outputs dID = (r, s) and stores 〈ID, r, s〉 in
PartialKeyList.

• When the simulator receives a private key extraction
query for user ID it proceeds as follows. If the queried
user is Bob S returns “Abort” and terminates the sim-
ulation. Otherwise it searches in PartialKeyList to see
if it contains a tuple 〈ID, r, s〉. If such a tuple does
not exist it proceeds as in the step before to obtain it.

Then it picks a random t
$← Zq, sets u = gt and stores

〈ID, r, u〉 in PubKeyList and 〈ID, s, t〉 in PrivKeyList.
Finally it outputs skID = (s, t).

• When the simulator receives a public key extraction
query for user ID it proceeds as in the previous step
with the following difference. If the queried user is
Bob, instead of aborting the simulation, it generates

random r = gk, u = gt by picking k, t
$← Zq and re-

turns in output pkID = (r, u).

• When A submits a public key replace query pk′ID =
(r′, u′), the simulator searches PubKeyList for a tuple
〈ID, r, u〉, replaces (r, u) with (r′, u′) and marks the
tuple as “updated”.

• On receiving a session key query (P, ID) where P = gw

is a random pseudonym, S searches PubKeyList for a
tuple 〈ID, r, u〉. If such a tuple does not exist, it runs
the above algorithms to generate keys for user ID. If
such a tuple exists and ID 6= Bob then it is easy to
observe that S is able to compute the corresponding
session key (because it must know the corresponding
secret key). Otherwise, if such a tuple exists and the
queried identity is Bob, then S can compute the session
key as well, but this case is slightly more complicated.

This is where the simulator needs the oracle DH(y, ·, ·).
Indeed, in this case S does not know the entire secret
key. Recall that the correct session key is H2(z1, z2)

with z1 = P s∗ and z2 = P t∗ where (s∗, t∗) is the se-
cret key of Bob. Observe that z1 is the Diffie-Hellman
of gs∗ = r∗yH1(B,r∗) and P . The simulator knows
t∗ and k∗ (the discrete log of r∗ in base g). S can

compute z2 = P t∗ and then check if H2 contains a
tuple 〈z1, z2, R〉 such that DH(y, P, z1) = “yes′′ where

z1 = (z1/P
k∗)H1(B,r∗)−1

. If S finds a match then it
outputs the corresponding R as the queried session key.

Otherwise it generates a random ρ
$← {0, 1}` and gives

it as response to the adversary. Later, for each query
(z1, z2) to H2, if (z1, z2) satisfies the equation above
it answers with ρ. This makes oracle’s answers consis-
tent.

Challenge At some point the adversary sends a challenge
identity ID∗. If ID∗ is different from Bob the simulator
outputs “Abort” and terminates the simulation. Otherwise

it searches PubKeyList for 〈ID∗, r∗, u∗〉. If such a tuple does
not exist, it runs the above algorithm to obtain it. Then S

sets the pseudonym P ∗ = T , selects a random string R∗
$←

{0, 1}` and gives (P ∗, R∗) to the adversary. Observe that the

correct session key is R∗ = H2(z1, z2) where z1 = (P ∗)s∗ ,

z2 = (P ∗)t∗ and s∗ is the partial secret key of Bob (which is
not known by the simulator). It is easy to see that (z1, r

∗)
is a valid forgery for the XCR signature scheme.

Phase 2 In this phase the simulator acts as in phase 1.

Guess At the end of the game A outputs a bit b. If the
adversary has success into distinguishing a correct session
key from a random one, then it must query the random
oracle H2 at the correct input (z1, z2). Thus S can efficiently
find the pair (z1, z2) in the table H2 using the DH oracle and
finally output (r∗, z1) as a forgery for message ID∗.

In conclusion, if A breaks Type I security of our protocol
with probability ε, then our simulator breaks the unforge-
ability of the XCR signature scheme with probability at least
ε/n.

3.2.3 Type II security

Lemma 2. Our certificateless anonymous KA protocol is
Type II-secure if the Strong-DH Assumption holds and H1

and H2 are modeled as random oracles.

3.3 Avoiding the Strong-DH
The certificateless anonymous KA protocol given in sec-

tion 3.1 is proven secure under the Strong-DH Assumption.
In this section we show how to modify that protocol in such
a way that its security can be based directly on CDH at the
cost of one more user’s public key element (and one more
exponentiation).

Cash et al. introduced in [9] a new assumption called
Twin Diffie-Hellman (2DH). Informally 2DH states that an
adversary which is given in input random A1, A2, B ∈ G,
should not be able to compute a pair (C1, C2) such that C1

and C2 are the DH of A1, B and A2, B respectively. It is
easy to see that this assumption is equivalent to the well
known CDH. The valuable contribution of their work was to
show that its “strong” version is equivalent to CDH too.

Informally the Strong-2DH assumption says that 2DH
holds even in the presence of an oracle 2DH(A1, A2, ·, ·, ·)
that solves its decisional version for fixed A1, A2.

Therefore our idea is to modify the protocol given in sec-
tion 3.1 in such a way it can be proven secure under the
Strong-2DH Assumption. Then, since Cash et al. proved in
[9] that Strong-2DH and CDH are equivalent, we obtain a
protocol secure under CDH.

Since the setup and partial secret key extraction algo-
rithms are as before, here we discuss only the remaining
ones.
User’s key generation A user ID that obtained a partial
secret key dID = (r, s) from the KGC, generates its own

pair of keys as follows. It picks random t1, t2
$← Zq and sets

u1 = gt1 and u2 = gt2 . The public key is pkID = (r, u1, u2)
while the secret key is skID = (s, t1, t2).
A protocol session Later, when a user U wants to establish
a session key with Bob holding pkB = (r, u1, u2), it proceeds

as follows. First, U selects a random w
$← Zq and defines

PU = gw as its pseudonym. Then it computes the session



key as K = H2(z, z1, z2) where z = (ryH1(B,r))w, z1 = uw
1

and z2 = uw
2 . Given PU , Bob can recover the same session

key by computing z = P s
U , z1 = P t1

U and z2 = P t2
U .

Theorem 3. The protocol described above is a secure cer-
tificateless anonymous key-agreement protocol under the CDH
Assumption if H1 and H2 are modeled as random oracles.

4. CERTIFICATELESS ONION ROUTING
In this section we present our onion routing protocol. It

follows the same paradigm of pairing-based onion routing in
the identity-based setting from [23] with the difference that
our protocol is defined in the certificateless encryption set-
ting. As further discussed in section 4.2, our scheme is com-
putationally more efficient than pairing-based onion routing,
for several reasons: mostly that expensive pairings compu-
tations are avoided, and forward secrecy is obtained with
rekeying operations that do not involve the KGC

We present our certificateless onion routing protocol by
describing the following phases:

Setup In this phase the service provider acts as a KGC for
our anonymous KA protocol. It generates the public param-
eters and issues partial secret keys for the onion routers.

Key Generation Once an onion router ORi has obtained
a partial secret key di, it generates a pair of keys (pki, ski)
from di and publishes pki in the public list of the system.

To achieve forward secrecy this pair of keys has a limited
validity period and thus each onion router will repeat this
phase after such a period is expired. However we notice that
this process does not involve the KGC but can be repeated
by ORi using the same di. Further discussions about for-
ward secrecy are postponed to the following section.

Circuit construction When a user wants to build a cir-
cuit, he chooses an ordered sequence of n onion routers
OR1, . . . , ORn at random among those present in the pub-
lic list. He gets their public keys and then runs the (non-
interactive) anonymous KA protocol described in section 3.1
to establish a session key with each of them. Finally he cre-
ates an onion

P1, {OR2, P2, {. . . {ORn, Pn, {∅}Kn} . . .}K2}K1

where {m}Ki means that the message m is symmetrically
encrypted using the session key Ki. As one can see, an onion
is defined by a pair (P,C) where P is a pseudonym and C
is a ciphertext.

The user sends the onion to the first onion router in the
circuit. When ORi receives an onion (Pi, Ci) it proceeds
as follows. First it recovers the session key Ki using its
secret key and the pseudonym Pi and then it uses Ki to
decrypt Ci. It gets back a triple (ORi+1, Pi+1, Ci+1) and
sends (Pi+1, Ci+1) to the next onion router ORi+1.

When an onion router gets ∅ from decrypting a ciphertext
it means that it is the last router of the circuit. Therefore it
sends back a confirmation message {Ack}Kn to the previous
router in the circuit. When an onion router ORi receives a
confirmation message, it encrypts it using Ki and sends it
to the previous router. In order to do this each router has
to store the session keys and the pseudonyms. This is useful
also to prevent replay attacks.

Finally, when the user receives a confirmation message,
he verifies its validity by decrypting it using the session keys
K1, . . . ,Kn.

If the circuit construction was successful, the user can
later use the circuit for his communication as in the other
onion routing protocols. In particular the user sends onions
through the circuit encrypting layer i with the key Ki.

4.1 Security of certificateless onion routing
In this section we show that the certificateless onion rout-

ing protocol described in the previous section is secure ac-
cording to the definition given in section 2.1.1. To do this
we show separately that it satisfies the following properties.

Cryptographic Unlinkability Since this property is im-
plied by the IND-CPA security of the symmetric encryption
scheme (see section 2.1.1), our protocol automatically sat-
isfies cryptographic unlinkability if the employed symmetric
encryption scheme is IND-CPA secure.

Integrity and Correctness Our protocol trivially achieves
integrity and correctness. If n is the upper bound on the
number of routers in the circuit, then an onion containing
more than n layers of encryption can be easily recognized by
the first router looking at its length. Correctness is satisfied
for the construction and the correctness of the anonymous
key agreement protocol.

Onion Security It is easy to observe that in our protocol
onion security directly follows from the security of the certifi-
cateless anonymous key agreement protocol. In our protocol
the adversary is allowed to corrupt parties and learn their
secret keys, modify and/or inject public keys of users (e.g.
it can replace data in the public list of the system) and ask
for decryption of onions (e.g. it can submit an onion to a
node in the circuit and then capture its output). It is easy
to see that these capabilities can all be managed using those
of an adversary in the Type I and Type II security games
(see section 3).

In addition Type II security implies that our onion rout-
ing protocol is resistant even against the corruption of the
KGC. In this case an attacker that recovers the KGC’s mas-
ter secret key should not be able to learn the session keys
computed before the corruption has occured. As further dis-
cussed in section 4.1.1 this is what allows to avoid changing
the KGC master keys.

Circuit Position Secrecy The protocol described in sec-
tion 4 is not resistant to the generic attack (showed by Ca-
menisch and Lysyanskaya in [5]) that allows to learn the
position in the circuit of a ciphertext’s recipient. Indeed
one can look at the length of a ciphertext to derive such
information.

The “basic” pairing-based onion routing protocol given in
[23] has the same drawback. Still we notice that we can
apply the same technique proposed by Kate et al. to make
our protocol resistant to this attack at the cost of much
computation and longer ciphertexts.

4.1.1 Forward secrecy
Forward secrecy informally guarantees that after a secure

communication is established by two parties and ephemeral
values are erased by these parties, it should be infeasible
for an attacker to break the security of the past communi-
cation even if it corrupts both the parties and learns their
secret keys. In this case “security” refers to the usual indis-
tinguishability notion for session keys.

Kate et al. [23] showed that a single-pass protocol can-
not achieve this notion since an adversary that corrupts an



onion router and learns its secret key, is always able to com-
pute a session key for any pseudonym. A solution for this
issue is changing onion routers’ keys. In this case we say
that a protocol achieves immediate forward secrecy if it is
secure against an adversary that corrupts an onion router
immediatly before its keys are changeds, namely within a
key validity period τ . Otherwise, if forward secrecy holds
only after onion routers’ keys are changed, we say that the
protocol satisfies eventual forward secrecy.

Our protocol achieves eventual forward secrecy by setting
a short key validity period (e.g. an hour) that prevents such
attacks in practice.

The pairing-based onion routing protocol of Kate et al.
[23] suffers from the same problem, but their solution is more
complicated and less efficient than ours. Indeed Kate et
al. suggest to have two distinct validity periods: one for
the KGC’s keys and one for the onion routers’ keys, where
the former is longer than the latter. We notice that the
KGC is involved even when onion routers’ keys are changed
because it has to generate them. This implies a significant
computational effort for the KGC.

In contrast our solution, as one can see in section 4, has
only one validity period for onion routers’ keys. Such keys
are generated by onion routers on their own and thus we do
not require the KGC to perform any additional computation.
In addition our protocol provides security even against a
(passive) attacker that corrupts the KGC.

4.2 Efficiency and comparisons with other pro-
tocols

To complete the analysis of our certificateless onion rout-
ing protocol, we discuss in this section its efficiency when
implemented with specific parameters and compare these re-
sults with those obtained by the pairing-based onion routing
protocol (PB-OR) of Kate et al. [23] and Tor (implemented
using its specification [14]).

In our comparisons we analyze the cost of building a cir-
cuit of length n, from the perspective of both a user and
an onion router. We consider security parameters of 80 and
128 bits and stress that the latter should be considered the
standard for an adequate level of security (see [35, 36] for
more informations about recommended key sizes).

Before presenting our results we briefly describe which op-
erations are involved during the process of building a circuit
in each of the three protocols.

In Tor the circuit is constructed using the telescoping tech-
nique in which a node establishes secure channels with the
onion routers using a Diffie-Hellman (DH) key exchange [13].
More precisely the user sends to each onion router the DH
parameter encrypted with RSA. Therefore a user performs
1 RSA encryption and 2 exponentiations for each of the n
onion routers while each onion router performs 1 RSA de-
cryption and 2 exponentiations. Using 80 bits of security
RSA is instantiated with a 1024-bits modulus and Diffie-
Hellman uses a 1024-bit finite field. In particular (according
to the specifications given in [14]) RSA uses a fixed expo-
nent 65536 while DH is optimized with exponents of 360 bits
and generator 2. When we enhance the security level to 128
bits, the RSA problem uses a 3072 bits modulus and the
same holds for the size of the DH finite-field.

To measure the cost of the pairing-based onion routing
protocol (PB-OR) we assume to implement it in elliptic
curves groups that provide the best efficiency for their case.

At both the security levels we used a Type A curve (in the
PBC library [25]) providing groups in which a bilinear map
e : G×G→ GT is defined. Kate et al. suggested in [23] that
a user can optimize this phase by pre-computing a pairing
for each onion router (as a function of the public parameters
and the onion router’s identity) but this process must be re-
peated every time the KGC’s keys change (e.g. every day).
Then the user must compute n exponentiations in the group
G and n exponentiations in GT . On the other hand, each
onion router must compute only one pairing. Although such
curves provide good computational efficiency (especially for
pairing computation), the same does not hold from the point
of view of the space required to represent group elements.
Indeed each element of G needs 512 bits at an 80-bits secu-
rity level and 1536 bits when 128 bits of security are chosen.

In our protocol we can use the same optimization of [23]

and pre-compute the value ryH1(ID,r) for each router ID
(where r is in its public key). Moreover in our case this
pre-computation does not need to be repeated since KGC’s
keys do not change. A user must compute 3 exponentiations
for each of the n onion routers. One of these exponentia-
tions, z2 = uw, cannot use pre-computation since u changes
frequently. On the other side an onion router performs 2
exponentiations to compute the session key. For efficiency
reasons we implemented our protocol using elliptic curves
groups. In this case the operations were implemented with
the PBC library as well, but here we used Type F curves
which

particularly fits our case because they provide short rep-
resentation for G1 (160 or 256 bits with 80 or 128 bits of
security respectively) and also efficient exponentiations in
this group3.

In our efficiency comparisons we also consider our certifi-
cateless onion routing protocol when instantiated with the
anonymous KA protocol of section 3.3. From a computa-
tional perspective this protocol requires one more exponen-
tiation to compute the session key, but it has the advantage
of being based on the standard CDH assumption.

All the operations were implemented using the PBC li-
brary (version 0.4.18) on a 2.4GHz Intel Core 2 Duo work-
station running Mac OS X 10.5.6. A summary of these costs
is in Table 1.

Operation Time (ms)
80-bits 128-bits

RSA Enc 0.1 0.7

RSA Dec † 3.3 67.5
Exp (Tor) 1.8 12.9

Exp. in G † 0.9 7.5

Exp. in GT
† 0.2 1.8

Exp. in G1 1.7 4.1

Exp. in G1
† 0.2 0.5

† These costs are obtained using precomputation.

Table 1: Summary of costs of operations (in ms).

Table 2 contains the total costs of building a circuit of
length n respectively in Tor, PB-OR and the two instantia-
tions of our protocol: the one using the anonymous KA of

3This kind of curves also admit a pairing operator e : G1 ×
G2 → GT , which is not particularly efficient to compute,
but this is not of interest in our protocol as we use only
exponentiations in G1.



section 3.1 based on Strong-DH (we call it CL-OR) and the
other one using the anonymous KA of section 3.3 based on
CDH (we call it 2-CL-OR). Moreover we consider two levels
of security: 80 and 128 bits.

Protocol Total cost (ms)
80-bits 128-bits

Tor
User 3.7n 26.2n
OR 6.9 93.3

PB-OR
User 1.1n 9.3n
OR 3.9 57.3

CL-OR
User 2.1n 5.1n
OR 3.4 8.2

2-CL-OR
User 3.8n 9.2n
OR 5.1 12.3

Table 2: Total costs to build a circuit of length n.

If we consider a security level of 80 bits our protocol CL-
OR is more efficient than Tor and PB-OR when it is run both
in the user and the onion router. At this level of security
2-CL-OR is slightly slower than CL-OR, but it is based on
a more standard assumption.

The situation changes totally in favor of our certificate-
less onion routing protocols when 128 bits of security are
considered. In particular we significantly improved the cost
of running the protocol in an onion router as we need (in
CL-OR) 8.2 ms against 57.3 ms of PB-OR and 93.3 ms of
Tor. We also stress that efficiency in onion routers is more
important as they are typically required to perform much
more operations than the user. Moreover, since Tor is in the
PKI setting, it should also include certificate verifications
that are not considered in our comparisons.

Another interesting aspect that should be addressed in a
comparison is the bandwidth. First of all, since we follow the
same paradigm of Kate et al. [23], we achieve the same gain
in the number of exchanged (and simmetrically-encrypted)
messages. While in Tor this number is quadratic in n, in
PB-OR and in ours it is only linear. Second, in our pro-
tocols we need fewer bits to represent group elements (i.e.
pseudonyms): 160 and 256 bits against 512 and 1536 bits of
PB-OR respectively at an 80 and 128 bits security level.

Other interesting aspects of our protocol regard forward
secrecy and the workload of the KGC. The main point is
that we do not require the KGC to change keys. This has
several advantages. On the users’ side it means that they
have to obtain KGC’s parameters only once and the same
holds for onion routers requesting partial secret keys. On
the other hand, from the KGC’s perspective, we obtain a
significantly smaller computational load since it does not
need to repeat the users key generation phase many times
(as in [23]). In addition our protocol remains secure against
a passive adversary that corrupts the KGC.
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APPENDIX
A. COMPUTATIONAL ASSUMPTIONS

In the following assume G to be a cyclic multiplicative
group of order q where q is a `-bit long prime. We assume
that there are efficient algorithms to performe multiplica-
tion and membership test in G. Finally we denote with g a
generator of G.

Assumption 1 (Computational Diffie-Hellman [13]).
We say that the Computational Diffie-Hellman (CDH) As-
sumption (for G and g) holds if for any probabilistic poly-
nomial time adversary A the probability that A on input
(q,G, g, ga, gb) outputs C such that C = gab is negligible in
`. The probability of success of A is taken over the uniform
random choices of a, b ∈ Zq and the coin tosses of A.

The CDH Assumption has a Decisional version in which no
adversary can actually recognize the value gab when given
ga, gb. In our proofs we are going to need the ability to
perform such decisions when one of the two elements is fixed,
while still assuming that the CDH holds. The assumption
below basically says that the CDH Assumption still holds in
the presence of an oracle DH(A, ·, ·) that solves the decisional
problem for a fixed A4.

Assumption 2 (Strong-DH Assumption [1]). We say
that the Strong-DH Assumption holds (for G and g) if the
CDH Assumption holds even in the presence of an oracle
DH(A, ·, ·) that on input two elements B̂, Ĉ in the group

generated by g, outputs ”yes” if and only if Ĉ is the Diffie-
Hellman of A and B̂.

4We remark that in recent papers the name strong Diffie-
Hellman assumption was used to denote a different conjec-
ture defined over bilinear groups [3]. In this paper, we refer
to the original terminology from [1]


