
Recruiting New Tor Relays with BRAIDS

Rob Jansen Nicholas Hopper

University of Minnesota
Minneapolis, MN 55455 USA

{jansen, hopper, kyd}@cs.umn.edu

Yongdae Kim

ABSTRACT
Tor, a distributed Internet anonymizing system, relies on
volunteers who run dedicated relays. Other than altruism,
these volunteers have no incentive to run relays, causing a
large disparity between the number of users and available re-
lays. We introduce BRAIDS, a set of practical mechanisms
that encourages users to run Tor relays, allowing them to
earn credits redeemable for improved performance of both
interactive and non-interactive Tor traffic. These perfor-
mance incentives will allow Tor to support increasing re-
source demands with almost no loss in anonymity: BRAIDS
is robust to well-known attacks. Using a simulation of 20,300
Tor nodes, we show that BRAIDS allows relays to achieve
75% lower latency than non-relays for interactive traffic, and
90% higher bandwidth utilization for non-interactive traffic.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dist-
ributed Systems; C.2.0 [Computer-Communication Net-
works]: General—Security and Protection

General Terms
Algorithms, Security

Keywords
Anonymous Communication, Peer-to-Peer Networks

1. INTRODUCTION
Tor [53] uses Onion Routing [24] to create a practical sys-

tem for low-latency anonymity [14]. Tor clients periodically
retrieve a list of relays from the Tor directory service and
connect to Internet services by relaying requests through a
circuit of multiple relays chosen from the downloaded list.
The aggregate bandwidth costs of sending communication
securely through multiple relays are significantly higher than
direct communication: the amount of bandwidth expended

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

by a client is also expended by each relay in its circuit. A
significant characteristic of communication over Tor is that
most clients use Tor for interactive applications like web
browsing, but most data is transferred for non-interactive
applications like file sharing [32]. Moreover, Tor relays for-
ward traffic for multiple circuits simultaneously, further in-
creasing bandwidth obligations. The combination results in
overloaded relays and drastically increased latency for both
interactive and non-interactive communication [32].

A lack of incentives to run relays combined with the as-
sociated costs has hindered relay enlistment, and in turn,
Tor’s scalability. Although relaying traffic can increase user
anonymity by frustrating attempts to differentiate relay-
sourced from relay-forwarded data, there are no measur-
able benefits to providing service for others. Consequently,
clients greatly outnumber relays in Tor. In 2009, there were
an estimated 100, 000 simultaneously active Tor clients [31]
but only about 1, 500 Tor relays.1 This uneven distribution
of bandwidth responsibilities combined with the dispropor-
tionately high client-to-relay ratio results in poor system
performance and a tragedy of the commons [26] scenario: as
Tor grows, it will require additional relays to provide band-
width and traffic forwarding services to remain usable.
Recruiting New Relays A significant problem faced by
the current Tor system is how to recruit new relays to sup-
port expansion and ease the load suffered by current relays.
There have been few approaches to solve the relay recruiting
problem. One approach is to simply require every client to
also be a relay, effectively reducing the client-to-relay ratio
to 1:1 [42]. While we wish to promote relaying traffic, we
do not wish to forcefully impose it: clients who are unable
to run a relay due to censorship [48] would not be able to
effectively use the system. Denying anonymity to clients in
censored regions not only opposes the “anonymity for all”
ideology, but also decreases anonymity for others since it
reduces the diversity and size of the anonymity set – the
set of potential circuit initiators. Tor’s approach thus far
has been to build a community and educate users about
the benefits of anonymity, while simplifying relay setup and
maintenance procedures. While this approach has been ef-
fective at expanding the network to its current size, relays
are still in high demand and performance remains poor.
Introducing BRAIDS In this paper we present BRAIDS,2

a set of practical mechanisms for the Tor anonymity network
that increases incentives for relays while limiting the delays

1The corresponding client-to-relay ratio is 66:1.
2BRAIDS stands for Bandwidth Reciprocity And Incen-
tivized Differentiated Services.

caused by non-interactive BitTorrent clients and keeping the
system usable for everyone. Relays using BRAIDS enjoy
lower latency and higher throughput than other users. In
particular, BRAIDS allows relays to achieve 75% lower la-
tency than non-relays for interactive web traffic – a 40%
improvement over the current Tor network. Relays initi-
ating non-interactive traffic receive a 90% increase in total
bandwidth utilization from non-relay users.

To improve performance, BRAIDS incorporates differenti-
ated services and a scheduler based on the proportional dif-
ferentiation model introduced by Drovolis et al. [16, 17, 18,
19]. BRAIDS aggregates traffic into three hierarchical ser-
vice classes proportionally prioritized as low-latency > high-
throughput > normal, where the “cost” of high-throughput
> low-latency (normal service is free). Each relay rate-limits
the low-latency class to prevent high-throughput nodes from
overwhelming low-latency traffic. Finally, traffic is paid and
proportionally prioritized in both directions through the cir-
cuit, capturing Tor’s asymmetric bandwidth requirements.

BRAIDS users optionally and anonymously “pay” relays
with generic tickets that are both distributed freely in small
amounts to all clients and relays, and collected by each re-
lay while volunteering bandwidth to Tor. We use relay-
specific tickets [29, 41] – random numbers combined with
relay-identifiers – that are signed by an authority. Signed
tickets are verified at the relay, defeating the double spend-
ing problem in which clients must make immediate deposits
to catch cheaters that duplicate and spend a ticket multiple
times. Information leakage is avoided since relays can verify
tickets without assistance from an external entity. Tickets
are valid during uniform intervals to prevent linking clients
with tickets. Clients who cannot or choose not to pay receive
slightly reduced performance.

Other incentive-based recruitment approaches exist in the
literature: the gold star scheme [38] gives preferential treat-
ment to fast relays whereas PAR [3] and XPay [10] use e-cash
and an online bank to produce monetary incentives. A va-
riety of attacks [20, 28, 33, 35] make it difficult to design
a secure solution with minimal loss of anonymity. In par-
ticular, bandwidth accounting mechanisms that give better
service to relays that volunteer more bandwidth [38] in some
cases significantly decrease the anonymity set of relays re-
ceiving better service, and in others [3] unintentionally allow
an adversary to link relays to the same circuit.

BRAIDS is secure, retaining all of Tor’s anonymity for
users browsing the web, whereas the previously proposed
gold star scheme [38] achieves less than 65%. Our anony-
mous ticket approach mitigates the intersection attack that
has plagued previous schemes. Further, BRAIDS bounds
cheating in such a way that users must volunteer a signif-
icant amount of bandwidth before maliciously gaining an
insignificant number of tickets.
Outline The remainder of the paper is outlined as follows.
In Section 2, we briefly discuss BRAIDS system require-
ments while detailing the design in Section 3. Analysis of
security and parameters is given in Section 4, while simula-
tions and results are described in Section 5. Finally, Section
6 discusses related work and Section 7 concludes.

2. REQUIREMENTS
BRAIDS’ main goal is to encourage Tor clients to run

relays by providing incentives in the form of increased per-
formance. This system should prioritize low-latency traffic

over high-throughput traffic to reduce the negative impact
that file sharing users have on overall system performance
while remaining usable by everyone. The service received by
web browsing clients should not reduce their anonymity.

BRAIDS shares the same threat model as Tor – a local
adversary who cannot observe or interfere with traffic sent
between honest nodes. While we do not defend against cur-
rent attacks on Tor, our system should not reduce Tor’s
security by introducing any new vulnerabilities. We should
not leak information about the circuit initiator or the iden-
tities of relays composing the circuit.

In addition to the aforementioned entities, we introduce
a centralized, partially-trusted, offline bank to manage and
certify bandwidth accounting tasks. The bank should only
be trusted to follow protocol, but we assume it can other-
wise attack the system using any information in its posses-
sion. BRAIDS should provide accounting mechanisms for
both the outgoing path from client to server, and the re-
verse path from server to client (previous systems [3, 10]
do not provide payment mechanisms for the reverse path
of a two-way communication channel), since many exist-
ing applications (e.g. web browsing and streaming media)
have significantly higher downstream than upstream client
requirements. Bandwidth accounting should be anonymous
to protect the client’s identity, while payments must be un-
forgeable, non-reusable, and should not be linkable to the
client [9, 54]. Additionally, we require double spending pre-
vention in the form of immediate double spending detection.
Clients attempting to double-spend should not receive ser-
vice. Any attempts to cheat the system should be bounded
so that the overall efforts required to cheat will outweigh the
achievable benefits.

Finally, our system should be an incrementally deployable
extension to Tor: users transitioning from legacy software
should not be partitioned from the network.

3. SYSTEM DESIGN
BRAIDS motivates users to operate Tor relays by intro-

ducing generic tickets for service accounting. Using blind
signatures, users remain anonymous while obtaining a lim-
ited amount of free tickets from the bank. Tickets are then
embedded into Tor cells to request the desired class of service
– either low-latency and low-throughput (e.g. general web
browsing) or high-latency and high-throughput (e.g. down-
loading or sharing large files). Each relay verifies its tickets
to prevent double spending.

3.1 Relay-specific Tickets
Our ticket design draws upon ideas from coin ripping [29]

and fair exchange for mix-nets [41]. Since tickets are relay-
specific, our construction requires that clients have a priori
knowledge about their desired communication partners [43].
Tor already requires knowledge of relays when building cir-
cuits, so relay-specific tickets are an appropriate choice.
Ticket Structure A ticket T consists of a main part Ts,
called the ticket stub, and a receipt part Tr, called the ticket
receipt. The ticket stub contains the identity of the relay
R (its public key) to which the ticket may be transferred.
Letting | denote concatenation, we define a ticket for R as:

TR = {TRs | TRr } = {R | H(TRr) | d | σ | TRr }

where H is a cryptographically secure one-way hash func-
tion, d is a set of date-stamps, σ is the bank’s partially

blind signature on {R | H(TRr) | d}, and TRr is a random
bit-string used as a receipt.
Ticket Activation We use a blind signature scheme [8] to
activate tickets and ensure no information about relay R
chosen by client C is revealed. Specifically, our construction
uses a partially blind signature [1] where the client blinds in-
formation about the chosen relay R. The bank attaches uni-
form public date-stamps (described below) to the ticket, but
cannot discover the blinded relay information. The bank’s
signature creates a strongly unforgeable ticket TR, i.e. mod-
ifying the signed contents invalidates the ticket.
Ticket Validity Intervals The bank attaches a set of date-
stamps d = {du | dv | dw} to the blinded relay informa-
tion before signing. The time from ticket generation until
the first date-stamp specifies the spending interval [-,du) in
which relay-bound tickets may be spent. The time between
the first and second date-stamp specifies the relay-exchange
interval [du,dv) in which a relay may exchange tickets at
the bank for new relay-bound tickets. The time between
the second and last date-stamp specifies the client-exchange
interval [dv,dw) in which any client or relay may exchange
tickets at the bank for new relay-bound tickets. Finally, tick-
ets expire and are completely void after the final date-stamp.
We suggest values for these parameters in Section 4.1.

The relay-before-client exchange priority prevents a client
from maliciously exchanging a spent ticket before the relay
can (causing the relay’s ticket to appear double-spent upon
attempted exchange) while still allowing the client to ex-
change unspent tickets. The final date-stamp prevents the
bank’s ticket database from growing infinitely large. The
bank’s global date-stamps are used for every ticket signed
during a given time period to prevent the bank from marking
tickets and linking clients with relays.

3.2 Ticket Transferability
Users may wish to transfer tickets to other users, or up-

date tickets that have passed their spending interval but are
not yet void. Unspent tickets may be transferred to relays
for payment, but spent tickets or tickets past their spending
interval must be first exchanged at the bank.

Users remain anonymous by exchanging tickets with the
bank through Tor. However, in order to exchange during the
relay-exchange interval, a relay is required to prove knowl-
edge of its private key to the bank. Although this means
relays are not anonymous in the exchange, we note that the
bank can already enumerate the list of relays by download-
ing the public directory. The bank validates that the relay
is bound to the exchanged tickets.
Relay Ticket Exchange When relay C receives ticket T C ,
it becomes a voucher for C redeemable for a new relay-
specific ticket. Relay C and bank B use Protocol 1, Relay-
Ticket-Exchange, to generate a new ticket spendable at re-
lay R given that C presents a valid ticket voucher T C and
new ticket material. C performs setup on lines 1–2 by gen-
erating a random value and its hash. C sends B the voucher
T C , and B is responsible for validating T C. B does this by
verifying T C is within the allowable date interval for relay-
exchange, the identity C from T C matches the real identity
C, C | H(T Cr) never appeared before (i.e. T C was not dou-
ble spent), σ is a valid signature on C | H(T Cr), and that a
freshly computed H(T Cr) matches the hash from T C . If the
voucher validates, B and C cooperate to produce a partially
blind signature on the new ticket TR payable to relay R.

Protocol 1 Relay-Ticket-Exchange: TC for TR between re-
lay C and bank B for service at relay R. The arrows represent
anonymous communication in Tor. The partially blind signature
(pbs-sign(·)) and verification (pbs-verify(·)) are defined in [1].

Setup:
1: C: generate random receipt TRr
2: C: construct partial stub TRs = {R | H(TRr)}

Execution:
3: C → B: redeemable voucher TC

4: B: validate voucher pbs-verify(TC)
5: B: global ticket validity date-stamps d = {du | dv | dw}
6: B ↔ C: partially blind-signature σ = pbs-sign(blind(TRs) | d)

7: C: construct full stub TRs = {TRs | d | σ}
8: C: construct ticket TR = {TRs | TRr }

Protocol 2 BRAIDS-Communication: Message M from Client C
to server S through relays R1, R2, R3.

Setup:

1: C obtains tickets TRi = {TRi
s | TRi

r }, for i ∈ [1, 3]

2: MC→R3 = EKCR3
{TR2
r | TR3

s | TR3
r | S |MC→S}

3: MC→R2 = EKCR2
{TR1
r | TR2

s | R3 |MC→R3}
4: MC→R1 = EKCR1

{TR1
s | R2 |MC→R2}

Execution:
5: C → R1 : MC→R1

6: R1 : verify TR1
s

7: R1 →R2 : EKR1R2
{MC→R2}

8: R2 : verify TR2
s

9: R2 →R1 : EKR1R2
{TR1
r }

10: R2 →R3 : EKR2R3
{MC→R3}

11: R3 : verify TR3
s

12: R3 →R2 : EKR2R3
{TR2
r }

13: R3 → S : MC→S

Client Ticket Exchange Since a client might obtain tick-
ets for a relay who is offline for the duration of the ticket’s
spending interval, a client may exchange a ticket for another
bound to a new relay. The Client-Ticket-Exchange proto-
col (not shown) is essentially identical to Protocol 1, except
that on line 4 the bank checks that the ticket is in the cor-
rect interval for client-exchange, but does not (and cannot)
check for the identity of the client in the ticket.
Incorporating Tickets into the Tor Protocol Our ticket
construction from Section 3.1 enables us to easily embed
ticket stubs and receipts in Tor messages (i.e. cells). As
shown in Protocol 2, BRAIDS-Communication, the client con-
structs the Tor message such that each relay on the path
receives its own ticket stub and the receipt for the previous-
hop in the path. There are two exceptions: the first-hop
relay does not send a receipt to the client, and the last-hop
relay receives a complete ticket (there is no next-hop relay).

We must include accounting mechanisms not only for the
forward path from client to server, but also the reverse path
from server to client due to asymmetric bandwidth require-
ments (e.g. streaming media). Since the reverse path cannot
be paid by the server, clients pre-pay circuits (several cells
can be transferred for each ticket) and relays notify clients
when their paid balance expires. Clients embed tickets in
outgoing cells using Protocol 2, which distributes tickets to
each relay in the circuit. A relay lowers a circuit’s priority
when not paid and restores it after new tickets arrive. Since
scheduling decisions are made locally and independently,

clients may choose to pay a subset of relays in the circuit
without affecting scheduling decisions made by other relays.

Relays drop circuits upon detection of malicious activity,
including forged tickets, and will only forward messages if a
receipt is returned by the next-hop relay. Each relay is en-
couraged to participate faithfully to continue accumulating
tickets since malicious activity stops the flow of tickets for
all relays in a dropped circuit.
Double Spending We have shown that relay-specific pay-
ments eliminates the trade-off between double spending pre-
vention [39] and information leakage, suffered by PAR [3],
since tickets can be verified by the relay without a third
party. Anonymous payments are appropriate in Tor since
they protect the identity and privacy of the user.

3.3 Randomized Ticket Distribution
A major problem with the gold star incentive scheme [38]

is that gold star relays can be distinguished from normal
relays, since their gold star status appears in the public di-
rectory. This reduces their anonymity set – an adversary
can be confident that if a client is receiving gold star ser-
vice, that client also runs a relay.

To mitigate this problem, we assign each client ticket dis-
tribution agents – guard nodes that assist in distributing free
tickets to all clients. We note that each Tor client already
uses a small set of guard nodes from which a circuit entry
node is selected to limit client identity (IP address) expo-
sure to malicious entry nodes. Each agent distributes tickets
from the bank to clients in proportion to the bandwidth it
provides as a relay: the client will create a secure connection
tunneled through an agent to invoke the ticket distribution
protocol (similar to Relay-Ticket-Exchange – Protocol 1).
Agents frustrate a Sybil attack [15], where clients join mul-
tiple nodes to the system to increase free ticket income, by
limiting tickets distributed to each client’s IP address.
Distribution Requirements We require several proper-
ties as agents distribute tickets: nearly all clients should
obtain tickets to remain indistinguishable from relays when
spending; the algorithm that assigns clients to agents should
not leak the client’s identity to prevent an adversary from
using a predecessor attack to infer a client from its agents; a
client should obtain more tokens by becoming a relay than
by cheating to maintain relay incentives; and a client’s set
of agents should be consistent over roughly the same period
as they would if used as regular guards for stability.
Agent Assignment Each client uses Protocol 3 to deter-
mine which guard nodes it can use as distribution agents. A
fundamental part of the protocol is the hash–bandwidth test
for a guard G. The test is true if the result of a cryptographic
hash is less than the fraction of total guard bandwidth pro-
vided by G ([46] describes secure bandwidth measurements).

A client uses hash–bandwidth tests to walk through the
guards while constructing a set of signature chains such that
each chain can be verified as a correct chain for the client.
After completing Protocol 3, each constructed chain is then
used as input to a final round of hash–bandwidth tests (one
for each guard): every guard that passes this final test is
assigned as a distribution agent for the client.

A client builds signature chains as follows. On line 1, a
client initializes a signature chain with its IP address and
0 as the current step in the walk. The client then initiates
a pseudo-random walk: any guard G that passes the hash–
bandwidth test is a valid next step, using the previous link

Protocol 3 Agent-Assign: Clients verifiably compute their as-
signed ticket distribution agents by creating signature chains.

1: sig chains = [((clientIP, 0))]
2: for i = 1→ walk length do
3: next step = []
4: for chain ∈ sig chains do
5: link = last(chain)
6: for G ∈ guards do
7: if hash(link | G.pub key)<bandwidth frac(G) then
8: sig = get sig(G, clientIP, i)
9: next step.append(chain+ G.pub key + sig)

10: sig chains = next step
11: if sig chains = [] then
12: abort() /* found no valid chains of proper length */

in the chain and G’s public key as input to the hash function
(line 7). If G passes the test, it will return a signature to ex-
tend the chain and the walk (line 8-9). Although not shown
on line 8, the client also sends the previous signature in the
chain to prove to the guard that the signature request is
valid (and not a waste of resources). Note that each step of
a walk may break or fork a signature chain, hence the num-
ber of parallel walks performed, depending on the number
of passed hash–bandwidth tests. A client will continue ex-
tending its signature chains until it has walked walk length
steps, or has no next steps for any walk.

If Protocol 3 does not terminate via abort(), then each
chain in the list of sig chains is a verifiable (but not public)
token that attests the correctness of the assignment with-
out leaking the client’s IP address. The client uses each
constructed chain to find an agent: a guard A that passes
another hash–bandwidth test using the chain and A’s public
key as input to the hash function.

If Protocol 3 terminates via abort(), then the client does
not have any valid agents. However, to control the expected
and median number of agents per client, we may add an
adjustable parameter λ to the bandwidth fraction of each
guard node. Probabilistic bounds show that the probability
of having k agents will decrease exponentially in k, making
it infeasible for an adversary to gain a large advantage by,
e.g. manipulating the public keys of some agents.

Protocol 3 requires that clients compute hashes for ev-
ery guard, but is advantageous since it does not require re-
assignment when agents churn and it load-balances distri-
bution tasks among agents. Although Tor directory servers
measure bandwidth [51], we require a secure bandwidth mea-
surement technique such as [46]: the bandwidth values listed
in the consensus become a security parameter since they de-
termine the outcome of the hash–bandwidth tests, the num-
ber of agents assigned to a client, and therefore the total
number of free tickets a client may receive.

Longer walks increase security since an adversary must
compromise walk length nodes to manipulate a signature
chain. We suggest using walk length = 3 so that an adver-
sary has a higher probability of compromising a circuit than
compromising a walk: in the random oracle model, and as-
suming a deterministic signature scheme (like RSA+FDH),
predicting (better than random guessing) whether a given
guard is a valid agent for a client reduces to producing valid
signatures for all walk length signatures in the chain. With
a walk length of 3, an adversary would not only need to
control the final relay in the chain, but also either the first
or second relay to obtain all three signatures. The fraction

of nodes’ agents that can be guessed in this way is on the
same order of magnitude as the fraction of circuits that can
be compromised by end-to-end attacks. We simulated agent
assignment and found that using walk length = 3 and λ = 0
results in a median of one agent per node (details omitted
for space reasons). Note that clients may use unassigned
guards, but will be unable to collect free tickets from them.

Since agents limit distribution to unique IP addresses,
users behind NAT boxes will compete for handouts and ag-
gregate performance for NAT users will suffer. Note that if
IPv6 is universally adopted, the distribution scheme will re-
quire modification since each client can generate several IPv6
addresses [37]. We accept an adversary capable of joining
multiple IPv4 nodes since it increases Tor’s anonymity set.
Agent Collusion Using guards as distribution agents in-
troduces a chance for collusion. An adversary could join a
relay to Tor, become a guard, and distribute tickets to a col-
luding client. To mitigate this problem, the bank will only
allow an agent to distribute tickets if that agent has e.g. ob-
tained the “stable” flag in Tor [50]. An agent cannot cheat
until it has contributed significant resources.

The bank also limits distribution to each agent. Band-
width measurements may be used to estimate the number
of clients an agent is servicing, and the number of tickets
the agent is allowed to distribute. Since agents are also
guard nodes and ticket distribution is based on contributed
bandwidth, the number of tickets they distribute directly
correlates with the number of tickets they earn by relaying
traffic. This can be used to bound the advantage agents gain
by not honestly distributing tickets to clients.

Suppose agent A has bandwidth fraction b. Each agent
has two non-agent guard nodes, and A receives 1

3
of the

tickets they spend when they select A as their entry node to
Tor. Each selection occurs with probability b, so A receives
2·b
3

of the tickets just by being a guard. If A additionally
keeps the ticketsA is supposed to distribute, the most tickets
A can receive is 5·b

3
, about 2.5 times as many tickets. This

is the worst-case: tickets re-spent by relays will lower this
bound. Future work should consider auditing agents’ ticket
distribution to detect dishonesty.
Ticket Economy Our ticket distribution strategy continu-
ously introduces new tickets into the system that will eventu-
ally be exchanged at the bank. Continuous ticket exchanges
impose a bandwidth constraint on the bank (see Section 4.1).
Therefore, we must bound the total number of tickets that
exist in the system to allow the bank to handle all exchanges.

To bound the total number of tickets in the system, the
bank imposes a ticket tax on users when exchanging tick-
ets. The tax rate is adjustable based on the bank’s band-
width constraints and estimate of the total number of tick-
ets currently in the system. The bank’s estimate considers
the number of tickets exchanged during previous exchange
intervals (tickets not exchanged expire automatically). In
practice, the bank can probabilistically fail each ticket ex-
change to reach the desired tax rate, but this consumes
bandwidth resources for tickets that will be taxed. Alter-
natively, the bank could reveal random numbers that repre-
sent a hash output range during every exchange period, and
tickets whose hash value falls in this range can be considered
taxed and invalid. Then clients can discover which of their
tickets have been taxed without contacting the bank. The
anonymity implications involved with taxing and bounding
tickets are discussed in Section 4.2.

3.4 Differentiated Service
BRAIDS employs differentiated services and a scheduler

based on the proportional differentiation model introduced
by Drovolis et al. [16, 17, 18, 19]. The model states that
performance for each service class (in terms of measurable
metrics like queueing delay) should be relatively propor-
tional to parameters configured by the network operator.
Let qi(t, t + τ) be a performance metric measured during
the interval (t, t+ τ) for monitoring time scale τ . The pro-
portional differentiation model creates quality differentia-
tion parameters ci for each class of service i and introduces
constraints such that:

qi(t, t+ τ)

qj(t, t+ τ)
=
ci
cj

where c1 < c2 < . . . < cn. We write the delay ratio be-
tween these classes as c1 : c2 : . . . : cn. This means that
the performance metric under consideration should always
maintain the proportions defined by the quality differentia-
tion parameters, during any monitoring timescale.

We define the performance metric qi to be the queue-
ing delay of class i; the delay parameters between each
class are adjustable. Drovolis et al. contribute schedulers
that approximate proportional delay differentiation under
heavy loads. BRAIDS utilizes the Hybrid Proportional De-
lay (HPD) scheduler, which is a combination of the Waiting
Time Priority (WTP) and the Proportional Average Delay
(PAD) schedulers. Each Tor cell is time-stamped upon ar-
rival at the relay and placed in the queue associated with
the cell’s class of service. When the relay makes a schedul-
ing decision at time t, WTP computes the priority of only

the cells at the head of each class i’s queue as p′i(t) = wi(t)
ci

,

where wi(t) is the waiting time of the cell computed using
the time-stamp from above. PAD computes class priorities

as p′′i (t) = ai(t)
ci

, where ai(t) is the total average delay in-

curred by service class i before time t. HPD weights these
priorities as pi(t) = p′i(t) · (1− f) + p′′i (t) · f , where f is
an adjustable fraction. The cell with the highest computed
priority pi(t) is scheduled. In BRAIDS, the HPD scheduler
computes at most six priorities for each scheduling decision.

HPD allows us to differentiate performance of paying and
non-paying clients by adjusting the ci parameters. We then
divide client traffic into three distinct service classes: (1)
Low-latency for web browsing clients, (2) High-throughput
for file sharing clients, and (3) Normal for non-paying clients.
These classes will be proportionately delayed as low-latency :
high-throughput : normal.
Low-latency Service Users who wish to browse the web
typically want fast response but not high throughput. There-
fore, we schedule low-latency traffic with the highest priority.
We rate-limit low-latency traffic for each circuit to prevent
users from sending high traffic loads and overwhelming the
low-latency class; traffic exceeding a threshold limit over a
monitoring timescale will be demoted to the normal class.
We suggest a threshold equal to the number of free tick-
ets each user receives during a spending interval (discussed
in Section 4.1). Throttling is necessary to prevent high-
throughput clients from “abusing the pipe” for web users,
which is currently a well-known problem in Tor [32].
High-throughput Service Conversely, clients with high
throughput requirements (e.g. BitTorrent users) tolerate
higher-latency service. Therefore, we increase scheduling
delays relative to the low-latency class but do not throttle

traffic. As a result, high-throughput traffic has a diminish-
ing effect on low-latency traffic.
Normal Service Since not all users will be able or willing
to deploy relay services, we do not require clients to make
payments in order to use BRAIDS. Instead, clients who have
expended their free ticket allowance, or choose not to pay
for service, receive both the lowest priority and, in turn, the
highest scheduling delays.

Differentiating service results in two interesting conse-
quences: it provides incentives to run relays, since users
in higher service classes receive lower delay; and it allows
for incremental deployability by placing traffic from legacy
clients in the normal service class. Note that the extent of
the performance gain between service classes depends on the
chosen delay parameters.

4. ANALYSIS AND DISCUSSION
4.1 Parameter Selection
Ticket Validity Intervals Recall that ticket validity inter-
vals [-,du), [du,dv), and [dv,dw) are global uniform intervals
in which tickets may be spent and exchanged and are broad-
casted by the bank (see Section 3.1). We explore both the
frequency and relative time that each interval occurs.

To prevent unspendable ticket periods, tickets that are
received in spending interval i are exchanged in spending
interval i+ 1 (exchange interval i overlaps spending interval
i + 1). Time in each exchange interval is shared between
relay-exchange and client-exchange such that the fraction
of time alotted for relay exchange corresponds with the ex-
pected fraction of tickets relays possess (which the bank can
estimate based on exchanges in previous intervals).

Using the interval strategy just described, the bank will
only exchange half of all tickets in the system during every
spending interval and users can only spend half of their tick-
ets at one time. Following this approach, tickets received in
spending interval i are exchanged in spending interval i+ 1
and spent in spending interval i + 2. All tickets not ex-
changed during an exchange interval will expire, so if relays
are offline for the duration of an exchange interval, they will
lose roughly half of their tickets.

Longer spending and exchange intervals means relays must
wait longer to use tickets, but shorter intervals means tickets
expire faster. We suggest a compromise of 24 hour spending
and exchange intervals, noting that further exploration of
exchange intervals is desirable.
Ticket Worth Recall that several cells may be transferred
through Tor for each ticket. The number of cells transferred
for each ticket has an important impact on the bank’s CPU
and bandwidth consumption. Since we limit the amount of
data users can download for free, higher ticket worth means
the bank has to exchange fewer tickets, reducing both CPU
and bandwidth requirements. However, users then have
fewer tickets overall which reduces the number of indepen-
dent circuits that can be paid simultaneously. We suggest
that users receive 3 tickets every 10 minutes so they may uti-
lize a prioritized circuit at any time. We note that in practice
these tickets will likely be freely distributed in batches at a
higher time granularity (e.g. every hour).
Cryptographic and Bandwidth Costs Each relay must
perform a SHA1 hash and an AES encryption/decryption
for each cell it transfers. BRAIDS introduces an additional
task – verification of a ticket. We implemented the partially

Mean Median Std. D.

AMD Athlon
AES+SHA1 9.139 8.616 2.493

(3 GHz)
PBS verify 531.287 530.885 8.342
PBS bank 413.244 412.069 7.297

Intel Core2
AES+SHA1 6.226 5.859 1.307

(2.67 GHz)
PBS verify 1496.813 1496.613 10.844
PBS bank 1193.233 1192.782 9.472

Table 1: Cryptographic time per cell for Tor relays com-

pared with BRAIDS PBS verifications, in microseconds.

Also shown is the bank’s time per signature.

blind signature scheme of Abe et al. [1] using GMP [23]
for arbitrary precision arithmetic. We measure both the
amount of time a bank spends producing a signature, and
the amount of time a relay spends verifying a single ticket.
We also compute the time to perform the SHA1 and AES
operations required by Tor.

Table 1 shows the results of our Linux benchmarks on 3
GHz AMD 64 Athlon X2 6000 and 2.67 GHz Intel Core 2
Duo 6750 CPUs. We report the mean, median, and stan-
dard deviation of times, in microseconds, for each opera-
tion described above. As expected, a signature verification
takes significantly longer than AES and SHA1 operations
currently performed by relays. However, the value of each
ticket can be selected such that a ticket need not be sent
for every cell and expensive ticket verification costs can be
amortized. An appropriate value would result in a greater
cost for AES and SHA1 than for verifications to prevent the
signature scheme from becoming a bottleneck. Our bench-
marks suggest a single ticket be worth 128 KB of data so that
a verification need only be performed for every 256 cells.

Given our Intel benchmarks, a relay performs roughly 666
verifications per second while the bank may perform over
833 signatures per second per processor core. Each relay
may therefore upload at a rate of 666 Mbps while stream-
lining verification procedures, and the bank may sustain an
aggregate 833 Mbps of prioritized traffic through Tor. Re-
call that the bank is offline and may be distributed among
multiple machines for additional processing resources.

To compute bandwidth costs, suppose a user receives η
free tickets during each spending interval. Not including pro-
tocol overhead, which can be minimized by batching ticket
exchanges, each ticket exchange consumes 488 bytes of band-
width (the partially blind signature from Abe et al. [1] re-
quires multiple messages between the client and the bank).
In aggregate, the bank distributes η ·µ tickets per day, where
µ is the total number of users receiving free tickets. Ticket
exchanges are taxed such that after ρ spending intervals, η ·µ
tickets are eliminated from the economy. The total number
of tickets in the system is η · µ · ρ in expectation.

Since the spending and exchange intervals overlap, the
bank will exchange and produce signatures for η·µ·ρ

2
tickets

every spending interval. If we assume a spending interval is
24 hours following our interval strategy from above, η = 432,
µ = 100, 000, and ρ = 20, then the bank must sustain band-
width loads of 20 Mbps and perform 5, 000 signatures per
second, within reason of a multi-core CPU with a crypto-
graphic accelerator.

4.2 Security Analysis
To measure the impact of BRAIDS on sender anonymity,

we analyze information leakage in terms of an anonymity
probability distribution [13, 44]. This analysis technique uses
information-theoretic entropy [45] as a measure of informa-
tion contained in a probability distribution. We define a
discrete random variable I as a circuit initiator and com-

pute a distribution of all potential initiators as a probability
mass function Pr(I = i) = pi where pi is the probability
that a user i is the circuit initiator given the observations
on the system. The entropy H of our distribution is:

entropy = H(I) = −
NX
i=1

pi log2(pi)

where pi is the probability for user i taken from the distri-
bution and N is the size of the anonymity set (the set of
potential circuit initiators). The maximum entropy in the
system HM is computed as HM = log2(N). The degree of
anonymity [13] quantifies information leakage and can then
be defined as the fraction of total entropy obtained from the
given distribution I:

degree of anonymity =
H(I)

HM

Distinguishability To determine the effects of distinguish-
ing clients from relays, we first assume that clients will fill
one of two roles: a liberal client who spends tickets imme-
diately by downloading web pages and a conservative client
who stores tickets until they can download a large file. Our
liberal-conservative client model captures potential BRAIDS
spending habits – in practice some clients will consistently
spend most of their tickets while others will consistently un-
derspend. We further assume that each relay in the system
always has the desired number of tickets for any circuit it
initiates to simplify analysis. We note that this is a coarse
model as it is difficult to estimate users’ spending habits.

While the tax rate ρ allows the bank to remove tickets
from the system to keep ticket exchanges within manageable
bandwidth bounds, it also potentially reduces anonymity for
large downloads. If a user spends more tickets than is possi-
ble to collect only from free distribution (η ·ρ), an adversary
can determine with high confidence that the circuit initiated
from a relay by observing θ > η · ρ tickets spent in a cir-
cuit. An adversary may additionally determine which relays
can afford a given circuit by performing bandwidth mea-
surements, since a relay’s ticket income corresponds with
the bandwidth it provides. However, in Section 4.1 we have
suggested distributing enough free tickets to pay for general
web browsing so that the majority of users will not spend
over η · ρ tickets.
Discussion To analyze our system, we obtain the growth
rate of Tor relays from [50]. We estimate the client growth
rate by analyzing how the number of client connections to a
relay changes over a two month experiment [55]. We apply
these rates and the estimated network size of 100,000 clients
and 1,500 relays to find the total network size over time.
From Section 4.1, each ticket is worth 128 KB of data trans-
fer and we distribute η = 432 tickets per day. Tickets are
taxed such that the system’s ticket capacity is ρ = 20 cumu-
lative days of tickets. The fraction of conservative clients is
1
10

, except where noted.
Figure 1(a) shows how the fraction of conservative clients

may affect the set of potential initiators (if an adversary can
guess this fraction) and therefore the degree of anonymity
BRAIDS provides. By observing θ < η tickets in a circuit,
an adversary is unable to infer information about the circuit
initiator since all liberal and conservative clients obtain η
tickets during a spending interval. Observing θ > η ·ρ tickets
means the circuit must have been initiated from a relay.
For other observations, the degree of anonymity depends on
the number of clients the adversary can eliminate from the
potential initiator set.

0 50 100 150 200
Circuit Throughput (MB)

0.6

0.7

0.8

0.9

1.0

D
e
g
re

e
 o

f
A

n
o
n
y
m

it
y

θ=η θ=η ·ρ

braids
gold star

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Conservative Clients

0.6

0.7

0.8

0.9

1.0

D
e
g
re

e
 o

f
A

n
o
n
y
m

it
y

θ η
η < θ η ·ρ
θ > η ·ρ
gold star

(a) (b)

Figure 1: Anonymity is highest when the adversary ob-

serves fewer than θ = η tickets per circuit and lowest

when more than θ = η · ρ are observed. (a) In the shaded

area, only 1
10

of clients are conservative, collecting tick-

ets longer than one spending interval. (b) Anonymity

increases with conservative clients that contribute to ad-

versarial uncertainty.

The shaded area in Figure 1(a) represents anonymity when
1
10

of clients are conservative. This fraction is an estimate: it
is difficult to determine how users will spend in practice. We
explore the effects of varying the conservative client fraction
in Figure 1(b). Since conservative clients represent adversar-
ial uncertainty, we find that having more conservative clients
has a positive effect on anonymity. In all cases, anonymity
is higher in BRAIDS than the gold star scheme where only
the fastest 7

8
of relays are potential prioritized-traffic initia-

tors. For highest anonymity, clients should spend less than
η tickets for prioritized traffic in each spending interval.

5. SIMULATION AND RESULTS
We simulate BRAIDS and Tor to compare performance

and illustrate how effective our system is at encouraging
users to run relays. Below we describe our simulator, exper-
iments, and results.

5.1 Simulator
We built a discrete-event-based simulator that models the

Tor network. Within the first ten minutes of each experi-
ment, all Tor clients start one of the applications described
below and begin generating data. Each client builds circuits
following Tor’s path selection protocol, and refreshes each
circuit after ten minutes, building a new one when the next
request is made. We now describe our client applications.
Web Clients Each web client (WC) generates traffic by
making a top-level page request and waiting for a response
from the server. After receiving a response, the WC makes
several additional parallel requests for objects embedded in
the page (e.g. images). After receiving all embedded ob-
ject responses, the WC waits for a period of time before
downloading another page. We record the time required to
download the entire page, including all embedded objects.
The period between the initiation of the top level request un-
til the reception of the final embedded object simulates the
time required to render an entire page in a user’s browser.
Distributions for all request and response sizes, the number
of embedded objects per page, and the time between page
requests are taken from the web traffic study conducted by
Hernandez-Campos et al. [27].
File Sharing Clients Each file sharing client (FSC) simu-
lates a BitTorrent-like protocol by continuously generating
data to five random peers through the Tor network. Every
thirty seconds the FSC will replace its slowest connection
with a new peer and a new circuit, simulating BitTorrent’s

0 2 4 6 8 10 12 14
Paid Webpage Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v
e
 F

ra
ct

io
n

Tor
0%
20%
50%
80%

0 2 4 6 8 10 12 14
Unpaid Webpage Download Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Tor
0%
20%
50%
80%

7 8 9 10 11 12 13 14
File Sharing Relay Bandwidth Util (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n Tor

20%
50%
80%

5 6 7 8 9 10 11 12
File Sharing Client Bandwidth Util (%)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Tor
0%
20%
50%
80%

(a) (b) (c) (d)
Figure 2: BRAIDS and Tor simulated performance with a varying percentage of File Sharing Clients converting to File

Sharing Relays. Webpage download time for (a) paid, low-latency service, and (b) unpaid, normal service. Bandwidth

utilization for (c) file-sharing relays, and (d) file-sharing clients.

“optimistic unchoke” algorithm [6]. Each FSC exchanges
blocks by sending a 32 KB request for a 32 KB reply and
immediately sending another request upon receiving a reply.
We measure the time to exchange each.
File Sharing Relays A file sharing relay (FSR) implements
the same algorithm as a FSC with the following deviation:
FSRs contribute a fraction of their total upstream band-
width to Tor while using the remaining bandwidth for their
own file transfers. The bandwidth contributed by FSRs sup-
plies them with additional income not received by FSCs.

We simulate every cell generated by each client and sent
through the Tor network. Tor nodes schedule outgoing cells
using an exponential weighted moving average (EWMA)
scheduler [47], while BRAIDS nodes use the HPD scheduler
(see Section 3.4). To bootstrap the economy, tickets are dis-
tributed to clients and relays at the start of each simulation.

5.2 Experimental Parameters
Our simulated network consists of 19,400 web clients, 300

Tor relays, 2,000 servers, and 600 file sharing nodes. Our
web and file sharing nodes are given consumer-class con-
nections of 12 Mbps downstream 1.3 Mbps upstream band-
width, and 24 Mbps downstream 3.5 Mbps upstream band-
width, respectively.3 File sharing relays draw contributed
bandwidth amounts from the Tor network consensus [49]
repeatedly until obtaining a value below their upstream ca-
pacity.4 Altruistic relays are given symmetric upstream and
downstream capacities drawn from the bandwidth distribu-
tion reported in the consensus, clipped at 20 MB following
standard Tor procedure [52]. Servers are given unlimited
bandwidth and we impose no processing delay on any node.
Network latency between every hop is set to 100 ms, and we
do not account for membership churn or congestion control
in our simulator since it will have a similar effect on both
Tor and BRAIDS performance. We simulate 60 minutes.

We run BRAIDS and Tor experiments with the above
parameters. We run multiple BRAIDS experiments using
1 : 64 : 4096 as the HPD scheduler’s delay parameters cor-
responding to the service class ratio low-latency : high-
throughput : normal, and HPD fraction f = 0.875 (see
Section 3.4). Since we are interested in the incentives our
system provides for running a relay, we vary only the fraction
of 600 nodes that are FSCs as opposed to FSRs. This will
allow us to determine how a user’s performance changes by
serving as a relay. The load on the network is unchanged be-

3ADSL Standard ITU G.992.1 Annex A, ADSL2+ ITU
G.992.5 Annex M.
4The consensus document was obtained on January 12, 2010
between 18-19:00:00 CST.

tween all experiments. Our simulator closely approximates
empirical Tor traffic loads gathered by McCoy et al. [32].

5.3 Results
In BRAIDS, the low-latency service class achieves a sig-

nificant reduction in download time compared with Tor, and
download times improve as more FSCs convert to FSRs (Fig-
ure 2(a)). Since web browsers transfer small amounts of data
in most cases, improvements in download times are noticed
even with few new relays. The similarity in download time
when 50% and 80% of FSCs change to relays suggests that
these nodes have reached a lower bound. We note that the
best possible download time is 1.6 seconds, since all web
clients must make at least one top-level and one embed-
ded object request, resulting in sixteen 100 ms hops. The
normal service class webpage download time is longer than
in Tor, and performance slightly declines as more file shar-
ing users move to the high-throughput class since normal
data is proportionally delayed sixty-four times as long as
high-throughput data (Figure 2(b)). Unpaid traffic perfor-
mance is best when 80% of the FSCs convert to relays since
clients can take advantage of a significant increase in avail-
able bandwidth. These results are outstanding – download
time for normal web traffic does not unusably degrade from
performance achieved in Tor, and running a relay will pro-
vide a definite performance boost over those who choose to
remain client-only.

BRAIDS FSRs not only receive an improvement in band-
width utilization over Tor, but can also achieve up to approx-
imately 90% better utilization of their bandwidth compared
with BRAIDS FSCs that do not run a relay, even while con-
tributing a fraction of their bandwidth to Tor. Figure 2(c)
shows that FSRs performance increases as more nodes con-
vert to relays. However, since the newly available bandwidth
is also consumed by WCs, relays realize only incremental
improvements as the fraction of converting relays increases.
Figure 2(d) shows that as more filesharers convert to relays,
performance for FSCs degrades. This happens mostly be-
cause a large amount of data from FSRs is receiving priority
over data from FSCs, and the newly available bandwidth is
being consumed by the low-latency and high-priority service
classes. For all conversion rates, FSRs achieve considerably
better performance than FSCs.

Overall, our results strongly indicate that BRAIDS users
can increase the performance of both interactive and non-
interactive traffic by starting a relay and contributing band-
width to Tor. Therefore, if users want to run BitTorrent
or similar file sharing protocols using BRAIDS, they should
run a relay to achieve maximum performance. This, in turn,
will have a positive impact on the entire network since there
will be more bandwidth available for other Tor clients.

6. RELATED WORK
Tor Incentives Research from the community has provided
few ideas to produce incentives to run Tor relays [3, 10, 38]
in order to utilize recent scalability [34] and performance im-
provements for Tor [40, 46, 56]. Ngan et al. [38] previously
proposed a system in which Tor directory servers actively
measure the performance of relays and note the“best” relays
in the directory with a “gold star”. This scheme introduces
security vulnerabilities: the anonymity set of relays is signif-
icantly reduced since gold star relays can be distinguished
from regular relays and the changing membership of the gold
star set leads to an intersection attack [20, 28, 33, 35].

PAR [3] is another scheme exploring incentive mechanisms
for relays. In PAR, a centralized bank issues coins to clients
while handling deposits from relays. Relays frequently de-
posit and verify coins at the bank to limit client double-
spending. The need for frequent coin verification introduces
a fundamental design problem – a trade-off between double
spending detection and anonymity.
Incentives in Other Networks Incentives have been pre-
viously proposed for several anonymous and peer-to-peer
(P2P) systems. Both Anonymizer.com [4] and the Free-
dom network [7] introduced commercial anonymity systems
based on collecting payments for service. While the latter
failed, the former is still in operation and provides a one-hop
anonymous proxy based system for paying clients.

Franz et al. [22] introduce an incentive technique for mix-
networks that divides electronic payments for each mix, but
is inefficient since each hop requires communication between
the mix and mix provider.. Figueiredo et al. [21] also intro-
duce an electronic mix-net anonymity system, but it lacks
accountability and robustness. Reiter et al. [41] build upon
coin ripping [29] to develop a strict fair exchange protocol
for mix-nets. However, they require each message recipient
to participate in the protocol which does not align with Tor’s
desire to support arbitrary destinations.

Golle et al. [25] discuss incentives for sharing in P2P
networks using a game theoretic model. They propose a
micro-payment or “points” system, where uploads are re-
warded and downloads are penalized, and show that equilib-
rium is reached by balancing uploads and downloads. Bit-
Torrent [11] uses “tit-for-tat” (TFT) mechanisms to trade
pieces of large files among peers. Peers upload and down-
load pieces cooperatively and preferentially from other peers
in an attempt to maximize local download efficiency. The
Scrivener [36] system uses a credit/debit approach to main-
tain local histories of other nodes’ cooperative behavior which
is used to enforce fair bandwidth sharing. Similarly, repu-
tation systems [12, 30, 57, 58] use interaction histories to
develop trust levels for other peers which aids in future deci-
sions to cooperate while incentivizing trustworthy behavior.
Reputation systems are incompatible with Tor since not all
relays are able to bind an interaction to a client.

Acquisti et al. [2] discuss incentives to participate in
anonymous systems while developing an economic model
and arguing a usage fee as an economic incentive mecha-
nism. Cost then is a security objective since it affects the
number of users and therefore anonymity provided [5].

7. CONCLUSION
In this paper we introduced BRAIDS as a set of prac-

tical mechanisms that encourages users to run Tor relays.
We employ completely client-anonymous relay-specific tick-

ets that allow Tor clients and relays to achieve increased
performance while preventing the double-spending problem.
Relays differentiate service into three classes, allowing them
to prioritize traffic types and mitigate the negative effect
file sharing users have on Tor, without significantly reduc-
ing bandwidth utilization for file sharing clients.

There are several issues that need further investigation.
Our uniform ticket validity intervals introduce a trade-off
between fast ticket turn-around times and offline relays los-
ing their tickets. The trade-off is due to our imposed ticket
tax which is required to bound the bandwidth load on the
bank. Tickets you earn will not be usable for 2 days in our
current design, and you will lose half of your tickets if you
are offline for a day and unable to exchange them.

BRAIDS would benefit from a more robust ticket distri-
bution scheme, since an adversary controlling a fraction of
the IP addresses in Tor will likely be able to steal a similar
fraction of tickets in each spending interval, and malicious
agents receive a greater reward for stealing tickets than be-
having honestly. Further, auditing ticket agents would allow
us to detect cheaters.

Future work may also consider an exploration of client
strategies to enhance our model of client spending habits
and improve our anonymity analysis. Users must be aware
of their prioritized spending habits since spending a large
number of tickets (more than a few hundred MB) will re-
duce their anonymity and lead to the risk of intersection
attacks as in the gold star scheme. Finally, distributing the
bank’s functionality among users, or a small set of trusted
nodes, will reduce bandwidth and CPU limitations, drasti-
cally improving anonymity.
Acknowledgments We thank our shepherd, Roger Dingle-
dine, and our anonymous reviewers for many helpful com-
ments. We thank Eugene Vasserman, Eric Chan-Tin, Max
Schuchard, Abedelaziz Mohaisen, Paul Syverson, and Pra-
teek Mittal for their helpful discussions, and Zi Lin for his
assistance with the PBS implementation. This research was
supported by NSF grants CNS-0546162 and CNS-0917154.

8. REFERENCES
[1] M. Abe and T. Okamoto. Provably secure partially blind

signatures. In CRYPTO ’00: Proceedings of the 20th
International Cryptology Conference on Advances in
Cryptology, pages 271–286, 2000.

[2] A. Acquisti, R. Dingledine, and P. Syverson. On the economics
of anonymity. In Proceedings of the 7th International
Conference on Financial Cryptography, 2003.

[3] E. Androulaki, M. Raykova, S. Srivatsan, A. Stavrou, and S. M.
Bellovin. PAR: Payment for anonymous routing. In PETS ’08:
Proceedings of the 8th International Symposium on Privacy
Enhancing Technologies, pages 219–236, 2008.

[4] The anonymizer. http://anonymizer.com/.

[5] A. Back, U. Möller, and A. Stiglic. Traffic analysis attacks and
trade-offs in anonymity providing systems. In IHW ’01:
Proceedings of the 4th International Workshop on
Information Hiding, pages 245–257, 2001.

[6] The BitTorrent Protocol Specification.
http://www.bittorrent.org/beps/bep_0003.html. January 2010.

[7] P. Boucher, A. Shostack, and I. Goldberg. Freedom system 2.0
architecture. White paper, Zero-Knowledge Systems Inc., 2000.

[8] D. Chaum. Blind signatures for untraceable payments. In
CRYPTO ’82: Proceedings of Advances in Cryptology,
volume 82, pages 199–203, 1983.

[9] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash.
In CRYPTO ’88: Proceedings of Advances in Cryptology,
pages 319–327, 1990.

[10] Y. Chen, R. Sion, and B. Carbunar. XPay: practical anonymous
payments for Tor routing and other networked services. In
WPES ’09: Proceedings of the 8th ACM Workshop on
Privacy in the Electronic Society, pages 41–50, 2009.

http://anonymizer.com/
http://www.bittorrent.org/beps/bep_0003.html

[11] B. Cohen. Incentives build robustness in BitTorrent. In
Workshop on Economics of P2P Systems, volume 6, 2003.

[12] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati,
and F. Violante. A reputation-based approach for choosing
reliable resources in peer-to-peer networks. In CCS ’02:
Proceedings of the 9th ACM Conference on Computer and
Communications Security, pages 207–216, 2002.

[13] C. Diaz, S. Seys, J. Claessens, and B. Preneel. Towards
measuring anonymity. In Privacy Enhancing Technologies,
2002.

[14] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the
second-generation onion router. In SSYM’04: Proceedings of
the 13th conference on USENIX Security Symposium, pages
21–21, 2004.

[15] J. R. Douceur. The sybil attack. In IPTPS ’01: Revised
Papers from the First International Workshop on
Peer-to-Peer Systems, pages 251–260, 2002.

[16] C. Dovrolis and P. Ramanathan. A case for relative
differentiated services and the proportional differentiation
model. IEEE network, 13(5):26–34, 1999.

[17] C. Dovrolis and P. Ramanathann. Proportional differentiated
services, part II: loss rate differentiation and packet dropping.
In IWQOS’00: Eighth International Workshop on Quality of
Service, pages 53–61, 2000.

[18] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional
differentiated services: delay differentiation and packet
scheduling. In SIGCOMM ’99: Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols
for Computer Communication, pages 109–120, 1999.

[19] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional
differentiated services: delay differentiation and packet
scheduling. IEEE/ACM Transactions on Networking,
10(1):12–26, 2002.

[20] N. Evans, R. Dingledine, and C. Grothoff. A practical
congestion attack on Tor using long paths. In 18th USENIX
Security Symposium, pages 33–50, 2009.

[21] D. R. Figueiredo, J. K. Shapiro, and D. Towsley. Using
payments to promote cooperation in anonymity protocols.
Technical Report 03-31, University of Massachusetts, 2003.

[22] E. Franz, A. Jerichow, and G. Wicke. A payment scheme for
mixes providing anonymity. In TREC ’98: Proceedings of the
International IFIP/GI Conference on Trends in Distributed
Systems for Electronic Commerce, pages 94–108, 1998.

[23] The GMP Library. http://gmplib.org/.

[24] D. Goldschlag, M. Reed, and P. Syverson. Onion routing.
Communications of the ACM, 42(2):39–41, 1999.

[25] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge.
Incentives for sharing in peer-to-peer networks. In
WELCOM’01: Proceedings of the Second International
Workshop on Electronic Commerce, pages 75–87, 2001.

[26] G. Hardin. The tragedy of the commons. Science,
162(3859):1243–1248, December 1968.

[27] F. Hernandez-Campos, K. Jeffay, and F. Smith. Tracking the
evolution of web traffic: 1995-2003. In MASCOTS 2003: The
11th IEEE/ACM International Symposium on Modeling,
Analysis, and Simulation of Computer Telecommunications
Systems, pages 16–25, 2003.

[28] N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How much
anonymity does network latency leak? In CCS ’07:
Proceedings of the 14th ACM Conference on Computer and
Communications Security, pages 82–91, 2007.

[29] M. Jakobsson. Ripping coins for a fair exchange. In
EUROCRYPT, pages 220–230, 1995.

[30] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
Eigentrust algorithm for reputation management in P2P
networks. In WWW’03: Proceedings of the 12th International
Conference on World Wide Web, pages 640–651, 2003.

[31] K. Loesing. Measuring the Tor network: Evaluation of client
requests to directories. Technical report, Tor Project, 2009.

[32] D. Mccoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker.
Shining light in dark places: Understanding the Tor network. In
PETS ’08: Proceedings of the 8th International Symposium
on Privacy Enhancing Technologies, pages 63–76, 2008.

[33] J. McLachlan and N. Hopper. Don’t clog the queue! Circuit
clogging and mitigation in P2P anonymity schemes. In FC’08:
The Proceedings of the 12th International Conference on
Financial Cryptography and Data Security, pages 31–46, 2008.

[34] J. McLachlan, A. Tran, N. Hopper, and Y. Kim. Scalable onion
routing with Torsk. In CCS ’09: Proceedings of the 16th ACM

Conference on Computer and Communications Security,
pages 590–599, 2009.

[35] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of Tor.
In SP ’05: Proceedings of the 2005 IEEE Symposium on
Security and Privacy, pages 183–195, 2005.

[36] A. Nandi, T.-W. J. Ngan, A. Singh, P. Druschel, and D. S.
Wallach. Scrivener: providing incentives in cooperative content
distribution systems. In Middleware’05: Proceedings of the
ACM/IFIP/USENIX 2005 International Conference on
Middleware, pages 270–291, 2005.

[37] T. Narten and R. Draves. Privacy extensions for stateless
address autoconfiguration in ipv6.
http://tools.ietf.org/html//rfc3041, 2001.

[38] T.-W. J. Ngan, R. Dingledine, and D. S. Wallach. Building
incentives into Tor. In FC’10: The Proceedings of Financial
Cryptography, 2010.

[39] I. Osipkov, E. Y. Vasserman, N. Hopper, and Y. Kim.
Combating double-spending using cooperative P2P systems. In
ICDCS ’07: Proceedings of the 27th International Conference
on Distributed Computing Systems, page 41, 2007.

[40] J. Reardon and I. Goldberg. Improving Tor using a
TCP-over-DTLS tunnel. In Proceedings of the 18th USENIX
Security Symposium, 2009.

[41] M. Reiter, X. Wang, and M. Wright. Building reliable mix
networks with fair exchange. In ACNS’05: The Proceedings of
the Third International Conference on Applied Cryptography
and Network Security, pages 378–392, 2005.

[42] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for web
transactions. ACM Transactions on Information and System
Security, 1(1):66–92, 1998.

[43] R. L. Rivest and A. Shamir. PayWord and MicroMint: Two
simple micropayment schemes. In Proceedings of the
International Workshop on Security Protocols, pages 69–87,
1997.

[44] A. Serjantov and G. Danezis. Towards an information theoretic
metric for anonymity. In Privacy Enhancing Technologies,
pages 41–53, 2002.

[45] C. E. Shannon. A mathematical theory of communication.
SIGMOBILE Mobile Computing and Communications
Review, 5(1):3–55, 2001.

[46] R. Snader and N. Borisov. A tune-up for Tor: Improving
security and performance in the Tor network. In NDSS’08:
Proceedings of the Network and Distributed Security
Symposium, 2008.

[47] C. Tang and I. Goldberg. An improved algorithm for Tor
circuit scheduling. Technical Report CACR 2010-06, University
of Waterloo, 2010.

[48] Tor partially blocked in China. Tor Project. https:
//blog.torproject.org/blog/tor-partially-blocked-china.
October 2009.

[49] Tor Directory Protocol, Version 3. Tor Project.
http://gitweb.torproject.org/tor.git?a=blob_plain;hb=HEAD;
f=doc/spec/dir-spec.txt. January 2010.

[50] Relay Flags. Tor Project. http://git.torproject.org/checkout/
metrics/master/out/dirarch/relayflags.csv. November 2009.

[51] Computing Bandwidth Adjustments. Tor Project. http:
//gitweb.torproject.org/tor.git?a=blob_plain;hb=HEAD;f=doc/
spec/proposals/161-computing-bandwidth-adjustments.txt.
November 2009.

[52] Tor Path Specification. Tor Project. http://gitweb.torproject.
org/tor.git?a=blob_plain;hb=HEAD;f=doc/spec/path-spec.txt.
January 2010.

[53] The Tor Project. https://www.torproject.org/.

[54] Y. Tsiounis. Efficient electronic cash: new notions and
techniques. College of Computer Science, 1997.

[55] E. Vasserman, R. Jansen, J. Tyra, N. Hopper, and Y. Kim.
Membership-concealing overlay networks. In CCS’09:
Proceedings of the 16th ACM Conference on Computer and
Communications Security, pages 390–399, 2009.

[56] C. Viecco. UDP-OR: A fair onion transport design. In
HOTPETS’08: Proceedings of Hot Topics in Privacy
Enhancing Technologies, 2008.

[57] L. Xiong and L. Liu. PeerTrust: Supporting reputation-based
trust for peer-to-peer electronic communities. IEEE
Transactions on Knowledge and Data Engineering,
16:843–857, 2004.

[58] R. Zhou and K. Hwang. PowerTrust: A robust and scalable
reputation system for trusted peer-to-peer computing. IEEE
Transactions on Parallel and Distributed Systems,
18(4):460–473, 2007.

http://gmplib.org/
http://tools.ietf.org/html//rfc3041
https://blog.torproject.org/blog/tor-partially-blocked-china
https://blog.torproject.org/blog/tor-partially-blocked-china
http://gitweb.torproject.org/tor.git?a=blob_plain;hb=HEAD;f=doc/spec/dir-spec.txt
http://gitweb.torproject.org/tor.git?a=blob_plain;hb=HEAD;f=doc/spec/dir-spec.txt
http://git.torproject.org/checkout/metrics/master/out/dirarch/relayflags.csv
http://git.torproject.org/checkout/metrics/master/out/dirarch/relayflags.csv
http://gitweb.torproject.org/tor.git?a=blob_plain;hb=HEAD;f=doc/spec/proposals/161-computing-bandwidth-adjustments.txt
http://gitweb.torproject.org/tor.git?a=blob_plain;hb=HEAD;f=doc/spec/proposals/161-computing-bandwidth-adjustments.txt
http://gitweb.torproject.org/tor.git?a=blob_plain;hb=HEAD;f=doc/spec/proposals/161-computing-bandwidth-adjustments.txt
http://gitweb.torproject.org/tor.git?a=blob_plain;hb=HEAD;f=doc/spec/path-spec.txt
http://gitweb.torproject.org/tor.git?a=blob_plain;hb=HEAD;f=doc/spec/path-spec.txt
https://www.torproject.org/

	Introduction
	Requirements
	System Design
	Relay-specific Tickets
	Ticket Transferability
	Randomized Ticket Distribution
	Differentiated Service

	Analysis and Discussion
	Parameter Selection
	Security Analysis

	Simulation and Results
	Simulator
	Experimental Parameters
	Results

	Related Work
	Conclusion
	References

