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ABSTRACT
We extend the Camenisch-Lysyanskaya anonymous credential sys-
tem such that selective disclosure of attributes becomes highly ef-
ficient. The resulting system significantly improves upon existing
approaches, which suffer from a linear complexity in the total num-
ber of attributes. This limitation makes them unfit for many practi-
cal applications, such as electronic identity cards. Our system can
incorporate an arbitrary number of binary and finite-set attributes
without significant performance impact. Our approach folds all
such attributes in a single attribute base and, thus, boosts the ef-
ficiency of all proofs of possession. The core idea is to encode dis-
crete binary and finite-set attribute values as prime numbers. We
use the divisibility property for efficient proofs of their presence
or absence. We additionally contribute efficient methods for con-
junctions and disjunctions. The system builds on the Strong-RSA
assumption alone.

We demonstrate the applicability and performance improve-
ments of our method in realistic application scenarios, such as,
electronic identity cards and complex/structured credentials. Our
method has crucial advantages in devices with restricted computa-
tional capabilities, such as smartcards and cell phones.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption—Public key cryptosystems

General Terms
Algorithms, Performance, Security

Keywords
Privacy, Anonymous Credential Systems, Cryptographic Protocols,
Efficient Attribute Encoding

1. INTRODUCTION
The rise of user-centric identity management amplifies the need

for a combination of strong security and privacy protection. Anony-
mous credential systems are one of the most promising answers to
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this need. Such anonymous credential systems allow a user to se-
lectively prove statements about her identity attributes while keep-
ing the corresponding data hidden.

Industry does not only aim at employing anonymous credential
systems on desktop PCs but also on small devices with very limited
computational power. Examples include cell phones and corporate
or government-issued electronic identity cards. In these environ-
ments, one fundamental complexity restriction of anonymous cre-
dential systems amounts to a limiting factor: The complexity of a
credential proof of possession is linear in the total number of at-
tributes in the credential [10, 13].

European electronic identity cards, for instance, often contain
several attributes: Nationality, sex, civil status, hair and eye color,
and applicable minority status1. These attributes are either binary
or discrete variants from a pre-defined finite sets. They constitute
the lion’s share of the encoded attributes. These attributes are par-
tially highly privacy-sensitive and require a selective disclosure of
one attribute while hiding others completely. The traditional encod-
ing of such attributes in a credential renders anonymous credential
systems impractical for implementation on, e.g., electronic identity
cards. We therefore focus on new and efficient means to encode
binary and finite-set attributes, enabling anonymous credential for
small devices.

There exist two prior approaches for encoding binary or finite-set
attributes in anonymous credential systems: First, encoding each
binary attribute in one attribute base (i.e., as one exponent in a dis-
crete logarithm representation). We call this method traditional
encoding. This method is directly impacted by the mentioned com-
plexity restriction: proofs of possession are linear in the total num-
ber of attribute bases. Therefore, each binary attribute burdens all
credential transactions. This traditional approach denies applica-
tions with small devices and a significant number of binary/finite-
set attributes.

A second prior approach encodes binary attributes as bit vector
in one attribute base. Clearly, this approach limits the number of
attribute bases required. It therefore circumvents the linear com-
putational complexity in the total attribute number. However, as
soon as a user reveals some of the attributes in the bit vector the
complexity is linear again. It is either impacted by the total number
of (binary) attributes concerned or by the length of the bit vector,
depending on the particular implementation. Hence this approach
is also unacceptable for small devices.

We extend the Camenisch-Lysyanskaya credential system [13,
15] with a finite-set encoding. It enables the efficient selective dis-
closure of binary and discrete-values attributes. This method over-
comes the severe limitations of existing schemes. We require a so-

1such as blind, partially sighted, spectacles wearer, or hearing im-
paired



lution with two key properties: (a) It only uses at most one attribute
base for all binary and finite-set attributes. (b) It only impacts the
proof complexity by the number of used attributes instead of the
total number. Our extension provides a highly efficient toolkit of
attribute proofs as well as AND, OR, and NOT proofs over binary
or finite-set attributes. Our approach has a constant complexity in
the number of encodable attributes. It is only restricted by space
considerations for the attribute exponent length in the credential
and the size of the issuer’s public key.

The core idea of our paper is to encode binary attributes as well
as discrete attribute values of finite sets as the product of the prime
numbers corresponding to the attribute values in a single attribute
base. We use the coprime property of the encoding to efficiently
prove the attributes’ presence and absence. We also employ this
property to facilitate conjunction and disjunction proofs. The ef-
ficiency of this scheme surpasses any existing encoding of binary
and finite-set attributes.

We note that other cryptographic primitives with privacy protec-
tion can also benefit from our approach, particularly group signa-
tures, blind signatures, and electronic voting schemes.

We structure the remainder of this paper as follows: Sec-
tion 2 covers related literature for anonymous credential systems
as well as existing methods for encoding binary attributes. Sec-
tion 3 contains preliminary definitions including the Camenisch-
Lysyanskaya credential system. We define our prime encoding ex-
tensions for binary and finite-set attributes in Section 4. Section 4.1
contains the attribute representation in CL signatures, followed by
setup and encoding paradigm. We treat proofs with AND, OR, and
NOT statements in Section 4.4. We analyze the complexity of our
scheme compared to existing approaches in Section 5. Section 6
governs possible application scenarios such as electronic identity
cards and role-based access control. We conclude the paper in Sec-
tion 7.

2. RELATED WORKS
Chaum pioneered privacy-preserving protocols that minimize

the amount of personal data disclosed. His work put forth the prin-
ciples of anonymous credentials [21, 23, 24], group signatures [26],
and electronic cash [22]. Subsequently, a number of authors con-
tributed more efficient implementations of these primitives, e.g.,
group signatures [3, 4, 34], e-cash [6, 12, 30], anonymous cre-
dentials [7, 8, 10, 13, 16], traceable signatures [35], anonymous
auctions [36], and electronic voting based on blind-signatures [31].

All these primitives have in common that some party issues a
user some form of certificate that often contains information about
the user encoded as attributes. Typically, these attributes are en-
coded as a discrete logarithm or, more generally, as an element
(exponent) of a representation of a group element. When releasing
one or more attributes, the corresponding exponents are revealed
and the those corresponding to the non-released attributes are be-
ing hidden by a proof of knowledge of a representation. Thus, in
all these solutions, each attribute encoded into a certificate uses a
full exponent.

There are also some works [27, 9, 17, 5, 32] that these authors
employ to prove AND, OR and NOT statement about attributes,
e.g., “a user has attribute a OR b,” basically by showing that some
committed value equals a given value OR some other given value.
In contrast, we achieve such proves by showing that some given
attribute value (encoded as a prime) divides (or does not divide)
a committed value, which turns out to be much more efficient (of
course to show that such relations hold we employ some of the
mentioned techniques).

3. PRELIMINARIES

3.1 Assumptions
Strong RSA Assumption [38, 32]: Given an RSA modulus n

and a random element g ∈ Z∗n, it is hard to compute h ∈ Z∗n and in-
teger e > 1 such that he ≡ g mod n. The modulus n is of a special
form pq, where p = 2p′+1 and q = 2q′+1 are safe primes. Other
primitives, such as the Fiat-Shamir heuristic to generate signatures
from zero-knowledge proofs of knowledge, may require additional
assumptions. This is orthogonal to the credential system itself.

3.2 Integer Commitments
Recall the Pedersen commitment scheme [37], in which the pub-

lic parameters are a group G of prime order q, and generators
(g0, . . . , gm). In order to commit to the values (v1, . . . , vm) ∈
Zmq , pick a random r ∈ Zq and set C = Com(v1, . . . , vm; r) =
gr0
Qm
i=1 g

vi
i .

Damgård and Fujisaki [28] show that if the group G is an RSA
group and the committer is not privy of the factorization of the
modulus, then in fact the Pedersen commitment scheme can be used
to commit to integers of arbitrary size.

3.3 Known Discrete-Logarithm-Based, Zero-
Knowledge Proofs

In the common parameters model, we use several previously
known results for proving statements about discrete logarithms,
such as (1) proof of knowledge of a discrete logarithm modulo
a prime [39] or a composite [28, 32], (2) proof of knowledge of
equality of representation modulo two (possibly different) prime
[25] or composite [17] moduli, (3) proof that a commitment opens
to the product of two other committed values [9, 17, 19], (4) proof
that a committed value lies in a given integer interval [5, 17, 20],
and also (5) proof of the disjunction or conjunction of any two of
the previous [27]. These protocols modulo a composite are secure
under the strong RSA assumption and modulo a prime under the
discrete logarithm assumption.

When referring to the proofs above, we will follow the nota-
tion introduced by Camenisch and Stadler [18] for various proofs
of knowledge of discrete logarithms and proofs of the validity of
statements about discrete logarithms. For instance,

PK{(α, β, δ) : y = gαhβ ∧ ỹ = g̃αh̃δ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β,
and δ such that y = gαhβ and ỹ = g̃αh̃δ holds, where u ≤
α ≤ v,1” where y, g, h, ỹ, g̃, and h̃ are elements of some groups
G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention is that Greek
letters denote quantities of which knowledge is being proven, while
all other values are known to the verifier. We apply the Fiat-Shamir
heuristic [29] to turn such proofs of knowledge into signatures on
some message m; denoted as, e.g., SPK{(α) : y = gα}(m).

Given a protocol in this notation, it is straightforward to derive
actual protocol implementing the proof. Indeed, the computational
complexities of the proof protocol can be easily derived from this
notation: basically for each term y = gαhβ , the prover and the
verifier have to perform an equivalent computation, and to transmit
one group element and one response value for each exponent. With
statement such as (u ≤ α ≤ v) we denote interval checks which
are basically free [17, 20] but are not tight (however, good enough
if the non-tightness can be accounted for as in our application). We
note that this exclude the interval proof protocol as the one by [5]
that are tight but computationally costly, i.e., they require the prover
to provide a number of so-called integer commitments and to prove
relations among them.



3.4 Camenisch-Lysyanskaya Signatures
Let us recall Camenisch-Lysyanskaya signatures [15] (we

present a slight and straightforward variant which allows messages
to be negative integers as well). Let `m, `e, `n, `r and L be system
parameters. `r is a security parameter, the meanings of the others
will become apparent soon.

Throughout the paper, we denote by {0, 1}`m the set of integer
{−(2`m−1), ...., 2`m−1). Element of this set can thus be encoded
as binary strings of length `m plus an additional bit carrying the
sign, i.e, `m + 1 bits in total.
Key generation. On input `n, choose an `n-bit RSA mod-
ulus n such that n = pq, p = 2p′ + 1, q = 2q′ + 1,
where p, q, p′, and q′ are primes. Choose, uniformly at ran-
dom, R0, . . . , RL−1, S, Z ∈ QRn. Output the public key
(n,R0, . . . , RL−1, S, Z) and the secret key p.

Message space is the set {(m0, . . . ,mL−1) : mi ∈ ±{0, 1}`m}.

Signing algorithm. On input m0, . . . ,mL−1 , choose a random
prime number e of length `e > `m + 2, and a random number v
of length `v = `n + `m + `r , where `r is a security parameter.
Compute A = ( Z

R
m0
0 ...R

mL−1
L−1 Sv

)1/e mod n . The signature

consists of (e,A, v).

Verification algorithm. To verify that the tuple (e,A, v)
is a signature on message (m0, . . . ,mL−1), check that
Z ≡ AeRm0

0 . . . R
mL−1
L−1 Sv (mod n), mi ∈ ±{0, 1}`m , and

2`e > e > 2`e−1 holds.

THEOREM 3.1. [15] The signature scheme is secure against
adaptive chosen message attacks [33] under the strong RSA as-
sumption.

Proving Knowledge of a Signature. Let us further recall how a
prover can prove that she possesses a CL signature without reveal-
ing any other information about the signature.

Of course we want to use the protocols described in §3.3. Now,
if A was a public value, we could do so by proving knowledge rep-
resentation of Z w.r.t.R0, . . . ,RL−1, S, andA. Obviously making
A public would destroy privacy as that would make all transac-
tion linkable. Luckily, one can randomize A: Given a signature
(A, e, v), the tuple (A′ := AS−r mod n, e, v′ := v + er) is also
a valid signature as well. Now, provided that A ∈ 〈S〉 and that r is
chosen uniformly at random from {0, 1}`n+`∅ , the valueA′ is dis-
tributed statistically close to uniform over Z∗n. Thus, the user could
compute a fresh A′ each time, reveal it, and then run the protocol

PK{(ε, ν′, µ) : Z ≡ ±Rµ0
0 · · ·RµL−1

L−1 A′εSν
′

(mod n) ∧

µi ∈ ±{0, 1}`m ∧ ε ∈ [2`e−1 + 1, 2`e − 1]} .

Now, there is a technical consequence from this proof protocol re-
garding the statements µi ∈ ±{0, 1}`m ∧ ε ∈ [2`e−1+1, 2`e−1].
While these can be implemented virtually for free, they requires
that the actually secret lie in a smaller interval, i.e., the signer
needs to choose e from [2`e−1 − 2`

′
e + 1, 2`e−1 + 2`

′
e − 1] with

`′e < `e − `∅ − `H − 3, where `∅ and `H are security parameters
(the first controlling statistical zero-knowledge and the second one
being the size of the challenge message in the PK protocol). Sim-
ilarly, we require mi ∈ ±{0, 1}`m−`∅−`H−2 when input to the
signature scheme (cf. [15]). As the proofs can only guarantee that
the absolute value of the messages are smaller then 2`m we also
include negative message in the message space for consistency. Fi-
nally, we note that in Z ≡ ±Rµ0

0 · · ·RµL−1
L−1 A′εSν

′
(mod n) there

appears a ±. This is a technicality in the used proofs of knowledge
in RSA. While this is not a problem for the application at hand, we
refer to the standard literature for details.

4. EFFICIENT ATTRIBUTES FOR CL
In this section we provide the means to efficiently encode a num-

ber of attributes into an anonymous credential, where with effi-
ciency we consider the computational cost when issuing and using
a credential (note that the communication cost when using a cre-
dential is directly related to the computational cost — hence we
only consider the latter). The standard method to encode attributes
into a credential is to designate a message mj to an attribute and
set mj to the attribute value. Now, if we need to encode a large
number of binary or discrete value attribute this approach requires
a whole message field per attribute resulting in computationally ex-
pensive and lengthy proofs of credential ownership (it will depend
linearly on the number of attributes) and a potentially large pub-
lic key (it needs to contain as many bases Ri). Alternatively, one
could encode all the attributes as a binary vector and then set one
message mj to that vector. While this does no longer require as
many bases as attributes, proving that some attribute is set to a spe-
cific value without revealing any of the other attributes becomes
more involved. Basically, one could commit to each of the attribute
values encoded in the binary vector, prove that these are indeed
the commitments to all the attribute values and then reveal the at-
tribute value in question (or prove a statement about it, e.g., that
the hair color attribute is either blond or brown). This approach,
however, is also linear in the number of attributes. A somewhat
better approach than committing to all the attribute values would
be to employ range proofs, in particular the ones by Boudot [5],
to show that the revealed attribute value is contained in the binary
vector. That is, if the vector looked as (a‖b‖c), where b is the
representation of the attribute that shall be revealed and a and c are
the representations of the remaining attributes, one would provide a
commitment to a and c and then prove (1) that these have the right
binary length and (2) that (a‖b‖c) indeed is signed by the issuer
(without revealing a or c of course). While this solution provides a
proof protocol that does not depend on the number of attributes en-
coded, each range proofs require about 12 commitments plus some
additional values, and one needs to do l + 1 of them if l attributes
are revealed. Thus the computational load for the prover would be
computing these commitments plus doing proofs about (which is
as costly as computing the commitment) In practice would not be
considered efficient any more, in particular if one considers using
anonymous credentials for electronic identity cards. Indeed, for the
scenarios we consider in the application section, it would even be
more efficient to use the other methods we discussed.

In the remainder of this section we will show how to encode
attribute values as (small) prime values such that a number of at-
tributes can be encoded into a single message mj and then how we
can reveal these attribute values selectively and how to make sim-
ple statements about them (OR, AND, and NOT connectives). Our
basic idea is in fact very simple: we set mj equal to the product of
the primes corresponding the values of the different attributes. Now
that allows us to show that an attribute is set to a given value en-
coded by, say prime ej by proofing that ej divides the message con-
tained in the credential and to show it is not set to the given value by
showing that ej does not divide the message. Realizing OR state-
ments, i.e., that the credential encoded either ej or el can be done
by proving that there exists a value that divides both the product of
ej and el as well as the message contained in the credential. As we
will see, this idea gives us very efficient proof statements and leads
to, e.g., an efficient implementation of an electronic identity card.



While we present the method for encoding attributes for the
RSA-based CL credential system [13, 15], it can be applied as well
to other anonymity related schemes such as group signatures, e-
cash systems, or voting schemes.

4.1 The CL Credential System and Attributes
We provide an explanation of how the Camenisch-Lysyanskaya

(CL) credential system [13, 15] works and how attributes can be en-
coded into credentials. This will make it clear how to use the results
presented in the remainder of this section to build a fully fledge cre-
dential systems with all other features with which the basic system
has been extended over the years and as described in the literature
(e.g., revocation [14], k-spendability[12], clone protection [11]).

In the CL credential system each user has a secret identity, i.e.,
a single secret key sU . In contrast to how credentials are issued to
the user in a traditional PKI (e.g, X.509), an issuing party now uses
the CL signature scheme to sign the user’s secret key as well as all
attributes the issuer wants to assert about the user. This signing is
of course done in a “blind” way such the issuer does not learn the
user’s secret key (cf. [13, 15]). Thus, the user will have obtained
a signature (A, e, v) such that Z ≡ ±Rsu

0 Ra11 · · ·RaL−1
L−1 A

′εSν
′

(mod n) holds, where a1, . . . , aL−1 are the attested attributes and
(Z,R0, . . . , RL−1, S, n) are the issuer’s public key. How a user
can show that she obtained a credential from some issuer and se-
lectively reveal some of the attributes (or prove statement about
them, e.g., my attested birth date lies further in the past than 21
years) using the proof of knowledge of a signature that we recalled
in the previous section.

As discussed, our approach to achieve efficient encoding and
proving of attributes for the CL credential system, we are going
to encode products of primes into a user’s credential, e.g., we set
a1 as the product of the relevant primes ej . Thus, it remains to
show how the user can selectively reveal attribute values encoded
like this, that one out of a list of attribute values is encoded, or that
an attribute value is not encoded into her credential.

4.2 Set Up
The issuer performs the following setup. On input `n, choose an

`n-bit RSA modulus n such that n = pq, p = 2p′+1, q = 2q′+1,
where p, q, p′, and q′ are primes. Choose, uniformly at random,
R0, . . . , RL−1, S, Z ∈ QRn. In addition, we require bases g and
h for an integer commitment. For this, we can use the signer’s RSA
modulus as well, thus, let h and g be element of QRn.

The public key becomes (n,R0, . . . , RL−1, S, Z, g, h).

4.3 Encoding
The number of bits we can encode into a message field of a CL

signature is `m as described in the previous section. Now assume
we wants to encode t attributes into a single message filed. Thus
we can only use primes of length up to `m/t. Now, if we each at-
tributes takes at most k different values, then we need choose our
`m such that there exist tk primes smaller than 2`m/t (or, alterna-
tively, choose t and encode the attributes into two or more mes-
sages). Let `t < `m/t be the length of the primes that we will be
using.

Assume we want to encode the attribute vector (a1, ...., at) with
ai ∈ {1, . . . , k} and that we have enumerated all the primes 2 <

ei < 2`m/t. Now we encode (a1, ...., at) by including the value
E =

Qt
j=1 e((j−1)k+aj) in the credential. This means that the

product E will be one of the messages that the issuer signs. (Here
we assumed that each attribute takes k different values — adapting
the construction to cases where some attributes take fewer values is
straightforward.)

4.4 Proofs About Attributes
We now assume that the user (prover) has obtained a CL creden-

tial containing E, i.e., signature (A, e, v) on messages m0 and m1

with m1 = E (m0 typically encodes the user’s secret key [15]).

Efficiently Proving That a Credential Contains an At-
tribute with a Given Value.
Let us first discuss has the user can convince the verifier that E
encodes a given attribute, e.g, how she can prove that her identity
card states that her hair color is blond. Assume that the attribute
hair color blond is encoded by the prime ej . Thus to convince the
verifier that she got issues a credential with this attribute, i.e., that
ej divides the E included in her credential, the user engages with
the following proof with the verifier:

PK{(ε, ν′, µ0, µ
′
1) :

Z ≡ ±Rµ0
0 (R

ej

1 )µ
′
1A′εSν

′
(mod n)∧

µ0 ∈ ±{0, 1}`m ∧ µ′1 ∈ ±{0, 1}`m−`t∧

ε ∈ [2`e−1 + 1, 2`e − 1]} .

THEOREM 4.1. If a prover is successful in the above protocol,
he was issued a credential encoding the attribute corresponding to
ej .

PROOF. It is standard to show that there exists a knowledge ex-
tractor who can extract from a convincing prover values ε, ν′, µ0,
µ′1 such that Z ≡ tRµ0

0 (R
ej

1 )µ
′
1A′εSν

′
(mod n) holds for some

t (see, e.g., [28]). Moreover, as we have chosen n as the prod-
uct of two safe primes, t must be ±1. Now, as CL signature are
unforgeable we can conclude that there must exist some E such
that Z ≡ ±Rµ0

0 RE1 A
′εSν

′
(mod n). Thus, we have RE1 =

R
ejµ

′
1

1 (mod n) from which we can conclude that E ≡ e1µ
′
1

(mod p′q′). This implies that E = ejµ
′
1 must hold over the in-

tegers as we could factor n otherwise. Therefore ej is indeed a
factor of E as claimed.

It is not hard to see that one can extend this proof to show that
several attributes are encoded, e.g., that ei, ej , and el are contained
in E all at once:

PK{(ε, ν′, µ0, µ
′
1) :

Z ≡ ±Rµ0
0 (R

eiejel
1 )µ

′
1A′εSν

′
(mod n) ∧

µ0 ∈ ±{0, 1}`m ∧ µ′1 ∈ ±{0, 1}`m−3`t ∧

ε ∈ [2`e−1 + 1, 2`e − 1]} .

In other words, we have just shown how to very efficiently im-
plement an AND statement over the attributes.

Showing that an attribute is not contained in E, i.e.,
how to prove a NOT relation.
Now, proving that a given ej is not contained in her credential
amounts to show that ej - E is the case. The user can do so by
showing that there exist two integers a and b such that aE+ bej =
1. Note that a and b do not exist if ej | E. Also note that a and b
can be computed efficiently with the extended Euclidian algorithm.

The protocol that achieves this is as follows:
After having computed a and b, the user chooses a sufficiently

large random r (about 80 bits larger n) and computes a commit-
ment D = gEhr mod n. She sends D to the verifier and runs the
following protocol with him (where a and b are the secret denoted



by α and β, respectively). Finally, the user engages with the verifier
in the proof:

PK{(ε, ν′, µ0, µ1, ρ, α, β, ρ
′) :

Z ≡ ±Rµ0
0 Rµ1

1 A′εSν
′

(mod n) ∧

D ≡ ±gµ1hρ mod n ∧ g ≡ ±Dα(gej )βhρ
′
mod n ∧

µ0, µ1 ∈ ±{0, 1}`m ∧ ε ∈ [2`e−1 + 1, 2`e − 1]} .

THEOREM 4.2. If a prover is successful in the above protocol,
then she was issued a credential that does not contain the attribute
encoded by ej .

PROOF. It is standard to show that there exists a knowledge ex-
tractor who can extract from a convincing prover values ε, ν′, µ0,
µ′1 such that Z ≡ tRµ0

0 (R
ej

1 )µ
′
1A′εSν

′
(mod n) holds for some

t (see, e.g., [15]). Moreover, as we have chosen n as the product
of two safe primes, t must be ±1. Now, as CL signature are un-
forgeable and we can conclude that there must exist some E such

that Z ≡ ±Rµ0
0 RE1 A

′εSν
′

(mod n) Thus, we haveRE1 = R
ejµ

′
1

1

(mod n) from which we can conclude thatE ≡ e1µ
′
1 (mod p′q′)

(otherwise n could be factored). This implies that E = ejµ
′
1

must hold over the integers as, again, we could factor n otherwise.
Therefore ej is indeed a factor of E as claimed.

Obviously the protocol can be extended to show several attribute
values are not contained in a credential in just one proof by replac-
ing ej by the product of the respective primes.

Showing that one of of a list if attributes is contained
in a credential, i.e., how to prove an OR relation.
Let us now show how we can implement a proof of a statement
such as I’m either a student, a retiree, or unemployed as might
be the case if one would be eligible for a reduce entrance fee to
a museum. More generally, we assume that we are given a list of
encodings {e1, ...., e`} of attribute values (possibly ranging over
different attributes), for some `. The idea we use here is that if a
credential contains an attribute e that is contained in this list, then
there exists an integer a such that ae =

Q`
i ei; if e is not in the list,

then no such integer a as e does not divide the product. Let us first
assume that the issuer imposes that only one attribute gets encoded
into a signed message. We will later see how we can extend this to
several attributes.

To prove that her credential contains one of the attributes values
{e1, ...., e`}, a user can employ the following protocol. First, the
user computes a commitment D to the attribute contained in her
credential (in the same way as for the other protocols), sends it
to the verifier, and then runs with the verifier the following proof
protocol:

PK{(ε, ν′, µ0, µ1, ρ, α, ρ, ρ
′) :

Z ≡ ±Rµ0
0 Rµ1

1 A′εSν
′

(mod n) ∧

D ≡ ±gµ1hρ mod n ∧ g
Q`

i ei ≡ ±Dαhρ
′
mod n ∧

µ0, µ1 ∈ ±{0, 1}`m ∧ ε ∈ [2`e−1 + 1, 2`e − 1]} .

We leave the proof for this protocol to the reader and extend it to
work also in case more than one attribute is encoded into a signed
message. So now, the goal is to show that one of the attribute values
encoded in the credential is contained in the list {e1, ...., e`}. The
idea here is that the user commits to that attribute value and then
shows that it divides the protocol of the attribute values on the list
as well as the message encoded in the credential. However, we

must take some special care as this statement also holds for ±1
and so we must make sure that the commitment does not contain
±1. To this end we need to employ of further group, i.e., one of
prime order q and two generators g and h of that group such that
logh g is unknown. Now, except the commitmentD to the attribute
value in question, say ej , as before, the user further computes the
commitment D = gej hr , where r is a random element from Zq.
Finally, the following proof protocol will achieve our goal:

PK{(ε, ν′, µ0, µ1, ρ, α, β, δ, ρ, ρ
′, ϕ, γ, ψ, ξ, σ) :

Z ≡ ±Rµ0
0 Rµ1

1 A′εSν
′

(mod n) ∧ D ≡ ±gαhρ mod n ∧

g
Q`

i ei ≡ ±Dδhρ
′
mod n ∧ 1 ≡ ±Dβgµ1hρ

′
mod n ∧

D = gαhϕ ∧ g = (
D

g
)γhψ ∧ g = (gD)σhξ ∧

µ0, µ1 ∈ ±{0, 1}`m ∧ ε ∈ [2`e−1 + 1, 2`e − 1]} .

THEOREM 4.3. A user who can successfully run the protocol
above must have been issued a credential that encodes at least one
of the attribute values {e1, ...., e`}.

PROOF. Again, one can extract from a successful prover values
(ε, ν′, µ0, µ1, ρ, α, β, ρ, ρ

′, ϕ, γ, ψ, ξ, σ) such that all the equa-
tions given in the proof protocol specification hold. Let us con-
sider what we can derive from these equations. First, consider
the equations D = gαhϕ and g = (D

g
)γhψ . Assuming the hard-

ness of computing logg h, we have 1 ≡ γ(α − 1) (mod q) from
which we can derive that α 6≡ 1 (mod q). A similar argument
can be made with g = (gD)σhξ regarding the statement α 6≡ −1
(mod q) and hence α 6= ±1 will also hold over the integers.
Now consider D ≡ ±gαhρ mod n and g

Q`
i ei = Dδhρ

′
mod n.

Assuming the hardness of factoring, we can conclude from these
that α |

Q`
i ei and thus that α equals one of the ei’s or a prod-

uct of them (as we know that α 6= ±1). Now, from the equa-
tion 1 = Dβgµ1hρ

′
mod n we can derive that βα = µ1 holds

over the integers provided factoring is hard. As we thus have
Z ≡ ±Rµ0

0 Rβα1 A′εSν
′

(mod n) it follows that α is encoded in
the credential and there for that at least one of the attribute value
encodings {e1, ...., e`} is contained in the credential issued to the
prover.

4.5 Prime Encodings For Other Schemes
We have presented how one can encode attributes efficiently

for the RSA-based CL credential system. Our method is intrinsi-
cally based on integer factorization and to be able to proves multi-
plicative relations among committed values over the integers. The
only known efficient commitment scheme that works for the lat-
ter is the one by Damgård, Fujisaki, Okamoto, which relies on
the Strong RSA assumption. Thus, our method works naturally
with anonymity-providing schemes that themselves are based on
the Strong RSA assumption (e.g., [3, 35]) and indeed we made use
of the fact that these scheme basically have the Damgård-Fujisaki-
Okamoto built into them.

Nevertheless, our method can also be applied to other
anonymity-providing schemes but requires one to add the Strong
RSA assumption to the list of assumption the scheme is based
upon, as we rely on the integer commitment scheme for proving
the relations. Let us have sketch how this would be done. First,
the scheme needs to be capable to encode attributes as exponents
(most efficient scheme allow for that, e.g., [4, 7, 16]). However,
such encoding is usually done in the exponent of a group where the
prover knows the order, say q, and therefore all relations that can
be proven about values contained in the credential hold modulo q



only. Therefore, the prover needs to provide an integer commitment
to the attribute values contained in the credential (i.e., the product
of the prime encoded attribute values), so that we can do our proofs
for the prime encodings over the integers. Of course, the prover
needs to prove that the very same value contained in the commit-
ment is also encoded in the credential. Here one must apply some
care to avoid that the prover cannot add a multiple of q to the com-
mitted value, i.e., the prover needs to prove that the commitment
contains a value between 0 and q which we can do using the range
proof by Boudot at the cost of about 5 extra commitments and 5
proof-terms.

5. EFFICIENCY
Our prime-encoding credential system encodes a large set of bi-

nary and finite set attributes without significant performance im-
pacts. The computational complexity of a traditional CL proof of
possession is linear in the total number of attributes, whereas our
system’s complexity only depends on the number of string/integer
attributes. Binary and finite-set attributes are essentially for free.
Of course, the number of shown binary/finite-set attributes has a
theoretical influence on the performance, however, for all practi-
cal purposes we can consider it as constant.2 Both schemes have
identical complexity if credentials only contain string or integer at-
tributes, as soon as binary or finite-set attributes are involved the
prime encoding scheme achieves superior efficiency.

5.1 Measurement Method
Our key goal is to improve the efficiency of the CL signature

scheme on small devices, particularly on smartcards. We encoun-
tered the following properties during the evaluation of smartcard
capabilities: most smartcards do not provide a primitive for hard-
ware multi-base exponentiation. One either needs to resort to a
software implementation or the hardware’s modular exponentia-
tion. Partially, the cards do not provide sufficient access to the
square and multiply primitives, which hinders an efficient imple-
mentation of multi-base exponentiations. Partially, the cards have
severe RAM restrictions, which hamper a multi-base exponentia-
tion in one go. A software implementation can therefore experi-
ence a negative performance impact. We cannot restrict ourselves
to multi-base exponentiations, but need to examine modular expo-
nentiations as well.

How to compute the number of exponentiations from a
Camenisch-Stadler [18] term of a CL Signature? First of all, prover
computes a blinded CL signature, which amounts to one exponenti-
ation. Second, the prover facilitates a proof of knowledge following
the proof specification:

PK{(ε, ν′, µ0, µ1, µ2) :

Z ≡ ±Rµ0
0 Rµ1

1 Rµ2
2 A′εSν

′
(mod n)} .

Camenisch and Stadler [18] define how to transform such a state-
ment in a Schnorr proof. The prover choses random values rε, rν′ ,
rµ0 , rµ1 , rµ2 from Z∗n for each proven value. The prover computes
a commitment

T = A′rεR
rµ0
0 R

rµ1
1 R

rµ2
2 Srν′ (mod n).

This involves one multi-base exponentiation or number of attributes
plus two modular exponentiations. For a given challenge c, the

2Our system uses prime exponents with a very short bit-length and
treats them in a single exponentiation. Of course for a very large
number of primes in the exponent product, this exponentiation be-
comes expensive.

prover computes response values sε, sν′ , sµ0 , sµ1 , and sµ2 as fol-
lows:

sε = rε + cε; sν′ = rν′ + cν′; sµi = rµi + cµi .

Thus, in total we have number of attributes plus three exponentia-
tions. We observe that the number of exponents in the Camenisch-
Stadler notation determines the number of exponentiations in the
corresponding zero-knowledge proofs.

How to treat partially disclosed attributes? In our prime encoding
scheme, we create proofs over known prime exponents, say ei and
ej , proving knowledge of the remainder µ′1 as follows:

PK{(ε, ν′, µ0, µ
′
1) :

Z ≡ ±Rµ0
0 (R

eiej

1 )µ
′
1A′εSν

′
(mod n) ∧ [. . .]} .

We will count a term (R
eiej

1 )µ
′
1 as one exponentiation because of

the following rationale: The prover can choose a random value rµ′1
from Z∗n and then compute the product rµ1 = eiejrµ′1 as random-
ness. The prover includes this randomness with only one exponen-
tiation into the commitment T .

5.2 Qualitative Analysis
Let us first consider the differences of traditional encoding in

credential systems and the prime encoding. We do so by com-
paring different proof statements for a credential with only two
finite-set attributes. We focus on the computational workload of the
prover, as this impacts small devices most. In principle, all proofs
with the Camenisch-Lysyanskaya credential system are structured
as follows: the user provides a proof of possession of the creden-
tial first, then commits to required attributes, and facilitates the at-
tribute statement proofs (e.g., equality, range) over the committed
attributes. The proof of possession requires one term and exponen-
tiations linear of the number of attribute bases3:

PK{(ε, ν′, µ0, µ1, µ2, ρ, α, β, ρ
′) :

Z ≡ ±Rµ0
0 Rµ1

1 Rµ2
2 A′εSν

′
(mod n) ∧

µ0 ∈ ±{0, 1}`m ∧ µi ∈ ±{0, 1}`m−3`t ∧

ε ∈ [2`e−1 + 1, 2`e − 1]} .

This sets the baseline of complexity for all subsequent proofs with
the credential system. Subsequently, we omit the ranges of the at-
tribute messages and exponents for readability (denoted by [. . .]).

5.2.1 AND-Proof
Let us consider an example where a user wants to prove

her expertise according to the ACM Computing Classification
Scheme [2]: E.Data ∧ D.SW. We refer to Appendix Section A for
such an application example. An AND-proof with the traditional
encoding in the CL-signature uses one exponentiation for each at-
tribute base. The prover facilitates the following proof of knowl-
edge with a selective disclosure of the attribute values E.Data and
D.SW:

PK{(ε, ν′, µ0) :

Z ≡ ±Rµ0
0 RE.Data

1 RD.SW
2 A′εSν

′
(mod n) ∧ [. . .]} .

Proving knowledge of several prime-encoded attribute does not
produce any overhead. The required attributes are encoded in one

3To be precise: L + 2 exponentiations for the attributes including
the secret key plus one exponentiation for the blinding



Table 1: Computational Complexity. Gray color denotes best result. MExp. are multi-base exponentiations, Exp. modular exponen-
tiations.

Parameter Base Encoding Bit-Vector Encoding Prime Encoding
absolute asymp. absolute asymp. absolute asymp.

Number of attribute bases l + k O(L) l + 1 O(l) l + 1 O(l)

Proof of possession l + k + 4 Exp. O(L) l + 5 Exp. O(l) l + 5 Exp. O(l)

Knowledge of 1 binary attr. 1 MExp. O(1) 1 + 2k + 2 MExp. O(k) 1 MExp. O(1)
l + k + 4 Exp. O(L) l + 4k + 7 Exp. O(L) l + 5 Exp. O(l)

AND of i binary attr. 1 Mexp. O(1) 2k + i+ 2 MExp. O(2i) 1 MExp. O(1)
l + k + 4 Exp. O(L) l + 4k + i+ 7 Exp. O(L+ i) l + 5 Exp. O(l)

NOT of 1 binary attr. 4 MExp. O(1) 2k + 4 MExp. O(k) 4 MExp. O(1)
l + k + 11 Exp. O(L) l + 4k + 10 Exp. O(L) l + 13 Exp. O(l)

OR of i binary attr. 3i+ 1 MExp. O(i) 2k + 3i+ 1 MExp. O(k + i) 9 MExp. O(1)
l + k + 6i+ 4 Exp. O(L+ i) l + 3k + i+ 7 Exp. O(L+ i) l + 23 Exp. O(l)

attribute base and their conjunctive selective disclosure can be im-
plemented with one modular exponentiation. This realizes a AND-
proof in a constant number of exponentiations.

PK{(ε, ν′, µ0, µ
′
1) :

Z ≡ ±Rµ0
0 (R

eiej

1 )µ
′
1A′εSν

′
(mod n) ∧ [. . .]} .

5.2.2 NOT-Proofs
The NOT-proof methods of the traditional approach and the

prime-encoding are very similar. Both methods require a commit-
ment to the relevant attribute and a linear relationship proof. For
the traditional approach the proof is constructed as follows:

PK{(ε, ν′, µ0, µ1, µ2ρ, α, β) :

Z ≡ ±Rµ0
0 Rµ1

1 Rµ2
2 A′εSν

′
(mod n) ∧

D ≡ ±gµ1hρ mod n ∧ g ≡ ±(D/gρ)αhβ ∧ [. . .]} .

The NOT-proof of the new system needs to take the structure
of the dedicated prime attribute into account, however, does not
differ conceptually from the traditional approach. Given that we
count (gej )β as one exponentiation, both methods have the same
complexity:

PK{(ε, ν′, µ0, µ1, ρ, α, β, ρ
′) :

Z ≡ ±Rµ0
0 Rµ1

1 A′εSν
′

(mod n) ∧
D ≡ ±gµ1hρ mod n ∧

g ≡ ±Dα(gej )βhρ
′
mod n ∧ [. . .]} .

5.2.3 OR-Proofs
We use an example where a user proves that either the attribute

social_benefit = social_benefit or the attribute profession =
student. We elaborate on such a case in the environment of elec-
tronic identity cards in Section 6.2. The traditional approach needs
to produce an overhead proportional to the number of relevant at-
tributes as well as to the number of comparison alternatives. The
system first commits to the relevant attribute values, which means

computing the commitment as well as proving knowledge of it:

PK{(ε, ν′, µ0, µ1, µ2, ρ, α, β, ρ
′) :

Z ≡ ±Rµ0
0 Rµ1

1 Rµ2
2 A′εSν

′
(mod n) ∧

D1 ≡ ±gµ1hρ (mod n) ∧

D2 ≡ ±gµ2hρ
′

(mod n) ∧ [. . .]} .

It then facilitates proofs of knowledge over the committed attribute
values, in this case a disjunction of equality proofs. If the user
intends to prove that her attribute is one out of ten variants, she
needs to provide ten equality proofs similar to those:

PK{(ρ, ρ′) : D1/g
social_benefit ≡ ±hρ (mod n) ∨

D2/g
student ≡ ±hρ

′
(mod n)} .

Our new method also facilitates the OR-proof in a constant num-
ber of exponentiations. It involves (a) committing to the dedicated
prime attributeRµ1

1 in the first line of the proof statement, (b) show-
ing that the user’s attribute value is contained in the list of options
and that it divides the credential message (second line), and (c)
proving that the commitment is free from ±1 (third line):

PK{(ε, ν′, µ0, µ1, ρ, α, β, δ, ρ, ρ
′, ϕ, γ, ψ, ξ, σ) :

Z ≡ ±Rµ0
0 Rµ1

1 A′εSν
′

(mod n) ∧ D ≡ ±gαhρ mod n ∧

g
Q`

i ei ≡ ±Dδhρ
′
mod n ∧ 1 ≡ ±Dβgµ1hρ

′
mod n ∧

D = gαhϕ ∧ g = (
D

g
)γhψ ∧ g = (gD)σhξ ∧ [. . .]} .

This construction requires two commitments (computing the com-
mitments and proving their knowledge) and four linear relationship
proofs in total. The number of terms and exponentiations is es-
sentially independent from the number of OR-Terms. We note that
prime exponents are publicly known and very small, thus, g

Q`
i ei

counts as one exponentiation for all practical purposes. Thus, we
account for a constant overhead of 23 exponentiations over a nor-
mal proof of possession.

5.3 Quantitative Analysis
We compare the computational complexity between the

Camenisch-Lysyanskaya system, a bit-vector encoding, and our
method in Table 1. We count the number of multi-base exponenti-
ations and the number of modular exponentiations.



The comparison is based on the following parameters:

L: total number of attribute bases without secret key

l: number of string/integer attributes

k: number of prime-encodable attributes/value set for multi-
variate finite-set attributes

i: number of attributes referenced in a proof

We notice that in general the proofs of possessions of CL creden-
tials are impacted by the total number of attribute bases L, whereas
the bit-vector and prime encoding only depend on the number of
string/integer attributes l. For simple attribute proofs, CL and bit-
vector encoding require O(L) exponentiations whereas our system
only depends on the number of string/integer attributes O(l). If
one considers a credential with only binary or finite-set attribute,
CL and bit-vector encoding have a complexity of O(L), whereas
our system runs in constant time O(1). The AND proofs are im-
pacted by the total number of attributes and require O(L) expo-
nentiations. Once the proof of possession is complemented by an
OR-statement, CL encoding requires O(i) terms and O(L+ i) ex-
ponentiations4. A traditional bit-vector encoding as discussed in
Section 4.1 involves bit-commitments to all encoded attributes (two
exp. for computing, two for proving), bitwise OR-proofs for all at-
tributes (two exp.), and one equality proof over their product (two
exp.). This amounts to O(k + i) terms and O(L + i) exponentia-
tions. Our system allows for proofs with a constant term number.
The total number of prime-encodable attributes k does not impact
the performance at all. This comes at a cost of a constant overhead
of 18 exponentiations. We discuss the structures of the AND/OR
proof statements in Sections 5.2.1 and 5.2.3.

To stress our point, we make an experiment with the number
of prime-encodable attributes being large against the number of
string/integer attributes: k � l. Say we only encode a huge num-
ber of binary or finite-set attributes (L = k � i). In this case
the results are as follows: then proof statements with CL and bit-
vector encoding will converge to O(L) exponentiations. Our sys-
tem, however, converges to a constant number of terms and expo-
nentiations O(1). There is a theoretical impact of the length of the
exponents for a large number of prime attributes encoded in one
attribute base. For all practical applications it is negligible.

6. APPLICATIONS

6.1 Requirements
An application of our extension to the CL credential system

needs to fulfill two requirements: (a) a sufficient supply of prime-
encodings and (b) a certified binding between prime-encoding and
discrete values. First, we observe that the number of primes below
a certain number x is estimated by the prime number theorem as
outlined in [41] and converges to π(x) = x/ln(x). There exist, for
instance, roughly 75.638 prime numbers smaller than 20 bits. This
is a plentiful supply for most application scenarios. Second, the
issuer needs to sign the binding between primes and discrete val-
ues in its public key. Thus, the binary/discrete values used by the
credential system are static. This excludes highly dynamic appli-
cations with ad-hoc issuing of credentials with new attribute types,
however, does not impact any of the standard application scenarios
for credential systems. Typical organizations issuing credentials

4Per i we have two exp. to compute the commitment, two to prove
its knowledge, and two to prove equality.

are governments, banks, telco operators, etc. Their vocabulary for
binary/finite-set attributes is standardized well in advance.

We observe that space constraints may limit the number of finite
set attributes the system can govern. The size of the attribute ex-
ponent in the user’s credential limits the number of prime flags set
in a credential. The size of the issuer’s public key limits the total
number of attribute realizations certified for the system. Thus, even
if many sets in real world are inherently finite, a system needs to
balance between efficiency gain and and space consumption.

The proposed credential system is particularly suited for multiple
classes of attributes:

Binary. The attribute can either be present or not, true or false,
e.g., being a civil servant.

Finite Set. A finite set of discrete attribute values, where a user
may realize at most one potential value. E.g., hair color.

Multi-Variate Finite Set. A finite set of discrete attribute values,
where a user may realize any subset of values. A user may
hold multiple values for an attribute such as profession.

Finite Data Structures. Complex data structures of discrete val-
ues from a finite set, where trees are most useful: a user may
realize a sub-tree or path of a super-tree predetermined by the
issuer. Examples for such attributes are expertise or health
taxonomies as well as role hierarchies.

These attribute types impact a large variance of application scenar-
ios. We choose electronic identity cards as primary example and
complement that with complex expertise as well as medical cre-
dentials in the Appendix A.

6.2 Examples for Electronic Identity Cards
Currently, different European countries are issuing different vari-

ants for electronic identity cards (EID). The computational restric-
tions of such smartcards are immanent. The desire for protection of
citizen rights by privacy-enabling technologies is also a recurring
topic. Particularly, in the area of secondary use—that is, when a
third party is accessing the user’s data—privacy concerns surface
quickly. In early proposals, arbitrary third parties could access the
full data set about the user.

We surveyed different data sets for EID and driver’s license cards
and use the Belgium EID card as example [40]. Table 2 outlines
a superset of example attributes, where the left column contains
string and integer attributes, whereas the right column contains at-
tributes encodable by our prime representation. We explicitly men-
tion minority status as, for instance, the Belgium EID card specifi-
cation [40, pp.12] explicitly covers this option5.

Our scheme is particularly handy for attributes that have a range
of a finite set of values, where the user may realize a multi-valued
subset off the range. Minority status, profession, or academic de-
gree are such attributes. A citizen may, for instance, be a doctor as
well as a civil servant. Traditional CL signatures encodes each at-
tribute in a separate attribute base, for multi-variate attributes from

5Application of such an attribute varies much from country to
country. For instance, Belgium encodes a status for blind and for
the visually impaired citizens. The German driver’s license also en-
codes the requirement to wear glasses. Further attributes for deaf
or hearing-impaired citizens are thinkable. Though countries also
envision attributes such as profession (e.g., doctor) or role as civil
servant, their storage on the EID card itself is currently subject to
much dispute.



Table 2: Potential attributes on electronic identity cards.
String/Integer Binary/Finite Set Example Values
1) name 6) sex {male, female}
2) first name 7) nationality 193 recognized states
3) date of birth 8) place of birth 6400 villages and cities (e.g., Germany)
4) identification number 9) type of card {EID, kids_card}
5) date of issuance 10) place of issuance 429 districts (e.g., Germany)

11) validity time {2_year, 5_year, 10_year}
12-13) eye and hair color 6 hair colors, 8 eye colors
14-16) minority status {blind, vis_impaired, deaf,

hear_impaired, phys_impaired}
17-18) social benefit status {none, unemployed, social_benefit}
19-21) profession {student, teacher, civil_servant, doctor, . . . }
22-23) academic degree {B.S., M.S., Ph.D., M.D., . . . }

Table 3: Complexity in EID Scenario: PEID,CS – CL requires
nine commitments and eleven equality proofs; prime encod-
ing contents itself two commitments and four relationship
proofs. PEID,OP – CL requires and AND proof over all L at-
tributes, whereas the prime encoding is only impacted by the l
string/integer attributes.

Parameter CL Prime
Number of attribute bases 23 6
Exp. proof of possession 27 10
MExp. in AND-proof for PEID,OP 1 1
Exp. in AND-proof for PEID,OP 27 10
MExp. in OR-proof for PEID,CS 28 9
Exp. in OR-proof for PEID,CS 67 28

finite set it even needs to encode each potential realization in a
base. For the attributes in Table 2, this results in 23 attribute bases.6

With our prime encoding we can fold all binary and finite-set
attributes into one attribute base. We choose a prime ei for all
binary attributes and finite set attribute realizations in Table 2: this
involves 193 possible realization of nationality, 429 realizations of
place of issuance districts, 6400 districts for place of birth as well
as several hundred professions, and 14 color variations for hair and
eyes. We dedicate the first attribute base, for the product of the
corresponding prime numbers ej that the user realizes. We are left
with five normal attribute bases and one attribute base R1 for the
prime encoding. Thus, the number of bases is already one fourth
and all proofs of possessions speed up by factor four.

Opinion Polls
Another often discussed example is online opinion polls. In this
scenario, a user needs to prove that she belongs to a certain statisti-
cal class retaining a suitable anonymity set. Opinion polls usually
gather demographic data, but may also collect educational and pro-
fessional parameters. We leave the range proof for the date of birth
aside as it is equal for both methods.7 The remaining proof may
6Nationality and place of issuance will be encoded by a index num-
ber. We assume the minority and social benefit status as multi-
variate attributes with seven realizations spread over five attributes.
For the potentially multi-variate attributes profession and academic
degree we reserve five attributes in total. The number of attribute
bases is therefore 23 and L = 24.
7Of course, there is also a very efficient method for corse-grained
range proofs leveraging the prime encoding. We do not use it for

be constructed according to a conjunctive selective disclosure as
specified in policy PEID,OP:

sex = female ∧ nationality = French ∧
place_of _birth = Paris ∧ social_benefit = none ∧

profession1 = doctor ∧ profession2 = civil_servant ∧
ac_degree1 = M.D. ∧ ac_degree2 = Ph.D.

We discussed this general proof structure in Section 5.2.1. A tra-
ditional approach requires a proof of possession over L attribute
bases.8. We outline in Table 3 that our new system facilitates the
proof without any overhead to the proof of possession. It is there-
fore only impacted by the l string/integer attributes. It is three times
as efficient, even though we only safe the k attribute bases for the
prime-encoded attributes.

Cultural Subsidies
Virtually all countries grant subsidies for access to cultural institu-
tions to particular population groups: children, students, seniors as
well as handicapped persons and persons eligible for social bene-
fits. Partially, the corresponding groups show hesitation to disclose
their special status because of privacy concerns. Policy PEID,CS is
depicts a disjunction proof over attributes from Table 2:

W
minority(blind, vis_impaired, deaf, . . .) ∨

W
social_benefit(unemployed, social_benefit) ∨
W

profession(student, teacher, civil_servant) ∨
(type = kids_card) .

As demonstrated in Section 5.2.3, this amounts to a proof of
possession, attribute commitment to all relevant attributes (nine
terms)9, and a second step disjunction of equality proofs for the
possible attribute values (eleven terms). Our new scheme reduces
the effort to a single multi-element OR-proof in the prime encod-
ing. As shown in Section 4.4, the user needs to provide a proof
of possession with four terms, a commitment to the prime attribute
base and proofs of their knowledge and division (three terms) as
well as proofs that the commitment does not contain ±1 in a sec-
ond group (three terms). We compare both methods in Table 3 and

this comparison.
8We leverage the system’s capability to have multiple values for
the attribute profession and academic degree ac_degree .
9Note that the attributes minority , social_benefit , and
profession are spread over multiple attribute bases to ac-
count of multiple realizations by a user. We assumed three for the
minority , two for social_benefit , and three for profession , thus,
nine terms in total.



observe that our new method is three times as efficient for all proofs
of possessions as well as the OR-proof for policy PEID,CS.

6.3 Discussion
Our method is a enabler for credential systems on small de-

vices. Until now, application designers for this area restricted them-
selves to simple scenarios: credentials must only govern a minimal
number of attributes, proof statements must be as simple as possi-
ble. The linear complexity in the total number of attributes for the
proofs of possession put EID systems at peril. The vastly growing
number of terms and commitments, and thus computational and
communication costs, for complex proof statements acted as sec-
ond bottleneck. These tremendous limitations rendered sensible
applications on small devices virtually impossible.

We have shown that our prime-encoding idea makes complex
proofs in various application scenarios possible. Be it benefit ac-
cess with a great anonymity set or collecting demographic data
in a private manner in the example of an electronic identity card;
be it complex expertise taxonomies of a corporate card; or be it
structured diagnostic statements in a healthcare card—our system
achieves tremendous performance boosts. This does not only hold
for the AND/OR example policies, but also for the overall reduc-
tion of attribute bases. The latter parameter impacts every single
proof. All these improvements bring applications barely running
in feasible time with traditional encodings well in reach of small
devices.

In addition to occupying a high ground in the quest for perfor-
mance, the system comes with two subtle advantages: (a) discrete
and structured attributes, (b) significant policy independence. First,
we focus on discrete values from finite sets. These may be as simple
as binary flags or complex data structures. In contrast to an unstruc-
tured integer/string encoding, discrete values can be manipulated
by equality and relationship proofs. Their semantic is accessible to
the credential system itself. Second, we observe that our method
requires a constant number of terms and commitments for pure
equality, conjunction and disjunction proofs with binary/finite-set
attributes. Independent from the number of AND/OR clauses in
the policy, the proof only uses a fixed low number of exponentia-
tions. This makes a transaction and their expected response time
predictable to device producers.10

7. CONCLUSION
We presented an extension to the Camenisch-Lysyanskaya cre-

dential system that features efficient encoding and proofs of binary
and finite-set attributes. The idea to leverage coprime and divisibil-
ity properties in proofs gains us strong performance improvements.
We pay the price of certifying prime/attribute value relationships in
the issuer’s public key and win the ability to facilitate proofs of pos-
session, equality, AND, NOT, and OR proofs very efficiently. Our
method overcomes the fundamental limitation of all existing cre-
dential systems that their complexity is linear in the total number
of attributes. It allows us to fold many finite set attributes in a single
attribute base and therefore boosts the performance of all proofs of
possession. Our new proof primitives on the prime-encoding facil-

10In traditional encodings this is not the case. If a traditional CL
system receives a policy from a service provider that requires 25
finite-set attributes and 100 OR-clauses, the system will facilitate
25 commitments and 100 equality proofs executing roughly 150
exponentiations. Our system would finish after 23 exponentia-
tions independently from the policy. We stress that this holds for
pure conjunctions (only containing AND-clauses) and disjunctions
(only containing OR-clauses). This situation is more diverse for
nested logical statements.

itate AND, NOT, and OR statements with constant complexity and
minimal overhead to a standard proof of possession. Our method
does not require additional cryptographic assumptions apart from
Strong-RSA.

Our method targets the major attribute classes of credential sys-
tems. In fact, we perceive that only a minority of attributes requires
a generic string or integer attribute (such as name and birthday),
whereas most attributes are either binary or taken from a finite set
of discrete values. Those are the attributes which applications need
for logical statements. Emerging efforts to standardize vocabulary
for identity federation protocols in different application areas sup-
port our hypothesis. We demonstrated that our method impacts real
applications such as electronic identity cards or complex forms of
professional and medical credentials.
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APPENDIX
A. PROFESSIONAL TAXONOMIES

Virtually all professional organizations have elaborate tax-
onomies of expertise and attributes of clients and objects. Most tax-
onomies are hierarchically organized and benefit from statements
on all their granularity levels. The user may realize any sub-tree or
path to a terminal leave from the full taxonomy tree.

Expertise
Let us assume that the ACM decided to issue credentials to their
members. These credentials shall contain an expertise classifica-
tion according to the ACM Computing Classification Scheme [2].
This well-known taxonomy is a tree with depth four with eleven
areas and roughly 1400 disciplines, sub-disciplines, and topics. To
encode one path to a terminal leaf of the taxonomy (e.g., “E. Data
– 3. Data encryption – Public key crypto systems – PKI”), a tradi-
tional credential system would require four attribute bases. That is,
four bases per expertise area the user can realize at the same time.
We assume that a ACM member may choose three expertise areas.
In addition, the ACM allows a choice from sixteen general terms,
which are in fact a multi-variate finite set. For this, a traditional
credential system reserves additional bases. The total number of re-
quired bases is proportional to the depth of the taxonomy times the
potential attribute realizations with an offset for the multi-variate
finite set. The prime-encoding can represent arbitrarily many at-
tribute realizations in just one attribute base.

Let us assume that a user wants to prove the following policy
PCCS:

expertise ⊃ {E.Data, 3.Encryption,E.3.PKI} ∧
expertise ⊃ {D.SW, 4.OS, 4.6.Security, 4.6.Auth} ∧

general ⊃ {performance, security} .

This policy asks for an conjunction proof over all these attributes.
We analyzed in Section 5.2.1 which steps different encodings re-
quire. Our system encodes the proof as a single multi-element
AND-proof integrated in the proof of possession. We compare the
complexity in Table 4.

Medical Records
Our new credential system impacts healthcare and medical record
credentials tremendously. Healthcare practitioners classify all dis-
eases according to the International Statistical Classification of Dis-
eases and Related Health Problems (ICD) [43, 44]. This is a tax-
onomy tree with depth five: chapters, sub-chapters, section, class,

Table 4: Complexity in expertise scenario: CL requires one
commitment and equality proof per relevant attribute; the
prime encoding’s proof of possession covers the AND-proof
cost-free.

Parameter CL Prime
Number of attribute bases 28 1
Exp. proof of possession 32 5
MExp. in AND-proof for PCCS 1 1
Exp. in AND-proof for PCCS 32 5

Table 5: Complexity in medical scenario: CL requires one com-
mitment to the disease attribute and 25 equality proofs; the
prime encoding manages on two commitments and four rela-
tionship proofs.

Parameter CL Prime
Number of attribute bases 25 1
Exp. proof of possession 29 5
MExp. in OR-proof for PMED 28 9
Exp. in OR-proof for PMED 83 23

and sub-class.11 Likewise, the Diagnostic and Statistical Manual of
Mental Disorders (DSM-VI-TR) [1, 42] is a taxonomy tree of depth
five. Psychiatrists classify mental disorders according to five axes,
16 categories, subcategories, disorder classes and sub-classes.12 To
encode a single path in such a taxonomy in a traditional credential
system, one would require five attribute bases per realized terminal
leaf. And clearly, there is a need for specifying multiple symptoms
or potential diagnoses.

Even though healthcare cards are still in their infancy, there are
debates on storing certified medical data on such cards. This op-
tion is very privacy-sensitive. Our proposal allows for selective-
disclosure of medical information according to standardized tax-
onomies with variable granularity. Implementing this on smart-
cards with traditional credential systems is virtually impossible as
the growing number of attribute bases would render any proof of
possession inefficient. Our system allows to encode many realiza-
tions of deep taxonomies within a single attribute base with strong
performance improvements.

For instance, let us assume that user holds a certified diagnosis
credential that may reserve five possible path in the taxonomy. The
policy PMED demands to prove that one of the diagnoses matches
either one of a set of, say 25, bacterial disease classes that are eli-
gible for acquiring broad-spectrum antibiotics. Clearly, it is highly
desirable to hide the actual diagnosis in certain applciations. There-
fore, the proof must be done with an OR-proof without disclosing
the actual disease. This policy is similar to earlier OR-proofs, such
as exercised in Section 5.2.3, only restricted to a single relevant
attribute. Our credential system does the same proof a third of the
term number and a fourth of the required exponentiations (Table 5).

11A classification could for instance be “I. Determined infectious
and parasitic diseases – Infectious diseases (A) – Infectious abdom-
inal diseases (A00–A09) – A01.- Typhus-alike – A01.2 Paratyphus
B”

12For instance sleepwalking would be “Axis I – 13. Sleep disorders
– Parasomnias – Sleepwalking”.


