
Touching from a Distance: Website Fingerprinting Attacks
and Defenses

Xiang Cai
Stony Brook University
xcai@cs.stonybrook.edu

Xin Cheng Zhang
Stony Brook University

xinczhan@gmail.com

Brijesh Joshi
Stony Brook University
sunjosh17@hotmail.com

Rob Johnson
Stony Brook University
rob@cs.stonybrook.edu

ABSTRACT
We present a novel web page fingerprinting attack that is
able to defeat several recently proposed defenses against
traffic analysis attacks, including the application-level de-
fenses HTTPOS [15] and randomized pipelining over Tor [18].
Regardless of the defense scheme, our attack was able to
guess which of 100 web pages a victim was visiting at least
50% of the time and, with some defenses, over 90% of the
time. Our attack is based on a simple model of network
behavior and out-performs previously proposed ad hoc at-
tacks. We then build a web site fingerprinting attack that
is able to identify whether a victim is visiting a particular
web site with over 90% accuracy in our experiments.

Our results strongly suggest that ad hoc defenses against
traffic analysis are not likely to succeed. Consequently, we
describe a defense scheme that provides provable security
properties, albeit with potentially higher overheads.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection

Keywords
Anonymity, website fingerprinting attacks

1. INTRODUCTION
Web browsing privacy mechanisms, such as SSL, Tor, and

encrypting tunnels, hide the content of the data transferred,
but they do not obscure the size, direction, and timing of
packets transmitted between clients and remote servers. In a
web page fingerprinting attack, an adversary attempts to use
this information to identify the web page a victim is visiting.
Previous research has shown that web page fingerprinting
attacks are possible against many privacy services, including
IPSec tunnels, SSH tunnels, and Tor [21, 10, 17, 6, 13].

As a result, researchers have proposed several defenses,
primarily aimed at hiding packet size information. For ex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$10.00.

Defense Rate

None (SSH tunnel) 91.6%
SSH + HTTPOS 75.7%
SSH + Sample-based morphing 92.1%
Tor 83.7%
Tor + randomized pipelining 87.3%
Tor + rand. pipe. + rand. traffic 52.2%

Table 1: Success rate of our web page fingerprinting
attack against each defense evaluated in this paper.
The success rate is the probability that the attack
was able to correctly guess which of 100 web pages
the victim was visiting.

ample, Tor packs all data into 512-byte cells. Other mecha-
nisms pad packets in a variety of ways (e.g. padding to 2k

bytes, or padding all packets to the MTU). Wright, et al.,
proposed traffic morphing, which pads and fragments pack-
ets so that the resulting distribution of packet sizes appears
to be from a different web page [26]. Dyer, et al. showed
that all these schemes are broken [6].

Researchers have recently proposed defenses based on ma-
nipulating the sequence and structure of the HTTP requests
generated by the browser. HTTPOS, published at NDSS
2011, manipulates TCP MSS and window size parameters to
obscure packet sizes, but also includes several HTTP-specific
mechanisms [15]. For example, HTTPOS can split individ-
ual HTTP requests into multiple partial requests, can issue
extra HTTP requests as cover traffic, and can use pipelining
to execute requests concurrently, obscuring the exact order
of requests. Pipelining, which was originally introduced to
improve performance, allows web clients to issue subsequent
requests without waiting for the response from previous re-
quests. Similarly to HTTPOS, the Tor project has released a
version of Firefox that implements “randomized pipelining,”
in which the browser requests objects in a random order and
with random levels of pipelining [18].

In this paper, we demonstrate effective attacks against
HTTPOS, randomized pipelining, and several other defenses.
Table 1 summarizes the results of our attack on each of de-
fense we evaluate. Our attack can determine, with a success
rate over 83%, which of 100 web page a victim is visiting via
Tor, even if the victim uses randomized pipelining. Against
SSH tunnels, our attack could determine which web page the
victim was visiting over 75% of the time, even if the victim
used HTTPOS or sample-based traffic morphing. We also
evaluated our attack against a simulated Tor implementa-
tion that used randomized pipelining, padded all packets to

Attack Defense Database Size Success Rate

Our page fingerprinting attack Tor 100 83.7%
Ad hoc SVM [17] Tor 100 65.4%
Cosine Similarity [19] Tor 20 50%
Multinomial Naive-Bayes [10] Tor 100 4.4%
Our page fingerprinting attack Tor + rand. pipe. 100 87.3%
Ad hoc SVM [17] Tor + rand. pipe. 100 62.8%
Our page fingerprinting attack None (SSH) 100 91.6%
Ad hoc SVM [17] None (SSH) 100 92.0%
Multinomial Naive-Bayes [10] None (SSH) 100 81.9%

Table 2: The success rates of our attacks compared to relevant previous attacks. The results for the cosine
similarity classifier are taken from Shi, et al [19]. All other results are computed using our implementations
on our data sets.

1500 bytes, and added random cover traffic. Even with a
1-to-1 ratio between cover traffic and real traffic, our attack
could identify the victim’s web page over 50% of the time.

Ours is the first demonstration that application-level de-
fenses, such as HTTPOS and randomized pipelining, are
not secure. All previous attacks have only shown that de-
fenses based solely on packet padding and similar network-
level manipulations were not effective. We also compare
our attack to several previously published attacks, as shown
in Table 2. In 2009, Herrmann, et al., proposed a finger-
printing attack based on a Multinomial Naive-Bayes classi-
fier [10], which, in our experiments is able to identify which
web page a victim visited (out of a set of 100 possible pages)
with a success rate of less than 5%. Our attack has over an
80% success rate under similar conditions. Shi, et al., pro-
posed a fingerprinting attack based on cosine similarity in
2009 [19], but this method had a success rate of only 50%,
even when there were only 20 web pages to choose from.
In 2011, Panchenko, et al. published a classifier using ad
hoc HTTP-specific features, but it only achieves a 65% suc-
cess rate on our data set [17]. Our attack also works well
against simple SSH-tunneled traffic, achieving a 92% success
rate, comparable to the rate achieved by Panchenko et al.’s
classifier and the VNG++ classifier of Dyer et al. [6].

Our attack has two novel components. First, we propose
a new method for computing the similarity of packet traces
generated when a browser loads a web page. Our attack con-
verts traces into strings and uses the Damerau-Levenshtein
distance to compare them. Packet ordering is useful for
identifying web pages because the order of incoming and out-
going packets reveals information about the size of objects
referenced in a page and the order in which the browser re-
quests them. Damerau-Levenshtein distance is a good met-
ric because it allows insertions, deletions, substitutions, and
transpositions, operations that correspond well with network
packet drops, retransmissions, and re-orderings, and with
slight changes in a page’s content, as may occur with pages
dynamically generated from a template.

We then use Hidden Markov Models to extend our web
page classifier to a web site classifier. An attacker can use
these models to determine if a sequence of a victim’s page
loads are all from the same web site. The HMM captures
the link structure of the site and the probable paths that
users will follow among the pages when visiting the site.
The HMM uses our novel page fingerprinting technique to
classify the packet traces observed each time the user tran-
sitions from one page to another. The attacker can then use

the Forward algorithm to compute the probability that an
observed trace of packets was generated by a browser load-
ing pages from the target web site. Our site classifier was
able to identify when a user visited a target web site via Tor
with over 90% accuracy in our experiments.

Our results strongly suggest that the ad hoc approach to
traffic analysis defenses taken so far, in which researchers
design defenses in response to new attacks, will not lead
to secure systems. We advocate that researchers adopt a
provable security approach to traffic analysis defense design.

As a first step in this direction, we present an extension of
the BUFLO scheme proposed by Dyer et al. [6]. Our scheme
addresses practical, performance, and security shortcomings
of the original protocol. Our defense offers provable secu-
rity properties, but may incur higher bandwidth or latency
overhead than previously-proposed defenses.

This paper makes the following contributions:

• We show that recently proposed application-level de-
fenses, such as HTTPOS and randomized pipelining,
are not secure.

• We present a new web page fingerprinting attack that
significantly outperforms other proposed attacks on
these and other defenses. Our attack can determine
which web page, out of 100 possibilities, a victim is
visiting with over 80% success rate.

• We present a novel web site fingerprinting attack that
can identify, with over 90% accuracy, when a victim is
visiting a particular web site.

• We propose a traffic analysis defense with provable se-
curity properties.

2. RELATED WORK
Researchers have studied attacks on anonymity systems

from a variety of angles: active attacks that require subvert-
ing nodes in the anonymity network, active attacks that re-
quire injecting traffic into the network, and attacks based on
subverting web servers visited by anonymous users. Some of
these attacks focus on discovering the identity of the anony-
mous network user, others focus on discovering the servers
they interact with, and others attempt to uncover the vic-
tim’s route through the anonymizing network.

Web page fingerprinting attacks are an important class
of attacks because they are a good match for the attacker
scenario faced by many Tor users today: they use Tor to

evade censorship and persecution by a government or ISP
that wants to know their browsing habits and has the abil-
ity to monitor their internet connection, but cannot easily
infiltrate Tor nodes and web servers outside the country.

Fingerprinting attacks on encrypting tunnels. Sev-
eral researchers have developed web page fingerprinting at-
tacks on encrypted web traffic, as occurs when the victim
uses HTTPS, link-level encryption, such as WPA, or an en-
crypting tunnel such as SSH, a VPN, or IPSec [2, 4, 9, 10,
11, 13, 14, 20, 27, 28, 6]. Most attacks against these systems
focus on packet sizes, and many throw away all information
about packet ordering. Packet sizes do carry a lot of in-
formation in these scenarios, where data packets are simply
padded to a multiple of the block size (typically 16 bytes),
but Tor pads all data packets to a multiple of 512 bytes,
providing much less information. Most recently, Dyer et
al. performed a thorough survey of past attacks and past
network-level defenses and found that no network-level de-
fense was secure [6]. They did not evaluate application-level
defenses, such as HTTPOS or randomized pipelining.

The unpublished work of Danezis [4] is also worth pointing
out, since it uses HMMs to model entire web sites in much
the same way that we do. Lu, et al., propose a fingerprint
based on edit distance [14], but their fingerprints depend
heavily on packet size information, which is not available
when attacking Tor users. Yu, et al. [27] also proposed to use
HMMs to model web sites, but their observations consisted
only of the amount of time a victim spent viewing each page,
and hence their success rate was not very high.

Fingerprinting attacks on Tor. There is relatively lit-
tle research on fingerprinting attacks on Tor. Herrmann, et
al., used a Multinomial Naive Bayes classifier on features
that captured no information about packet ordering – only
packet sizes [10]. They applied this classifier to several en-
crypting tunnels, such as SSH, and achieved over 94% suc-
cess in recognizing packet traces from a set of 775 possible
web pages. When they applied this classifier to Tor, how-
ever, they had less than a 3% success rate on the same set
of web pages. In the same year, Shi, et al., proposed to use
cosine similarity on feature vectors that represented some
ordering information about packets, but they achieved only
a 50% success rate on a set of 20 web pages [19]. Panchenko,
et al., used ad hoc, HTTP-specific features with support vec-
tor machines to achieve a 54.61% success rate on the same
data set [17]. We re-implemented their attack and obtained
a 65.4% success rate on our data set of 100 web pages.

Proposed traffic analysis defenses. IP- and TCP-
level defense mechanisms involve padding packets, splitting
packets into multiple packets, and inserting dummy pack-
ets. Fu, et al., performed an early theoretical analysis of
constant-rate transmission of fixed-size packets as a defense
mechanism [8]. Surprisingly, they found that variations in
load at the sender caused detectable variations in transmis-
sion time, implying that transmitting at random intervals
provides better defense against analysis. Wright, et al., pro-
posed a technique for morphing one traffic pattern to look
like another pattern [26]. Their morphing algorithm only
mapped one packet size distribution onto another – it did
not change the sequencing of packets or handle correlations
between the sizes of successive packets. They also proposed
a variant of their defense that would only enlarge packets – it
never split or re-ordered packets. Since our attack works well
even without packet size information, it can defeat this ver-

sion of traffic morphing (our experiments achieved an 81%
success rate, described later). Lu, et al., later analyzed traf-
fic morphing, including an extension to morphing on the
distribution of packet size n-grams [14].

At NDSS 2011, Luo, et al., described HTTPOS, a col-
lection of HTTP- and TCP-level tricks for fooling traffic
analysis attacks previously described in the literature [15].
At the TCP level, they manipulate MSS options and and
window sizes to perturb the size and ordering of packets in
the TCP stream. At the HTTP level, they split single re-
quests into multiple possibly overlapping requests using the
HTTP Range feature, re-order some requests via pipelining,
generate some extra, unnecessary requests, and insert some
extra data into HTTP GET headers. Our attack is able to
defeat their prototype implementation of HTTPOS.

The Tor project recently proposed a traffic analysis de-
fense based on“randomized pipelining”, in which the browser
loads images and other embedded content in a random or-
der [18]. It also pipelines random subsets of these requests.
Even with this defense in place, our attack is able to identify
the target web page over 87% of the time in our experiments.

Other related work. A few previous papers are notable
for using similar techniques on similar problems. Wright,
et al., used HMMs for protocol classification of encrypted
TCP streams [25], i.e. to determine whether an encrypted
connection was an HTTP, SMTP, POP, IMAP, etc. session.
More recently, White, et al., used HMMs to recover partial
plaintext of encrypted VoIP conversations [24].

3. RECOGNIZING WEB PAGES
Web pages can consist of multiple objects, such as HTML

files, images, and flash objects, and browsers send separate
requests for each object. Browsers may use a combination
of multiple TCP connections and pipelining in order to load
pages more quickly [12]. Furthermore, browsers may begin
issuing requests for objects referenced in a web page before
they have finished loading that page.

Note, however, that there is some inherent stability in the
ordering of requests: browsers cannot request an object until
they have received the portion of a page that references it.
The sequence of requests and responses may vary each time
the browser loads the page: some requests may be delayed
due to CPU load or packet re-ordering, and some requests
(or responses) may be omitted if the browser has a copy of
the object in its cache. Dynamic web pages may also vary
slightly in the size and number of objects they contain, and
hence in the number of requests sent by the browser and the
total number of packets returned by the server.

Web privacy proxies, such as Tor and SSH, multiplex these
data transfers over a single, encrypted channel, so an at-
tacker can only see the size, direction, and timing of packets
in the multiplexed stream. Tor furthermore sends all data
in 512-byte cells, so packet sizes carry limited information.

These facts suggest a simple representation for the at-
tacker’s traffic observations, and a similarity metric the at-
tacker can use to compare traces. Our attack represents
a trace of ` packets as a vector t = (d1, . . . , d`), where
di = ±si, where si is the size of the ith packet and the
sign indicates the direction of the packet. Our attack com-
pares traces t and t′ using the Damerau-Levenshtein edit
distance [16], which is the length of the shortest sequence
of character insertions, deletions, substitutions, and trans-
positions required to transform t into t′. In the context of

our packet traces, these edits correspond to packet and re-
quest re-ordering, request omissions (e.g. due to caching),
and slight variations in the sizes of requests and responses.
Thus, this model and distance metric are a good match for
real network and HTTP-level behavior.

The Damerau-Levenshtein algorithm supports different costs
for each operation. Ideally, these costs would be tuned to
match the probability of packet drops, retransmissions, etc.
in the real network. We experimented with several cost
schemes; the impact was mild, but the attack yielded best
results when transpositions were 20 times cheaper than in-
sertions, deletions, and substitutions. We did not explore
this parameter thoroughly – a better approach would be to
learn optimal costs from the training data using the recently-
proposed method of Bellet, et al. [1].

We found that TCP ACK packets reduce the performance
of our classifier. This seems natural: inserting an ACK after
every packet essentially makes all traces look more similar –
they’re all half ACKs. Our Tor classifier deletes all 40 and
52 byte packets from the traces. Our SSH classifier deletes
all packets of size 84 or less.

Since Tor transmits data in 512-byte cells, our attack also
rounds all packet sizes up to a multiple of 600 (we use 600
instead of 512 in order to account for other inter-cell headers
and overhead). In some of the experiments described in
Section 6, we deleted all packet size information, i.e. traces
were reduced to sequences of ±1s.

Our attack normalizes the edit distance to compensate for
the large variation in the lengths of packet traces. If d(t, t′)
is the Damerau-Levenshtein edit distance, the attack uses

L(t, t′) =
d(t, t′)

min(|t|, |t′|)

where |t| is the number of packets in trace t. The classi-
fier normalizes by the minimum of the two lengths because,
if t and t′ are very different in length, then they are prob-
ably from different web pages. In this case, dividing by
min(|t|, |t′|) will result in a relatively large normalized dis-
tance, which is desirable. Other normalization factors, such
as |t|+ |t′| and max(|t|, |t′|), yielded worse results.

To build a classifier for recognizing encrypted, anonymized
page loads of 1 of n web pages, an attacker collects k traces
of each page, using the same privacy system, e.g. Tor or an
SSH proxy, in use by the victim. He then trains a support
vector machine [22] using a kernel based on edit distance:

K(t, t′) = exp(−γL(t, t′)2)

The γ parameter is used to normalize L so that it’s outputs
fall into a useful range. In our experiments, we found γ = 1
works well. We also adjusted the SVM cost of misclassifica-
tions to be 4, based on early experimental results.

Intuitively, an SVM kernel function acts as an inner prod-
uct on a vector space, allowing the SVM to measure the
angle between two vectors. Vectors with a small angle are
considered more similar by the SVM and likely to be placed
in the same class. The above kernel will assign traces with
a small distance an “inner product” close to 1, indicating a
small angle between them and hence high similarity. Traces
with a large distance will have kernel value close to 0, cor-
responding to a large angle and hence low similarity.

This basic approach can be customized in several ways,
depending on the application. For example, instead of view-
ing the observed network traffic as a sequence of packets, as

above, an attacker could view it as a sequence of 512-byte
Tor cells, or even as a sequence of bytes, if appropriate. He
would then generate a trace vector of ±1s for each cell or
byte of traffic. Finally, the attacker could encode timing in-
formation by inserting additional “pause” symbols into the
trace whenever there is a long gap between packets.

We briefly explored several of the above variations in our
attack on Tor. We tried representing traces as a sequence
of Tor cells instead of as a sequence of packets. Classifier
performance degraded slightly, suggesting that the Tor cells
are often grouped into packets in the same way each time a
page is loaded. We tried adding pause symbols to our traces,
but this made no contribution to classifier performance. An
early version of our attack classified traces using a nearest
neighbor algorithm: to classify trace t, the attacker com-
puted t∗ = argmint′ L(t, t′) over every trace in his database,
and guessed that t was from the same web page as t∗. This
attack correctly guessed a victim’s web page (out of 100
possibilities) over 60% of the time. Finally, we tried us-
ing a metric embedding to convert our variable-length trace
vectors into fixed-length vectors in a space using the `2-
norm, and then used an SVM to classify these vectors. This
performed substantially worse than the SVM classifier with
distance-based kernel described above.

4. RECOGNIZING WEB SITES
As the evaluation results in Section 6 will show, the classi-

fier described above is quite good at determining which of n
web pages a user is visiting, assuming the user is visiting one
of those n pages. However, attackers often want to answer
a slightly different question: “Is the user visiting one of a
small list of banned web sites?” There are three differences
between the previous scenario and this one: (1) there is no
prior assumption about which sites the user may be visiting;
(2) the attacker wants to know if the user is visiting any of
the pages on a banned web site; and (3) the attacker will
want a high degree of confidence in the answer.

To answer this type of question, an attacker can construct
a Hidden Markov Model for each target web site, and use
the forward algorithm to compute the log-likelihood that
a given packet trace would be generated by a user visiting
the target web site. If the log-likelihood is below a certain
threshold, then he can conclude that the user is visiting the
web site, otherwise she is not.

In our web site model, each web page corresponds to an
HMM state, and state transition probabilities represent the
probability that a user would navigate from one page to an-
other. These transition probabilities, along with the initial
state probabilities, can be derived from the link structure of
the web site and observations of real user behavior.

To complete the HMM, the attacker must define the set,
O, of observations and, for each observation o ∈ O and HMM
state s, the probability, Pr[o|s], that the HMM generates
observation o upon transitioning to state s. Our attack uses
the classifier from the previous section for this purpose. The
attacker collects k traces of each page in the target web site,
along with k traces of n other web pages chosen arbitrarily
(e.g. random web pages). These web pages form O, the set
of observations that may be generated by the HMM. He uses
the collected traces to build a classifier, C, as described in
the previous section. For each page, s, in the target web site,
he then collects ` additional traces and estimates Pr[o|s] as
the fraction of the ` traces from page s that C classifies as

page o. If no trace for a page s ever gets classified as a trace
for page o, then he sets Pr[o|s] to a small non-zero value.

Huge web sites may have thousands or even millions of
pages, so it would be impractical to make a model cover-
ing each page separately. Fortunately, most large sites have
pages that are constructed from templates. For example,
Amazon.com has page templates for search results, individ-
ual items, reviews, etc. To handle large web sites, an at-
tacker can create a model with states corresponding to page
templates rather than individual pages. A set of web pages
can be modeled as a single HMM state only if all the pages
produce similar probability distributions of observations. In
other words, pages p1 and p2 can be represented by a sin-
gle state s only if Pr[o|p1] ≈ Pr[o|p2] for all observations o.
Experimental results in Section 6 will show that this is the
case for pages generated from the same template.

HMM web site models can also handle pages that use
AJAX. If a page can make r different requests to a web
server, then the HMM can represent the page with r + 1
states s0, . . . , sr. State s0 corresponds to the initial page
load, and states s1, . . . , sr correspond to each AJAX transac-
tion the page may execute. The attacker then treats AJAX
operations like any other page load: he collects traces of the
transactions, adds them to the classifier described above,
and uses them to compute a probability distribution on ob-
servations. Other pages can only transition to s0, but the
transitions among states s0, . . . , sr, and transitions from the
sis to other pages, are determined by the structure of the
AJAX code. The probability of these transitions is deter-
mined by the code and by user behavior.

As a user traverses the pages of a web site, his browser col-
lects a cache of page elements it encounters. The attacker
must account for the browser cache when constructing an
HMM for the site. Cold pages are unlikely to have elements
cached in the browser. For example, a login page is typically
visited once at the beginning of a session, and hence is“cold”.
Warm pages may be loaded repeatedly or after the browser
has collected a large cache. A user’s Facebook profile page
is likely to be “warm”. An attacker can include both types
of page in his model. For example, when modeling a social
networking site, an attacker could model the login page as
cold, and he could include both a cold and warm version of
a user’s main profile page. The model would initially tran-
sition to the cold version of the profile page, but transitions
from other states would go to the warm version.

Users may also move between pages using their browser’s
“Back” and “Forward” buttons and by typing a URL directly
into the location bar. The attacker can model page loads
via the location bar by simply adding edges between states
of the HMM. The probability assigned to these transitions
can be derived from user behavior. Unfortunately, it is not
possible to precisely model the Back and Forward buttons
using an HMM, since that would require augmenting the
HMM with a stack. In most browsers, clicking the Back
button generates the same traffic trace as clicking a link
to the previous page, so the attacker can model the Back
button by adding reverse edges for every edge in the original
HMM. Note that, since clicking back necessarily is a “warm
cache” load of the previous page, the HMM back edge should
go to the HMM state representing a warm cache load of the
page, even if its corresponding forward edge is from a cold
cache state. The probability assigned to each back edge can
be derived from observing real users.

Note that this HMM-based attack assumes that users all
tend to navigate through a website in the same way. If
this assumption is not valid, e.g. if users have wildly differ-
ing habits when visiting the target site, then the attacker
has two options. First, if user’s tend to follow one of a
small set of different patterns, then the attacker can build
an HMM for each pattern. If each user tends to have a to-
tally unique pattern, then the attacker can assign uniform
transition probabilities. The HMM will not use any order-
ing information, but it will still be able to make classification
decisions based on the set of pages visited by the victim.

5. Congestion-Sensitive BUFLO
We now develop a traffic analysis defense with provable se-

curity properties. Our defense builds on the simple BUFLO
scheme defined by Dyer, et al. [6], but solves several prac-
tical, performance, and security problems of that scheme.
We are currently working to implement and evaluate the
Congestion-Sensitive BUFLO algorithm, so we provide only
a rough analysis of its performance and security below.

A (d, ρ, τ) BUFLO implementation transmits d-byte pack-
ets every ρ milliseconds, and continues this process for at
least τ milliseconds. If d bytes of application data are not
available when a packet is to be transmitted, then BUFLO
fills any extra space, possibly the entire packet, with junk
data that will be discarded at the other end. BUFLO as-
sumes the application can signal the beginning and end of
its communications. If, after τ milliseconds, the application
has not completed its transmissions, then BUFLO contin-
ues transmitting d-byte packets every ρ milliseconds until
the application signals that it is finished.

The basic BUFLO protocol has three shortcomings:

• High overhead. Depending on the configuration pa-
rameters, Dyer, et al. found that BUFLO has an
average bandwidth overhead between 93% and 419%.
Configurations with lower overhead offered much less
protection against the attacks surveyed in their paper.

• Low practicality. BUFLO has no provisions for re-
sponding to congestion or flow control signals.

• Unclear security. When the application takes longer
than τ milliseconds to finish, BUFLO reveals some in-
formation about the amount of data being communi-
cated. As a result, in some BUFLO configurations they
evaluated, an attacker could guess the victim’s target
web page (out of 128 pages) over 24% of the time.

The Congestion-Sensitive BUFLO algorithm, shown in
Figure 1, tunes its inter-packet transmission time, T , based
on the data source. The algorithm operates on an input
queue and an output queue. Data from the application
arrives and is placed into the input queue. Data in the
output queue is transmitted using a congestion- and flow-
control aware protocol, such as TCP. Congestion-Sensitive
BUFLO monitors the output queue every T milliseconds
and enqueues new data only when the output queue con-
tains fewer than S cells. If the network becomes congested,
then the sender process will stop transmitting (and remov-
ing) elements from the output queue. When the output
queue grows to size S, then Congestion-Sensitive BUFLO
stops enqueueing more items until the transmission process
is able to successfully transmit more cells (and remove them

procedure scbuflo(srcID)
T = lookup-speed(srcID)
ncells = 0
while sender-active() or !is-empty(input-queue) or

!is-power-of-two(ncells)
if size(output-queue) < S

if is-empty(input-queue)
enqueue(output-queue, junk-cell())

else
enqueue(output-queue, dequeue(input-queue))

ncells = ncells +1
sleep(T)

Figure 1: Pseudo-code for the basic Congestion-
Sensitive BUFLO algorithm. For simplicity, this
version assumes fixed-sized cells.

from the output queue). This algorithm still hides all infor-
mation about the timing of incoming cells, though, since the
sequence of cells enqueued in the output queue is indepen-
dent of the arrival of cells in the input queue.

The parameter T governs the maximum transmission rate
of the Congestion-Sensitive BUFLO algorithm. The algo-
rithm will transmit at most 1000/T cells per second, but
may transmit less if the outbound connection has a lower
bottleneck bandwidth. Therefore, one may view Congestion-
Sensitive BUFLO as a link, with bandwidth 1000/T , in the
overall network path between the sender and receiver. In
order to have good performance, Congestion-Sensitive BU-
FLO should not be the bottleneck link, so 1000/T should be
large, i.e. T should be small. On the other hand, in order
to avoid sending too many junk cells, T should be large.

We would ideally set T equal to the incoming packet inter-
arrival time. Thus, Congestion-Sensitive BUFLO would nei-
ther be the bottleneck link nor would it need to send a large
number of junk cells. The algorithm in Figure 1 selects T
using a database of data sources. In the context of web
browsing, a source ID could be the URL of the page being
loaded or simply the domain name of the server providing
the page. The database mapping IDs to T values would be
updated periodically based on recent measurements.

Tuning T to the source of the incoming data obviously
may reveal some information about the data source to an
attacker observing the outbound data link. Therefore, we
must quantize the possible values of T . One simple choice
would be to limit T to values of the form 2i, where i ∈ Z.

The only other side information revealed to the attacker
is, B, the number of transmitted cells, which Congestion-
Sensitive BUFLO quantizes to a power of 2. Although this
may in the worst case double the amount of data transmit-
ted, it can on average have a much lower overhead. Let x be
the number of cells that would be transmitted if Congestion-
Sensitive BUFLO stopped transmitting as soon as the sender
became inactive and the input queue was empty. If, for real
data sources, x is uniformly distributed between 2blog2(x)c

and 2blog2(x)c+1, then the average overhead of padding the
total transmission to 2blog2(x)c+1 cells is

∫ 2

1
2
x
dx < 1.39.

In summary, we can control the overhead of the Congestion-
Sensitive BUFLO algorithm by tuning T to the website be-
ing loaded, and padding all transmissions to a power of 2
cells will add an additional overhead of only 40%, which, as

our evaluation in Section 6 will show, is competitive with the
overheads of many of the schemes defeated in this paper.

We’ve presented Congestion-Sensitive BUFLO as a uni-
directional protocol. For web applications, each side will run
an instance of the Congestion-Sensitive BUFLO protocol.
Each instance will reveal two pieces of side-information to
an attacker: T and B. Thus, in total, the attacker is able to
observe only the O = (Tup, Tdown, Bup, Bdown), where each
of these values has been quantized to a power of two. This is
the provable security property provided by the Congestion-
Sensitive BUFLO algorithm.

This property does not directly imply anonymity. If a par-
ticular observation, O, is only generated by one web page in
the world, then an attacker observing O can conclude with
certainty that the victim is visiting that page. To evaluate
the security of Congestion-Sensitive BUFLO, we must sam-
ple the space of real web sites and confirm that each possible
observation can be generated by many different web sites.
This is ongoing work.

Finally, note that Congestion-Sensitive BUFLO does not
attempt to hide the fact that the victim is using Congestion-
Sensitive BUFLO and, in the context of censorship circum-
vention, simply using such a protocol may be sufficient to
attract the attention of censors. Note, however, that all traf-
fic analysis defenses must encrypt payload data. Hence, in
the current internet where encryption is far from universal,
all traffic analysis defenses are easily recognizable, so this
problem is not unique to Congestion-Sensitive BUFLO.

6. EVALUATION

6.1 Web page classifier
Our evaluation examines several factors that may affect

the performance of our classifier:

• How do traffic analysis defenses, such as HTTPOS,
randomized pipelining, Tor’s 512 byte cells, and traffic
morphing affect the performance of our classifier?

• How does this compare with other classifiers, such as
the Multinomial Naive Bayes classifier of Herrmann, et
al. [10] or the SVM classifier of Panchenko, et al. [17]?

• How is performance of our web page classifier affected
as the number of web pages goes up?

• How does the size of the training set affect the perfor-
mance of our web page classifier?

• Does the choice of the web pages in the classification
set affect the success rate of our web page classifier?

• Does the state of the browser cache affect the perfor-
mance of our classifier?

We additionally investigate the overheads of the defense
schemes evaluated in this paper.

6.1.1 Experimental Setup
We collected traces using several different computers with

slightly different versions of Ubuntu Linux – ranging from
9.10 to 10.10. We used Firefox 3.6.10-3.6.17 and Tor 0.2.1.30,
except one computer that used 0.2.2.21-alpha. All Firefox
plugins were disabled during data collection. Three of the
computers had 2.8GHz Intel Pentium CPUs and 2GB of

DLSVM Our attack. See Section 3.
Panchenko Ad hoc SVM classifier of Panchenko, et

al. [17], with the libsvm 3.1 implementa-
tion from WEKA 3.6.4 and the param-
eters recommended by Panchenko, et al.
(c = 217 and γ = 2−19).

MNB The Multinomial Naive Bayes classifier
proposed by Herrmann, et al. [10].

Table 3: The attacks evaluated in our experiments.

RAM, one computer had a 2GHz AMD Turion Mobile CPU
with 2GB of RAM. We scripted Firefox using the Ruby
watir-webdriver library and captured packets using tshark,
the command-line version of wireshark. For the SSH exper-
iments, we used OpenSSH 5.3p1. Our Tor clients used the
default configuration, unless otherwise noted. SSH tunnels
passed between two machines on the same local network.

Most of our experiments use data collected from the Alexa
Top 1000 web pages. We removed any web pages that failed
to load in Firefox (without Tor or any other proxy). If a
URL redirected to another location, we replaced it with its
redirect target. We then used the top 800 URLs from this
cleaned list. We collected traces from each web page in a
round-robin fashion. Unless otherwise specified, we cleared
the browser cache between each page load. We repeated
data collection with four different defense mechanisms, as
described below. We collected either 20 or 40 traces from
each URL, depending on the defense mechanism in use. We
ran most experiments with just the top 100 web pages in
our list – we only use full 800 URLs in one experiment to
test the scalability of our attack.

This is a “closed-world” evaluation. In such an evaluation,
there are only k web pages in the world. The attacker can
collect fingerprints for each page. The victim then chooses
one of the pages uniformly at random and loads it in his
browser. The attacker observes the victim’s packet trace
and attempts to guess which page the victim loaded. Thus,
the appropriate metric is the success rate of the attacker,
i.e. the percentage of time he guesses correctly. There is no
notion of false positive or false negative in this scenario. In
contrast, we will evaluate our web site classifier in an open
world setting, which does have such considerations.

6.1.2 Attacks and Defenses
Table 3 summarizes the attacks evaluated in this paper.
We test each attack against each of the following defenses.

For each defense, we also indicate the number of URLs we
collected, and the number of visits to each URL. We col-
lected four basic data sets:
None (SSH) (100x40). All HTTP traffic is sent through
an SSH tunnel.
SSH + HTTPOS (100x20). We obtained the prototype
implementation that the HTTPOS authors used to evaluate
HTTPOS in their paper. Based on some of our early results,
they added some additional randomization to their defense.
Note that HTTPOS includes both TCP- and HTTP-level
defenses. Some web pages caused HTTPOS to crash. We
detected crashes and attempted to load the page up to 3
times. If HTTPOS crashed all 3 times, then we added the
third, incomplete trace to our data set. Our final data set of

2000 traces contained 33 crash traces, so we do not believe
these had a significant effect on our results.
Tor (800x40). All HTTP traffic is tunneled through the
default Tor configuration. Most experiments only use the
top 100 web pages from this dataset.
Tor + randomized pipelining (100x40). The Tor project
has released a software bundle that includes Tor, the Polipo
proxy, and a patched version of Firefox that randomizes the
order and pipelining used to load images and other embed-
ded objects in a web page. We use the entire bundle as-is.

We then used these data sets to generate simulations of
other defenses, as described below.
SSH + Sample-based traffic morphing (100x20). We
apply traffic morphing to the traces obtained in the SSH ex-
periment. We morphed all traces to have the same packet
size distribution as http://flickr.com (selected randomly
from our data set). We morphed each direction indepen-
dently, as described in the traffic morphing paper. To morph
a trace, we repeatedly sampled packet sizes from the target
distribution and padded (or fragmented) packets in the trace
to match the sampled size. Thus our morphed traces have
the same packet size distribution as they would under opti-
mal traffic morphing, but the total number of packets trans-
mitted may be higher. The original traffic morphing paper
found that optimal traffic morphing and sample-based traf-
fic morphing had equal resilience to attack, so we believe
this is a reasonable evaluation of traffic morphing.
SSH packet count (100x40). We apply the same trans-
formation to our SSH traces as we did to our Tor traces, as
described above.
Tor + randomized pipelining + randomized cover
traffic (100x20). We insert additional cover traffic into
the traces collected for the Tor + randomized pipelining ex-
periment. We deleted all packet size information, i.e. traces
consisted of only ±1500s. Then, for an input trace of l
packets, we randomly, uniformly, and independently pick l
positions in the trace and insert a 1500 or −1500, with equal
probability, at each position.
Tor packet count (100x40). We remove all packet size
and direction information from our Tor traces. All that the
attacker can observe is the total number of packets trans-
mitted. This experiment explores how much information is
revealed by the size of the page being loaded.

6.1.3 Results
We ran each attack against each data set using stratified

10-fold cross validation. Figure 2 shows the results of these
experiments. The DLSVM attack generally outperforms the
Panchenko and MNB attacks. See Section 7 for discussion.

We performed an experiment to simulate the limits of de-
fenses based on re-ordering, pipelining, padding, and gen-
erating extraneous HTTP requests. We added randomized
cover traffic and padded all packets to 1500 bytes in the
traces in our Tor + randomized pipelining data set, as de-
scribed above. We varied the cover traffic overhead from 0%
to 100%. This experiment is intended to model an idealized
version of defenses like randomized pipelining and HTTPOS.
Figure 3 shows the influence of adding randomized cover
traffic on our attack. With no cover traffic, i.e. with ran-
domized pipelining and packets padded to 1500 bytes, our
attack was able to recognize the visited web page almost 80%
of the time. If we double the size of the trace by adding ex-

attacks-and-defenses

Page 1

None(SSH)

SSH + HTTPOS

SSH + sa
mple-based m

orphing

SSH packet c
ount

Tor (1
00x40)

Tor +
 ra

nd. p
ipe.

Tor +
 ra

nd. p
ipe. +

 ra
nd. cover

Tor p
acket c

ount
0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 r
a
te

DLSVM
Panchenko
MNB

Figure 2: Performance of our attack and previously proposed attacks against several proposed defenses.rand-cover

Page 1

0 0.25 0.5 0.75 1

Cover Traffic Overhead

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

e
ss

 R
a
te

Figure 3: Performance of our attack against Tor
with randomized pipelining, all packets padded to
1500 bytes, and varying amounts of cover traffic.

tra cover traffic, our attack can determine the target web
page over 50% the time.

Figure 4 shows the bandwidth overheads of the defenses
evaluated in this paper. All overheads are normalized to the
SSH traces. HTTPOS has the lowest overhead, 36%, but is
not secure. The other defenses have overhead of over 60%
compared to SSH.

Figure 5 shows that the DLSVM, Panchenko, and MNB
classifiers work well for both cold cache and warm cache page
loads. Although we have not directly evaluated our web page
classifier on a mixed cold/warm workload, the web site clas-
sifiers evaluated in the next section do use mixed workloads
and perform well. Figure 5 also shows that the classifiers
perform well on randomly selected web pages loaded through
Tor, not just the Alexa top 100 pages.

Figure 6(a) shows how the different attacks perform as the
number of web pages they must distinguish increases. Not
only does our attack outperform the Panchenko attack when
the number of candidate web pages is small, the gap widens
as the size of the candidate set increases. For example, our
attack can guess which web page, out of 800, that a Tor
user is visiting 70% of the time. The Panchenko attack had
a success rate of 40% on our set of 800 web pages.

Figure 6(b) shows how additional training data can im-

overhead

Page 1

SSH + HTTPOS

SSH + sample-based morphing

SSH packet count

Tor + rand. pipe.
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B
a
n
d

w
id

th
 o

v
e
rh

e
a
d

Figure 4: Bandwidth overheads of the defenses eval-
uated in this paper.

prove the success rate of our attack. Our attack provides
satisfactory results, even with a small training set.

6.2 Web site classifier

6.2.1 Experimental Setup
To evaluate the performance of our web site classifier, we

created models for two web sites censored by the Chinese
“Great Firewall” – Facebook [7] and IMDB [5] – and con-
structed page classifiers using the Alexa Top 99 pages, along
with the pages in our model for each site. We then collected
additional traces for the pages in our models, and ran those
traces through the model to compute the probability distri-
bution of classifier outputs for each page in each model, as
described in Section 4.

Our Facebook model covers the login page, the user’s
home page, and a generic “friend profile page”. It includes
warm and cold cache instances of the home and profile pages.
Facebook’s home and profile pages use javascript to auto-
matically fetch older items as the user scrolls down the page
of past notifications. Our model includes these events. The
IMDB model covers the IMDB home page, search results
page, movie page, and celebrity page. It includes warm
and cold cache states for each page. Transition probabil-
ities between states are artificial for both models – a real

success-vs-n

Page 1

50 150 250 350 450 550 650 750

Number of web pages

0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 r
a
te

DLSVM
Panchenko
MNB

(a)

success-vs-k

Page 1

4 8 12 16 20 24 28 32 36

Number of training instances per web page

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u
cc

e
ss

 r
a
te

N=50
N=100
N=200
N=300
N=400
N=500
N=600
N=700
N=800

(b)

Figure 6: (a) Performance of our Tor web page classifiers as a function of the number of possible web pages.
(b) Performance of our Tor web page classifier as a function of the training set size.success-vs-various

Page 1

Top 100 (cold) Top 100 (warm) Random 100
0

0.2

0.4

0.6

0.8

1

S
u
cc

e
ss

 r
a
te

DLSVM
Panchenko
MNB

Figure 5: Performance of our web page classifier
against Tor under various data collection scenarios.

attacker would derive these from observations of user behav-
ior and would likely have higher accuracy as a result. Initial
state probabilities are uniform, since the attacker may be-
gin eavesdropping in the middle of a user’s session. See our
technical report for complete specifications of the models[3].

To test our site classifiers, we need traces of the URLs vis-
ited by real users. We obtained URL traces for 25 subjects
from Eelco Herder. He collected these traces for his empiri-
cal study of web user behavior [23]. These traces, from users
in Europe, contain numerous visits to IMDB, but no visits
to Facebook. Therefore, we have generated artificial traces
for Facebook. Our artificial Facebook traces construct visits
to Facebook that follow our Facebook model, i.e. we pick a
starting Facebook page according to the initial state prob-
abilities of our model, and pick successive pages according
to the transition probabilities of our model. We then insert
these into real traces so that we create a trace consisting of
some Facebook visits and some non-Facebook visits. Since
the traces are generated from the same model that the classi-
fier uses, this is obviously an artificial experiment that over-
estimates the success rate of our attack. However, the IMDB
model underestimates the success rate due to the artificial
transition probabilities described above, so, together, these
two experiments provide rough bounds on the performance
of our attack.

We visited the URLs via Tor to generate packet traces
that the attacker would observe. Unfortunately, Facebook is

not compatible with Tor’s default configuration. By default,
Tor picks a new path every 10 minutes and, to Facebook, the
user appears to be coming from the last node in this path.
When the path changes, the user appears to have moved
from one computer to another – which may be thousands
of miles away – in 10 minutes. Facebook detects this and
logs the user out. Consequently, Tor users visiting Facebook
must alter the Tor configuration to use a fixed path. Thus,
we collected all our Facebook data using a fixed Tor path.

6.2.2 Results
Figures 7(a) and 7(b) show the histogram of log-likelihood

scores, under the Facebook and IMDB models, respectively,
of 6-page windows of the traces we collected. So, for exam-
ple, for every window of 6 page loads in the IMDB traces,
we ran the packet traces for those 6 page loads through the
IMDB model to compute a log-likelihood score. We only
considered windows that contained either all IMDB visits or
all non-IMDB visits – if a window had, say, 3 IMDB pages
and 3 non-IMDB pages, we discarded it from the histogram.
As Figure 7(a) shows, the non-Facebook windows are com-
pletely separated from the Facebook windows by our model,
meaning our classifier works perfectly on this data set. In
the IMDB experiment, the non-IMDB windows have, on av-
erage, a much higher log-likelihood, indicating that they are
not likely to be generated by our IMDB model.

Figure 8 shows the receiver operating curves (ROC) for
our Facebook and IMDB classifiers. These curves show the
trade-off in False Positive and True Positive rates for varying
thresholds of the classifier. As indicated by the histogram
in Figure 7(a), the Facebook classifier can achieve 0 false
positives and false negatives on our dataset. The IMDB
classifier can achieve a 7.9% FP rate and a 5.6% FN rate.

Figure 9 demonstrates how the log-likelihood score corre-
lates with user visits to the target web site over time. Note
that these graphs plot traces from multiple browsing sessions
– the sessions are separated by gaps in the traces. Only ses-
sions with at least 6 page loads, and at least one page load
from the target web site (Facebook or IMDB, respectively),
are included in the graphs. The thick, flat, pink line indi-
cates portions of the trace containing page loads from the
target web site, page loads from other sites have a thin flat
line. The blue lines with markers plot the log-likelihoods of
the six-page windows of page loads. As the graphs show, the

fb_histgram-vs-prob

Page 1

6 8 10 12 14 16 18 20 22 24 26 28 30 32

Log likelihood (Facebook)

0

10

20

30

40

50

60

70

80

C
o
u
n
t

Facebook
Other

(a)

imdb_histgram-vs-prob

Page 1

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Log likelihood (IMDB)

0

5

10

15

20

25

30

C
o
u
n
t

IMDB
Other

(b)

Figure 7: (a) Distribution of log-likelihood scores (from the Facebook model) for Facebook visits and non-
Facebook visits. (b) Distribution of log-likelihood scores (from the IMDB model) for IMDB visits and
non-IMDB visits.

roc-fb

Page 1

0 0.2 0.4 0.6 0.8 1

FPR

0.98

0.985

0.99

0.995

1

T
P
R

(a)

roc-imdb

Page 1

0 0.2 0.4 0.6 0.8 1

FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

(b)

Figure 8: Receiver operating curves for the (a) Facebook and (b) IMDB web site classifiers.

log-likelihood is below the threshold almost all the time that
the user is visiting the target web site, and above the thresh-
old otherwise. An attacker can therefore use our algorithms
to pinpoint when a user visits a target web site.

Figure 10 shows anecdotally that our intuition about tem-
plate matching is correct. We created a set of 99 random
web pages and 1 IMDB movie page (Harry Potter). We
then ran 100 trials of 4 other IMDB movie pages through
the classifier and recorded the pages to which the classifier
matched them. The other movie pages matched the Harry
Potter movie page 95% of the time, indicating that an at-
tacker can model template pages by using a single instance
as a representative of all instantiations of that template.

7. DISCUSSION
Our data support several conclusions:
Existing defenses are inadequate. Our attack was

able to identify the page being loaded over an SSH tunnel
with over 90% accuracy. Against Tor, it identified the web
page over 80% of the time. The recently proposed random-
ized pipelining defense did nothing to stop our attack. Our
attack is also able to identify web pages loaded over SSH,
even if the victim employs traffic morphing or HTTPOS.

Traffic analysis can infer user actions through sev-
eral different side channels. The Panchenko classifier
relies primarily on packet sizes and is able to achieve good

results. On the other hand, our classifier is able to achieve
good results even if all packet size information is removed
from the trace, as in the randomized cover traffic experi-
ment. Somewhat surprisingly, traffic analysis attacks based
solely on the number of packets transmitted (without direc-
tion information) can do better than random guessing.

The DLSVM classifier generally outperforms other
classifiers. It tied or beat the Panchenko classifier in all
cases except packet count experiments. Our attack is also
much more generic – it does not use ad hoc HTTP-related
features. Our page classifier differs from past work primarily
in that it does not reduce the packet traces to a fixed-length
feature vector. Rather, it passes the trace directly into
the classifier. The Damerau-Levenshtein-based classifier is
then able to consider multiple aspects of the observation –
packet sizes, directions, ordering, etc. – whereas previously-
proposed classifiers were only given a finite set of features
that had been manually identified by the researchers.

Our experiments suggest that our attack gleans informa-
tion from several sources, but that the most crucial feature
is the pattern of upstream/downstream transmissions. For
example, sample-based morphing destroys packet size in-
formation, but leaves ordering largely undisturbed. Con-
sequently, our attack works well against morphing. Ran-
domized pipelining destroys some, but not all, ordering in-
formation and leaves some packet size information. As a re-

fb_imdb-vs-pageload

Page 1

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304

Page Load

0

5

10

15

20

25

30

35

Lo
g
 L

ik
e
lih

o
o
d
 (

Fa
ce

b
o
o
k)

Log likelihood (Facebook)
Visits to Facebook
Visits to other sites

(a)

imdb-vs-pageload

Page 1

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209

Page Load

0

5

10

15

20

25

30

35

Lo
g
 L

ik
e
lih

o
o
d
 (

IM
D

B
)

Log likelihood (IMDB)
Visits to IMDB
Visits to other sites

(b)

Figure 9: Log-likelihood scores from the (a) IMDB model and (b) Facebook model for several real traces.
Note that the log-likelihood scores are usually below the threshold during visits to the target web site in the
trace and above the threshold during visits to other web sites.

sult, our attack is still able to do well. Adding randomized
cover traffic and hiding all packet size information obscures
the pattern of upstream and downstream transmissions, and
hence significantly degrades the performance of our attack.
Completely hiding the upstream/downstream information,
i.e. reducing the data set to just the number of packets
transmitted, almost stops our attack. The Panchenko attack
uses packet sizes as its primary feature, but incorporates sev-
eral ad hoc ordering-based features, so that its performance
profile is similar to ours. The MNB classifier has no order-
ing information, and so its performance drops precipitously
when packet size information is obscured.

Defenses based on randomized requests and cover
traffic are not likely to be effective. In the experiment
where we added cover traffic to the Tor + rand. pipe. data,
our attack achieved between a 50% and 80% success rate.
Furthermore, Figure 3 suggests that additional cover traffic
provides diminishing security returns.

This attack is practical in real settings. We assume
in our evaluation that the victim loads one page at a time
and that each page is loaded to completion. This does not al-
ways match real user behavior. For example, users may load
several pages in different tabs or navigate away from a page
before it finishes loading. However, there are two reasons to
believe that multiple tabs and similar cover-traffic-based de-
fenses will not protect users. First, our experiments evaluate
two different defenses that employ cover traffic. HTTPOS
injects extra HTTP requests into the clients request stream

– our attack is still very successful. Similarly, we evaluated
Tor with randomized pipelining and with random cover traf-
fic – again, our attack was successful. These two experiments
do not evaluate all possible ways of generating cover traffic,
but we have yet to find an effective, efficient cover-traffic-
based defense. Secondly, a defense scheme should protect
users no matter how they surf the web. Even if users do not
always load a single page at a time, they do so often enough
that it is a valid attack scenario and any defense that fails
to protect users in this scenario must be considered broken.

8. CONCLUSION
We have demonstrated that Tor is vulnerable to web page

and web site fingerprinting attacks. With these attacks, an
adversary, such as a local or national government, with the
power to monitor a Tor user’s internet connection can infer
which web sites the user is visiting. They could use this
information to censor the user’s internet connection or to
persecute them for visiting banned sites.

Previously proposed defenses, such as traffic morphing,
HTTPOS, and randomized pipelining, impose high costs but
do not stop our attack. Consequently, we proposed a new
defense with provable security properties, albeit with even
higher overhead.

Our attack has several novel features. It is successful even
if it ignores packet sizes. Packet sizes have been a crucial fea-
ture of almost all prior fingerprinting attacks against Tor and

counts-vs-varioussites

Page 1

Harry Potter (IMDB)
dammitalltohell battleon

robotwisdom
0

100

200

300

400

C
o
u
n
ts

Figure 10: The distribution of matching web pages
for various IMDB movie pages. IMDB movie pages
almost always match our template sample – the
IMDB movie page for Harry Potter. When they
didn’t match the Harry Potter page, they always
matched one of 3 other web pages out of our 100
distractor pages.

encrypting proxies (e.g. SSH). Although packet size reveals
a great deal of information about the data being transferred
over a simple encrypting tunnel, Tor conceals this informa-
tion by padding all data to 512-byte cells. Despite the fact
that it ignores packet sizes and uses a simple packet trace
comparison method based on the Damerau-Levenshtein dis-
tance, its performance on Tor is competitive with a state of
the art SVM-based classifier.

We also developed a web site classifier that can use packet
traces from a sequence of page loads performed by the victim
to infer his online activities. We modeled web sites using
HMMs, where each state corresponds to a page or class of
pages on the site, and observations are categorized using the
classifier developed above.

Acknowledgments
We thank Daniel Xiapu Luo for providing the HTTPOS
source code and invaluable technical support. We thank
Eelco Herder for providing us with the URL traces we used
to evaluate our web site classifier.

9. REFERENCES
[1] Aurelien Bellet, Amaury Habrard, and Marc Sebban. Good

edit similarity learning by loss minimization. Machine
Learning, 2012.

[2] George Bissias, Marc Liberatore, David Jensen, and Brian
Levine. Privacy vulnerabilities in encrypted http streams.
In Privacy Enhancing Technologies. 2006.

[3] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob
Johnson. Touching from a distance: Website fingerprinting
attacks and defenses. Technical Report SPLAT-TR-12-01,
Stony Brook University, 2012.

[4] George Danezis. Traffic analysis of the HTTP protocol over
TLS. http://research.microsoft.com/en-
us/um/people/gdane/papers/TLSanon.pdf.

[5] The Internet Movie Database. http://www.imdb.com/.

[6] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-boo, i still see you: Why
efficient traffic analysis countermeasures fail. In Proceedings
of the 33rd Annual IEEE Symposium on Security and
Privacy, 2012.

[7] Facebook. http://www.facebook.com/.

[8] X. Fu, B. Graham, R. Bettati, and W. Zhao. On
countermeasures to traffic analysis attacks. In Information
Assurance Workshop, 2003.

[9] Xun Gong, Negar Kiyavash, and Nikita Borisov.
Fingerprinting websites using remote traffic analysis. In
ACM CCS, 2010.

[10] Dominik Herrmann, Rolf Wendolsky, and Hannes
Federrath. Website fingerprinting: attacking popular
privacy enhancing technologies with the multinomial
naive-bayes classifier. In Proceedings of the 2009 ACM
workshop on Cloud computing security.

[11] Andrew Hintz. Fingerprinting websites using traffic
analysis. In Privacy Enhancing Technologies. 2003.

[12] The Internet Society. Hypertext Transfer Protocol –
HTTP/1.1, 1999.

[13] Marc Liberatore and Brian Neil Levine. Inferring the source
of encrypted http connections. In ACM CCS, 2006.

[14] Liming Lu, Ee-Chien Chang, and Mun Chan. Website
fingerprinting and identification using ordered feature
sequences. In ESORICS. 2010.

[15] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee,
Rocky K. C. Chang, and Roberto Perdisci. HTTPOS:
Sealing information leaks with browser-side obfuscation of
encrypted flows. In NDSS, 2011.

[16] Gonzalo Navarro. A guided tour to approximate string
matching. ACM Comput. Surv., 33:31–88, March 2001.

[17] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website fingerprinting in onion routing
based anonymization networks. In Proceedings of the 10th
Workshop on Privacy in the Electronic Society, 2011.

[18] Mike Perry. Experimental defense for website traffic
fingerprinting.
https://blog.torproject.org/blog/experimental-defense-
website-traffic-fingerprinting, September
2011.

[19] Yi Shi and Kanta Matsuura. Fingerprinting attack on the
Tor anonymity system. In Information and
Communications Security, volume 5927 of Lecture Notes in
Computer Science, pages 425–438. Springer Berlin /
Heidelberg, 2009.

[20] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell,
Venkata N. Padmanabhan, and Lili Qiu. Statistical
identification of encrypted web browsing traffic. In
Proceedings of the IEEE Symposium on Security and
Privacy, 2002.

[21] Tor project: Anonymity online.
https://www.torproject.org/, August 2011.

[22] Vladimir N. Vapnik. The nature of statistical learning
theory. Springer-Verlag New York, Inc., 1995.

[23] Harald Weinreich, Hartmut Obendorf, Eelco Herder, and
Matthias Mayer. Not quite the average: An empirical study
of web use. ACM Transactions on the Web, 1(2):26, 2 2008.

[24] Andrew M. White, Austin R. Matthews, Kevin Z. Snow,
and Fabian Monrose. Phonotactic reconstruction of
encrypted VoIP conversations: Hookt on fon-iks. In
Proceedings of the 32nd IEEE Symposium on Security and
Privacy, 2011.

[25] Charles Wright, Fabian Monrose, and Gerald M. Masson.
Hmm profiles for network traffic classification. In
Proceedings of the ACM workshop on Visualization and
data mining for computer security, 2004.

[26] Charles V. Wright, Scott E. Coull, and Fabian Monrose.
Traffic morphing: An efficient defense against statistical
traffic analysis. In NDSS, 2009.

[27] Shui Yu, Wanlei Zhou, Weijia Jia, and Jiankun Hu.
Attacking anonymous web browsing at local area networks
through browsing dynamics. The Computer Journal, 2011.

[28] Fan Zhang, Wenbo He, Xue Liu, and Patrick G. Bridges.
Inferring users’ online activities through traffic analysis. In
Proceedings of the Fourth ACM conference on Wireless
network security, 2011.

