
CLAPS: Client-Location-Aware Path Selection in Tor
Florentin Rochet

∗

UCLouvain

florentin.rochet@uclouvain.be

Ryan Wails

U.S. Naval Research Laboratory

ryan.wails@nrl.navy.mil

Aaron Johnson

U.S. Naval Research Laboratory

aaron.m.johnson@nrl.navy.mil

Prateek Mittal

Princeton University

pmittal@princeton.edu

Olivier Pereira

UCLouvain

olivier.pereira@uclouvain.be

ABSTRACT

Much research has investigated improving the security and per-

formance of Tor by having Tor clients choose paths through the

network in away that depends on the client’s location. However, this
approach has been demonstrated to lead to serious deanonymiza-

tion attacks. Moreover, we show how in some scenarios it can lead to

significant performance degradation. For example, we demonstrate

that using the recently-proposed Counter-RAPTOR [38] system

when guard bandwidth isn’t abundant could increase median down-

load times by 28.7%. We propose the CLAPS system for perform-

ing client-location-aware path selection, which fixes the known

security and performance issues of existing designs. We experimen-

tally compare the security and performance of CLAPS to Counter-

RAPTOR and DeNASA [5]. CLAPS puts a strict bound on the leak-

age of information about the client’s location, where the other

systems could completely reveal it after just a few connections.

It also guarantees a limit on the advantage that an adversary can

obtain by strategic relay placement, which we demonstrate to be

overwhelming against the other systems. Finally, due to a powerful

formalization of path selection as an optimization problem, CLAPS

is approaching or even exceeding the original goals of algorithms

to which it is applied, while solving their known deficiencies.

KEYWORDS

Tor; onion routing; anonymity

ACM Reference Format:

Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier

Pereira. 2020. CLAPS: Client-Location-Aware Path Selection in Tor. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’20), November 9–13, 2020, Virtual Event, USA. ACM,

New York, NY, USA, 17 pages. https://doi.org/10.1145/3372297.3417279

1 INTRODUCTION

Tor enables anonymous communications on the Internet by offering

a network of relays through which users can route their TCP traffic.

The most effective way of defeating the anonymity goal of Tor

is to run a traffic correlation attack [19, 25, 26, 32], in which an

∗
Florentin Rochet and Ryan Wails share first authorship.

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of the United States

government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only.

CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00

https://doi.org/10.1145/3372297.3417279

adversary is able to observe a connection between a user and its

guard (i.e., the first relay it uses) and to detect that same connection

between the destination and the exit (i.e., the last relay). This attack
is successful despite Tor’s use of encryption, as the low latency of

Tor, which is a core element of the design, makes it effective to

simply time sequences of packets and correlate those timings.

As a result, Tor’s relay selection strategy is critical to limit the

probability that an adversary could observe both the user-guard

traffic and the destination-exit traffic. One common approach to

improving relay selection is to consider the client’s location when

choosing relays [1, 4, 5, 10, 13, 18, 27, 31, 38], which allows a client

to avoid sending traffic over distant or dangerous paths. However,

recent work has shown two major security vulnerabilities of this

general approach: (1) it potentially leaks unbounded amounts of

information about the client’s location to an adversary that can

make and link partial observations of a user’s paths [18, 46], and

(2) it allows an adversary to strategically place relays in locations

that yield a higher chance of being selected by a user [47].

To add to these security problems, we show how existing propos-

als share a performance problem caused by not fully considering the

impact that location-awareness can have on Tor’s load balancing.

Tor currently computes relay weights that bias relay selection so

that relays expect a load proportional to their capacity. All location-

aware path-selection proposals effectively change these weights

such that load balancing is no longer guaranteed, which can lead to

some relays being overloaded (e.g., by being located in a location

preferred by users). We demonstrate this problem in the Counter-

RAPTOR [38] system, where our experiments show that the good

performance reported for Counter-RAPTOR depends on a fortu-

itous distribution of relays and users across locations. For example,

when guard bandwidth is not abundant, (a scenario that has hap-

pened many times over Tor’s existence), we show that downloads

of moderate size (2 MiB) increase for the median client from 9.43s

in current Tor to 12.14s.

In order to address the performance issues of previous works and

to solve their known security issues, we introduce CLAPS, a generic

framework for the design of client-location-aware path-selection

algorithms in Tor. CLAPS makes it possible to optimize path selec-

tion to achieve a primary location-aware goal, while still satisfy-

ing other critical security and performance criteria. CLAPS uses a

powerful linear-programming framework that can yield a solution

improving on prior work even with respect to that work’s own pri-

mary location-aware goal. Moreover, CLAPS introduces several new

tools for path selection, including (1) a method for location-aware

load balancing; (2) a generic technique to prevent location-aware

https://doi.org/10.1145/3372297.3417279
https://doi.org/10.1145/3372297.3417279

CCS ’20, November 9–13, 2020, Virtual Event, USA Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira

schemes from leaking user locations to a long-term adversary; and

(3) a new method to bound the risk of relay-placement attacks [47].

In order to demonstrate the effectiveness of CLAPS, we apply it

to two recent proposals: Counter-RAPTOR [38] and DeNASA [5].

Through experiments and analysis, we show that CLAPS leads to

improvements in both performance and security. Detailed Tor simu-

lations show that CLAPS eliminates the losses of performance these

prior systems experience in realistic network scenarios. Our analy-

sis shows that CLAPS can be configured to achieve any desired limit

on the amount of information leaked about the client’s location,

setting up a trade-off between this leakage and the main location-

aware goal. CLAPS similarly guarantees a configurable maximum

advantage from maliciously placing relays. Our analysis shows that

an adversary can obtain up to a 7× advantage in Counter-RAPTOR

and a 40× advantage in DeNASA, while we configure CLAPS with

a maximum advantage of just 2×.

We achieve these improvements while targeting the goals of

the original algorithm to which CLAPS is applied. Compared to

Counter-RAPTOR, CLAPS increases the median expected resilience

by 18%. When applied to DeNASA, CLAPS decreases the median

expected number of “Suspect ASes” (i.e., certain large and highly-

connected ASes) able to use traffic correlation to deanonymize

the client by a factor 2.3 compared to Vanilla Tor, where DeNASA

reduced the number by a factor 7.

Finally, we discovered performance and security problems in the

current entry guard design. We wrote a Tor proposal [30], further

discussed in Section 6, implemented it, and our code has been

released in Tor-0.4.4.1-alpha.

2 BACKGROUND AND MOTIVATION

The Tor network is comprised of over 6,000 relays and 9 Directory

Authorities, distributed around the world and run by individual

volunteers. The relays mainly forward user traffic. The Directory

Authorities establish an hourly network consensus, which is a docu-

ment containing the authoritative list of all relays in the network.

All relays and clients in the network maintain a copy of the current

consensus. To create an anonymous connection, a Tor client first

chooses a path, which consists of a sequence of three relays: guard,
middle, and exit. Then the client constructs a cryptographic circuit
over that path, encrypting messages once for each hop on the path

such that each one only can identify the previous and next hop.

In Tor’s current path-selection algorithm, which we call Vanilla
Tor, a client chooses relays for a path on the basis of per-relay flags
and weights determined from the consensus. The client will only

choose for the guard position those relays with the Guard flag,

which indicates that the relay has suitable bandwidth and stability

to serve as a guard. The client also will only choose for the exit

position a relay that allows connections to be made to the desti-

nation port and IP, which for many purposes, Tor approximates

with the Exit flag, indicating that the relay allows connections to

common Web ports (80 and 443). For the middle position, any relay

might be selected depending on a positional factor computed by the

Directory Authorities. The client chooses relays based on their con-

sensus weights, which are Tor’s estimates for the relay’s bandwidth

and enables overall load balancing. To choose a relay for position

p, the client scales the consensus weights by a positional factor

that depends on p and the relays’ flags, yielding a vanilla weight

v
p
r , and then selects relay r with probability v

p
r /

∑
s v

p
s . The posi-

tional factors are determined to maximize network throughput by

maximizing the minimum total vanilla weight in any position. Mak-

ing selection probabilities proportional to bandwidth balances the

traffic load such that all relays in the most bandwidth-constrained

positions are expected to use the same fraction of their bandwidth.

We will design CLAPS to obtain the same load-balancing property.

2.1 Selected Algorithms

In our evaluation (Section 4), we will apply CLAPS to two proposed

path-selection algorithms: Counter-RAPTOR [38] and DeNASA [5].

These algorithms are designed to defend against different threats,

and we briefly describe them.

Counter-RAPTOR [38]. This algorithm’s goal is to reduce the

likelihood to select a guard that would be vulnerable to a BGP

hijack/interception attack. For a client in the ith Autonomous Sys-

tem (AS) and the jth guard, it uses a pre-computed resilience value
Ri j ∈ [0, 1] that is the fraction of Internet ASes that cannot perform

a same-prefix BGP hijack or interception on the guard (for details,

see p. 3–5 of [38]). To provide some load balancing, the resilience

is combined with the guard’s bandwidth Bj . Bj is normalized to

B̄j = Bj/maxk Bk . Then the weight of the guard is computed as

w j = αRi j + (1 − α)B̄(j), where α ∈ [0, 1] is a blending parameter

(α = 0.5 is suggested). The selection probability is derived from the

weights of all guards:w j/
∑
k w j . Selecting middle relays and exit

relays are the same as in compared to Vanilla Tor.

DeNASA [5]. This algorithm’s goal is to defend Tor users against

passive end-to-end correlation attacks by an adversary that compro-

mises some Autonomous Systems (ASes). DeNASA only attempts to

avoid observation by certain “Suspect Ases”, which are the k most

common ASes on paths into and out of the Tor network. Qiu and

Gao AS-path inference [29] is used to determine the ASes between

clients and guards and between exits and destinations. DeNASA

is “destination-naive” on the exit side, and for each exit the system

estimates the likelihood that a given Suspect AS will be between it

and the destination, where common Internet destinations are used

for this estimation. DeNASA defines a strategy for guard selection

called g-select and a strategy for exit selection called e-select. In
g-select, the client repeatedly applies Vanilla Tor guard selection

until none of the top k = 2 Suspect ASes appear between the client

and guard. In e-select, after selecting a guard, the client applies

Vanilla Tor exit selection until an exit is selected such that for all

top k = 8 Suspect ASes the exit has a score of less than a parameter

τ (the authors suggest τ = 0.1).

2.2 Vulnerabilities in Path Selection

Client-location Leakage. Location-aware path-selection algorithms

choose a path based on the client location. Thus, simply observing

which relays a client selects can leak information about the client’s

location, reducing its anonymity. Prior work has demonstrated that

this leakage worsens when the adversary is able to partially ob-

serve multiple circuits and identify when they are created by the

same user [13, 18, 46]. These attacks can be efficient: in Astoria [27]

(a Tor path-selection algorithm designed to avoid AS-level traffic

correlation), an adversary running destination servers and some

relays can learn over 6 bits of entropy about the client’s origin

CLAPS: Client-Location-Aware Path Selection in Tor CCS ’20, November 9–13, 2020, Virtual Event, USA

AS [18]; against DeNASA, an adversary running relays can learn

over 14 bits of entropy about the client’s AS after observing just 2

guard selections [46]; and against Counter-RAPTOR, an adversary

running relays can learn over 5 bits of entropy about the client’s

AS within 10 guard selections [13].

Guard Placement Attacks. In the guard placement attack [5, 31,

47], the adversary places guard relays into the Tor network in po-

sitions that maximize their selection probability. Location-aware

algorithms are vulnerable to this attack, as clients prefer relays in

certain advantageous locations. Obtaining the guard relay enables

powerful deanonymization attacks such as website fingerprint-

ing [14, 36, 49] and end-to-end correlation [19]. Wan et al. [47]
demonstrate this attack on several algorithms: against LASTor [1]

(a path-selection algorithm to reduce latency), an adversary can

increase a guard’s selection probability by as much as 158× its

Vanilla Tor probability; against DeNASA, the attack can increase

selection probability by up to 964×; and against Counter-RAPTOR,

an adversary can increase a guard’s selection probability by over

13.6×. They then propose the θ -GP secure security definition, which
requires that an adversary’s selection probability is increased by at

most a factor θ over Vanilla Tor (or relative to some abstract “cost”).

In our work, we consider and defend against a generalized version

of this attack that applies to all relays, not just guards. We will re-

quire that relay selection in each position satisfies the θ -GP secure

notion, which we enforce via a bound on selection probability of θ
times the vanilla probability.

2.3 Performance Challenges in Path Selections

We observe that all existing location-aware path selection algo-

rithms disrupt the load balancing that Tor currently provides. Tor

carefully chooses positional and relay weights to ensure that net-

work throughput is maximized and that relays of a given type all

use the same fraction of their bandwidth in a given position. How-

ever, location-aware path-selection algorithms all use the locations

of clients and relays as another relay-weighting criterion, and the

re-weighting does not take into consideration how many clients

are coming from each location. Therefore, if it occurs that there

are a large number of clients from a given location and relatively

little relay capacity in locations they prefer, the preferred relays

will be overloaded, slowing down those clients and making overall

network throughput sub-optimal.

As a demonstration of this problem, we show via simulation that

this problem indeed exists in Counter-RAPTOR [38] (see Figure 11

in Appendix E.1). A reason that this problem has not previously

been acknowledged is that prior work experimentally evaluated

performance using the current distribution of relays and clients as

well as current load levels. While it may be that Tor performance at

the moment would not be impacted by these algorithms, that could

change at any time as client demand and relay supply change. More-

over, the problem may be hidden due to a current excess of relay

bandwidth [44], a situation that could also change as client demand

continues to grow. Our experiments shows that load imbalance

can cause reduced performance in Counter-RAPTOR when the Tor

network changes, specifically when demand increases in a given

location or when relay supply reduces in a given position. Another

example of the importance of considering multiple network loads

is offered by incentive research for anonymous communication,

in which a change of the network load has made state-of-the-art

prioritization techniques inefficient [8].

We argue that path-selection algorithms should be guaranteed

to provide good performance regardless of the network state, as

both will inevitably and unpredictably change. A path-selection

algorithm should be versatile to network changes and always reach

a state in which overall throughput is maximized and all relays in

the most-constrained positions are using the same fraction of their

bandwidth capacity.

Vanilla Tor’s strategy is versatile and modifies in which position

some relays are used upon network state changes [9]. In our design,

we show how to incorporate performance versatility into location-

aware path selection goal.

3 DESIGN

As we have described, existing proposals for location-aware path se-

lection do not maintain the load balancing necessary for reasonable

Tor performance. In addition, prior work has demonstrated that

these proposals in general suffer from two severe security vulnera-

bilities: (1) each path selection leaks more information about the

client’s location, and the adversary eventually learns the client’s

location [46]; and (2) malicious relays can be adversarially placed to

observe a disproportionately large fraction of network traffic [47].

We present the CLAPS system to solve all of these deficiencies.

CLAPS includes two high-level, novel components: (1) a generic

optimization framework that uses linear programs (LPs) to com-

pute relay weights that balance multiple security and performance

criteria, and (2) a location masking technique that guarantees only

limited information leaks about a client’s true location over time.

These strategies can be used independently; however, CLAPS uses

them both as they solve different and critical problemswith location-

aware path selection.

CLAPS can be viewed as a framework to improve existing sys-

tems for client-location-aware path selection. It solves the known

problems with these systems while still achieving their original

goals, thereby making them suitable candidates to replace Tor’s ex-

isting path-selection algorithm. CLAPS is flexible, which we demon-

strate by showing how it can be used to achieve the goals of two

proposed systems: Counter-RAPTOR [38] and DeNASA [5].

We first give on overview of the design of CLAPS before dis-

cussing details of its key assumptions and components. Notation is

introduced throughout and is also summarized in Appendix A.

3.1 Overview

CLAPS modifies Tor path selection by changing how relay weights

are computed and used. Location-awareness is achieved by com-

puting different sets of weights for different locations. Moreover,

clients mask their locations when using these weights to prevent

leaking their true location through path selections. Weights are

thus only needed for a set of mask locations. As in Vanilla Tor, the

Directory Authorities compute the weights and distribute them to

relays. Similarly, the Directory Authorities produce the masking

data and distribute them to the relays. Given a set of weights, a

client uses them to select relays for a circuit and then constructs

the circuit in the same way as in Vanilla Tor.

CCS ’20, November 9–13, 2020, Virtual Event, USA Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira

The Directory Authorities each compute weights and mask in-

formation on the basis of public data and the rest of the consensus

data. Mask data is recomputed at a low frequency (e.g., every year)

to limit information leakage across masks changes while allowing

for some changes in the underlying location data. Weights are re-

computed more frequently (e.g., every day) to accommodate churn

among the Tor network relays.

3.2 Locations and Densities

We suppose that there exists a public set of locations L. Depending

on the path-selection goals, these locations could, for example, be

the set of ASes on the Internet or a set of geographic regions. We

assume that each client exists in one location, and that each client

can determine its own location.

To make load balancing possible, we require that the Tor net-

work measure the density of clients in each location. That is, the

network must publish the relative amount of client traffic coming

from each location in L. As demonstrated in Sec. 2.3, without some

information about how much client demand exists in each location,

we cannot guarantee a load-balanced network while allowing path

selection to depend on the client location. We do not prescribe a

specific way to obtain these densities; instead, we observe that Tor

Metrics [44] already provides daily estimates of total users per coun-

try and suggest that either these techniques or more sophisticated

methods [23] can be used.

3.3 Weight Computation

CLAPS uses Tor’s consensus weights as the keymechanism through

which it achieves performance and security goals. Clients use

weights to select relays for circuits by randomly choosing from

among the relays with probabilities proportional to their weights.

As in Tor currently, the Directory Authorities compute a new set

of weights for each consensus (i.e., hourly).

CLAPS uses a novel optimization approach to compute these

weights that takes into account multiple goals. It uses linear pro-

grams (LPs) to formulate the weight computation as an optimization

problem. LPs provide a general framework for determining optimal

weights. A single objective function allow multiple performance

and security criteria to be balanced, while hard requirements can

be expressed using optimization constraints.

The LPs determine the relay weights for each position: guard,

middle, and exit. The positions are given some order, and then

weights for each position are computed in that order. Weights are

greedily optimized at each position to keep the LPs manageable in

size and ensure the constraints and objective remain linear.

For a given position, a different set of weights may be produced

for each combination of a client location and relay choices in the

previous circuit positions. This design allows us in principle to

produce an arbitrary path-selection distribution over circuits for

every client location, although for efficiency we generally only

consider a smaller number of locations and limited number of

previous positions. For example, as we describe in Section 4, we

adapt the DeNASA algorithm by computing a set of guard weights

for each client location, a single set of middle weights, and a set of

exit weights for each pair of client and guard location.

The optimization objective is to minimize the total penalty over

all clients. Penalties are an abstraction of the soft goals of path

selection, that is, goals that are not hard constraints. Penalty scores

may indicate a target threat model (e.g., susceptability to a BGP

hijack [38]) or a key performance goal (e.g., minimal latency [1]).

Penalty scores for relays in a given position are provided as inputs

to the optimization, where the scores may be different for each

combination of a location and the relays in previous positions.

Requirements for path selection are specified as LP constraints.

These requirements include those goals that take higher precedence

than minimizing penalties. CLAPS uses constraints to ensure that

(1) Tor remains load-balanced, (2) Tor is secure against relay place-

ment attacks (i.e., is θ -GP secure [47]), and (3) no client obtains

an expected penalty worse than it would under Vanilla Tor. These

additional criteria allow us to minimize penalties without reduc-

ing Tor throughput, becoming vulnerable to malicious relays, or

making Tor penalties worse for any individual client, respectively.

As a first step in ensuring load balancing, we use an initial LP,

LP1, that maximizes the minimum bandwidth across all positions.

Wewill require that the final weights provide this bandwidth in each

position to ensure maximimum total throughput. Let P = {g,m, e}
be the set of circuit positions (i.e., guard, middle, and exit). Let R be

the set of all relays, and let Rp be the subset of relays that can be

used in position p ∈ P (e.g., relays in Rg must have the Guard flag).

Let Br be the bandwidth of relay r ∈ R. LP1 outputs the maximum

bandwidth β that can be provided in all p ∈ P simultaneously. LP1

identifies a weight w
p
r for each relay r and position p such that∑

p∈P w
p
r ≤ Br and

∑
r ∈Rp w

p
r ≥ β . Note that LP1 computes relay

weights, but these are just used to determine β and are not be by

clients. For details, see Figure 7 in Appendix A.

Next, we determine weights for each position in the same order

π in which clients will choose relays for a circuit. We allow relay

weights for a given position to depend on the client’s location and

the relays chosen in previous positions. Doing so enables algorithms

such as choosing guards and exits that are in dissimilar locations

to avoid network-level adversaries. Generally, guards should be

selected independently of other positions (i.e., π1 = g) because they
are used long-term, but we do not require this (notably, Vanilla

Tor uses order π = (e, g,m)). To express the weights, we define an

extended set of positional locations Lπi for the ith position that

contains a potentially different element for each client location

and sequence of (i − 1) relays. The first position simply uses the

client locations: Lπ1
= L. For example, if the choice of exit should

depend on both the client and guard location, Le should contain

all pairs of client and guard locations. For convenience, define

Λ(ℓ, r) : Lπi × R → Lπi+1
as the map from the current positional

location ℓ to the next one after choosing r for the ith position.

The optimization problem in each position depends on several

external values. Let θp ≥ 1 be the maximum factor by which any

relay’s selection probability in position p can increase over Vanilla

Tor. This value limits the susceptability to a relay-placement attack.

θp should be set to the largest acceptable advantage factor for an

adversary in position p. Let Dℓ ≥ 0 be the client density in location

ℓ ∈ L, with
∑

ℓ Dℓ = 1.Dℓ is obtained from networkmeasurements.

Let Pπi
ℓr be the penalty for choosing relay r in position πi from ℓ ∈

Lπi . Higher penalty values indicate worse relays to choose. Penalty

values can be set to achieve differing performance or security goals,

but they must depend on public data.

CLAPS: Client-Location-Aware Path Selection in Tor CCS ’20, November 9–13, 2020, Virtual Event, USA

Minimize

∑
ℓ∈Lπi

∑
r ∈Rπi

Dπi
ℓ
Pπi
ℓrw

πi
ℓr (1)

Minimize the average penalty in position πi .

Subject to

∀j ≥ i, ℓ ∈ Lπi :

∑
r ∈R

w
πj
ℓr = β (2)

Set weight in each position to value β obtained from LP1.

∀j ≥ i, ℓ ∈ Lπi , r ∈ R :

w
πj
ℓr
β
≤

θπjv
πj
r∑

s ∈R v
πj
s

(3)

Limit relay-placement advantage to θπj .

∀ℓ ∈ Lπ1
:

∑
ℓ′∈Lπi

λℓℓ′
∑
r ∈R

wπi
ℓ′r P

πi
ℓ′r

β
≤ V πi

ℓ
(4)

Limit per-location average penalty to that of Vanilla Tor.

∀r ∈ R :

∑
j<i

ω
πj
r +

∑
j≥i

∑
ℓ∈Lπi

δπi
ℓ
w
πj
ℓr ≤ Br (5)

Limit relay’s total client weight to its bandwidth.

∀j ≥ i, ℓ ∈ Lπi , r ∈ R : w
πj
ℓr ≥ 0 (6)

Require weights to be non-negative.

∀j ≥ i, r ∈ R\Rπj : w
p
r = 0 (7)

Set weight to zero when inadmissible in the position.

Figure 1: Linear program LP2 that determines weights for the ith
position (πi).

For convenience, we also define several values to help us compute

weights for the ith position. These values depend onweights already
having been computed for the previous i − 1 positions. Let λℓℓ′ be
the probability that a client in ℓ ∈ Lπj chooses relays for the jth to

(i −1)st positions that yield positional location ℓ′ ∈ Lπi . Let δ
πi
ℓ

be

the client density over positional locations Lπi , computed as the

expected density in a location after choosing the first i − 1 relays.

Let ωπi
r be the sum over positional locations of the weights of relay

r in position πi weighted by densities δπi
ℓ
. Finally, let V πi

ℓ
be the

expected penalty in πi from ℓ ∈ Lπj when using the vanilla weights
to choose positions from j to i according to π . See Appendix A for

precise definitions of these values.

The linear program LP2 (Figure 1) is solved to determine the

weights in position πi . It outputs a weight w
πi
ℓr for each ℓ ∈ Lπi

and r ∈ R, which is the weight used by a client in location ℓ for

relay r . The Directory Authorities solve an instance of LP2 for each

circuit position in P in the order they appear in π .
LP2 minimizes the expected penalty of the average client in

position πi , subject to several constraints. Constraint 2 maximizes

network throughput by ensuring that the total bandwidth allocated

to the position is equal to the amount β determined in LP1. The

intuition behind this constraint is to see the cumulative bandwidth

of relays in each position of the path as a pipe through which data

flows. We want the three pipes to have the same size, similar to

Vanilla Tor’s bandwidth-weighed design.

Constraint 3 requires that the selection probability of any relay is

at most θπi times its probability in Vanilla Tor (recall that v
p
r is the

vanilla weight of relay r in position p). We note that doing so guar-

antees that CLAPS satisfies θ -GP-security [47] in all positions, not
just at the guard. Constraint 4 guarantees that the expected penalty

from any location is at most the expected penalty in Vanilla Tor.

The LP objective does minimize the penalty for the average client,

but this constraint provides a worst-case guarantee that no client

will be worse off than under current Tor. Worst-case guarantees of

this sort are important to provide fairness and minimize adoption

concerns. Constraint 5 enforces relay bandwidth limits. In combi-

nation with Constraint 2, it ensures that traffic is load balanced in

the sense that no relay is fully loaded until maximum total network

throughput is achieved, thus preventing the performance problems

discussed in Section 2. Finally, Constraints 6 and 7 guarantee that

weights are non-negative and respect position flags.

Relay weightw
p
ℓr can be interpreted as the amount of r ’s band-

width that is allocated to position p from clients in ℓ. More precisely,

for total traffic from clients in ℓ of βℓ ≤ β ,w
p
ℓr βℓ/β of that traffic

will be forwarded by r in positionp, in expectation. Thus we can see
that CLAPS allows per-relay allocation of bandwidth across posi-

tions, in contrast to all previous systems, which follow Vanilla Tor’s

positional allocation based only the four relay classes defined by the

Guard and Exit flags. This flexibility gives CLAPS the capability to

improve even on the original goals of existing designs. For example,

CLAPS may achieve better guard resilience than Counter-RAPTOR

itself, as it can use more high-resilience relays in the guard position

and prefer low-resilience relays in the less-critical middle position.

LP2 also includes weights w
πj
ℓr for positions j > i . Including

these weights ensures that greedily optimizing the current position

does not prevent weights for future positions from existing that

satisfy the LP constraints. Note that these variables are defined for

ℓ ∈ Lπi and not ℓ ∈ Lπj . This is not a limitation for Constraints 2,

3, 5, 6, or 7, because any satisfying weights for Lπi can be turned

into one for Lπj simply by taking their weighted sum with the λℓℓ′
probabilities as weights, and vice versa. However, this equivalence

is not necessarily true for Constraint 4 because it contains penalty

values that depend on the location. Therefore, we initially seek a

solution satisfying Constraint 4 only for the given position i . If one
is not found, we backtrack to previous positions (trying one at a

time) and solve the LPs again after adding extra constraints for

positions j > i that their weights are proportional to the vanilla

weights (Appendix A). These extra constraints only enforce that

such weights could be a solution, not that they will be the output

of the later LPs. This addition is unnecessarily restrictive, which

is why we only add it if an initial solution is not found (in our

experiments, we never fall back to this case). This algorithm is

guaranteed to find a solution as the vanilla weights always satisfy

the constraints in all positions (after normalizing to sum to β).

3.4 Location Masking

We describe how to use location masking with any location-aware

path-selection algorithm to limit leakage of the client location over

time. In this technique, each client chooses a location mask and

then performs path selection as if that mask were its true location.

Thus its choices of paths can at most reveal its location mask, even

if the adversary can observe many such choices over time. As long

CCS ’20, November 9–13, 2020, Virtual Event, USA Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira

as the choice of mask does not leak much information about the

true client location, the client obtains a long-term defense against

the deanonymization demonstrated in the Tempest attacks [46].

Masks are chosen that balance several goals: (1) the mask should

be similar to the true location so that the client continues to benefit

from the location-awareness of path selection, (2) the mask should

not reveal too much about the true location, and (3) the mask

should be used by many users and thus not serve as a pseudonym.

We abstract the first goal using a distance function d that takes

a pair of locations and returns a number indicating how similar

they are for purposes of a given location-aware path-selection

algorithm. For example, in Counter-RAPTOR, a reasonable distance

function is the average difference between the resilience values of

the available guards.We abstract the second goal with an anonymity

function α that takes a set of locations and returns a vector of

scores indicating the degree of anonymity along several different

dimensions. For example, anonymity dimensions may include the

number of locations and the number of users. For the third goal,

we will ensure a minimum density of clients using each mask.

We further introduce the notion of a location guard, which is a

mask chosen by a client and maintained for a long time (e.g., several

years). Location guards are needed because location masks must

get updated as distances between locations vary over time. For

example, distances based on BGP routes will change as the Internet

topology changes. Thus, clients need to update their masks as the

system discards old ones, but each new mask selection would allow

more information to leak about the true location. To solve this,

each client maintains a location guard and chooses a mask based

on its guard rather than its true location. Thus, even as changing

conditions cause mask updates, clients still limit leakage about their

locations to only what is implied by their guards.

We cluster locations to define masks. Clusters are chosen to

minimize intra-cluster distances as measured by d while ensuring

that each cluster provides a minimal level of anonymity in every

dimension, including a minimum client density. All clients with

a location guard in a given cluster use as their mask the member

that is the closest on average to the entire cluster. Let L be the

set of client locations (e.g., all ASes on the Internet). Let A ∈ Ra

be the set of anonymity thresholds for the clusters. The Cluster

algorithm is detailed in Figure 2. It modifies a standard greedy

algorithm for clustering by requiring that the cluster exceed the

anonymity thresholds, which it finds by gradually tightening a

limit ϕ on the amount of anonymity increase needed in each greedy

selection. Moreover, it attempts to maximize the number of clusters,

as in the larger CLAPS system, more masks creates a larger space

of possible weights when trying to minimize the location-aware

objective. Cluster starts with one cluster and thus always finds a

solution as long as the anonymity constraints are satisfied by the

whole set of locations.

3.5 Circuit Construction

Clients in CLAPS maintain Directory Guards as in Vanilla Tor.

These guards are just used to distribute network information and

thus need not be selected using location information. To obtain

its location mask, a client requests the mask corresponding to its

location guard from one of its Directory Guards, which can already

observe the client’s location. Similarly, a client can obtain from a

Input: L, a set of locations that will be clustered.
Output: C, a clustering of L; and M , the mask of each cluster

Procedure:

C ← ∅, M ← ∅
for n ← 1 to |L | do

for ϕ ∈ (1, 1 − 1/ |L |, . . . , 1/ |L |) do
(1) Initialize C′ with n clusters and its masks to arbitrary

distinct locations M ′ ← (ℓ1, . . . ℓn).

(2) Until all locations have been assigned: Select cluster
Ci ∈ C′ with lowest anonymity score α (C)j . Take the top
fraction ϕ of unassigned locations, ranked by the amount

that they would increase Ci ’s minimum anonymity score,

and from them select the location ℓ that minimizes distance

d (M ′i , ℓ). Assign ℓ to Ci .
(3) For each cluster, if the mask doesn’t minimize the average

distance between the mask and all cluster locations, update

it to a minimizing location.

(4) If a cluster mask changed in Step (3) and the iteration limit

hasn’t been exceeded, return to Step (2) with the new masks.

if ∀C ∈ C′, 1 ≤ i ≤ a : α (C)i ≥ Ai then break

if ∃C ∈ C′, 1 ≤ i ≤ a : α (C)i < Ai then break

else C ← C′, M ← M ′

return (C, M)

Figure 2: Cluster algorithm

Directory Guard all relayweights for its locationmask. However, we

can improve the efficiency when the first position is the guard (i.e.,

π1 = g) by obtaining any weights that depend on the entry guard

from the guard itself; e.g., in DeNASA, the exit weights depend on

the guard AS, and the client can obtain exactly the exit weights

needed for its guards by requesting one set through each guard.

Circuits are constructed in CLAPS using the Tor’s current cryp-

tographic protocol. CLAPS only changes the way that the relays

for the circuit are chosen. Relays are chosen for each position in a

circuit in the order they appear in π . After choosing the first i − 1

positions, the client is in some positional location ℓ ∈ Lπi , and re-

lay r is chosen for the ith position with probabilitywπi
ℓr /β . If πi = g,

then the relay chooses a new guard if it hasn’t selected them all yet.

Once the relay has chosen its guards, it selects one for its circuit

from among its existing guards with uniform probability. Uniform

selection prevents double-weighting guards when clients maintain

multiple guards (the default number is currently one). However, it

is not suitable with location-aware guard selection if the guard is

not selected first, as guards are held long-term and may have high

penalties with the current partially-constructed circuit. Therefore,

it should be that π1 = g unless guard selection is location-unaware

(e.g., Vanilla Tor). After choosing relays for all positions, CLAPS

returns to Tor’s existing algorithm, which applies some restrictions,

such as the disallowing a circuit to contain multiple relays in the

same /16. Path selection is retried if the current choice violates a

restriction.

4 EVALUATION

In this section, we empirically evaluate the security and perfor-

mance properties of location-aware path selection algorithms gen-

erated by the CLAPS framework. We present two algorithms: (1)

CLAPS-CR, a path selection algorithm designed to maximize chosen

CLAPS: Client-Location-Aware Path Selection in Tor CCS ’20, November 9–13, 2020, Virtual Event, USA

guards’ hijack resilience, and (2) CLAPS-DN, a path selection algo-

rithm designed to minimize the probability that a given “suspect

AS” is simultaneously present on both the client-guard network

path and exit-destination network path. These algorithms goals’

mirror those of Counter-RAPTOR [38] and DeNASA [5]; as such,

we can use these systems as reference points for comparison.

4.1 Implementation

We implemented all of the CLAPS algorithms in a approximately

ten-thousand lines of C, C++, and Python. The clustering algorithm

was implemented in C++ for efficiency. We use Python to define

CLAPS LPs and use the CLP linear program solver to solve the

generated LPs [7]. We implemented CLAPS in Tor v0.3.5.8 so that

it could be simulated in the Shadow simulator. Our source code is

available online.
1

4.2 CLAPS-CR

A few algorithm inputs must be defined in order to run CLAPS and

obtain a path selection distribution. Cluster (Figure 2) requires a

set of locations to cluster L, the choice of a distance function d , an
anonymity function α , and a minimum anonymity score A. The LP
described in Section 3.3 requires the definition of positional loca-

tions Lπi , a parameter for relay placement θ , and penalty matrices

Pπi where each entry Pπi
ℓr corresponds to the penalty of a client in

location ℓ choosing relay r for position πi in a circuit. Below we

discuss how we chose inputs to instantiate CLAPS-CR.

4.2.1 Path-Selection Goal. In CLAPS-CR, our objective is to have

clients choose guard relays with high hijack resilience. Recall from

Section 2 that a guard’s hijack resilience depends both on the client’s

and guard’s autonomous system of origin. Let Rℓ,r be the hijack

resilience of relay r when used from client location ℓ.

4.2.2 Clustering Inputs. First, we must decide on a set of locations

that are input into the clustering algorithm. Following Sun et al.,

we consider a client’s autonomous system to be its location [38].

Next, we must choose dCR , the distance function used in the

location clustering algorithm. Recall that all locations within a

cluster are restricted to use the same relay selection distribution;

the clustering algorithm will attempt to minimize the distance be-

tween locations in the same cluster. Thus, a reasonable distance

function will assign low distances to pairs of client locations that

have similar preferences for relays. Accordingly, we define dCR
to be sum, across all guard relays, of the bandwidth-weighted re-

silience disagreement between two locations. This is expressed as

dCR (ℓ1, ℓ2) = Σr ∈RgBr |Rℓ1,r − Rℓ2,r |.

This distance is minimized when Rℓ1,r ≃ Rℓ2,r for all guard re-

lays, i.e., when ℓ1 and ℓ2 agree on which relays are hijack resilient.

We weight the magnitude of the disagreement by the relay’s band-

width. With this weighting, disagreements about the resilience of

high-bandwidth guard relays are more significant than disagree-

ments about low-bandwidth relays.

Then, we must define an anonymity function αCR that maps

a set of locations to an anonymity score. We consider three dif-

ferent anonymity criteria when defining αCR : (1) the total client
density in C , defined as Size(C) = Σℓ∈CDℓ , (2) the entropy of the

1
https://github.com/orgs/CLAPS-CCS2020/

distribution of users across locations in the cluster, and (3) the en-

tropy of the distribution of users across countries in the cluster.

The entropy of the distribution of users across locations is com-

puted as EL(C) = −Σℓ∈C
[
Dℓ/Size(C) · log

2
(Dℓ/Size(C))

]
; EC(C),

the entropy of the distribution of users across countries, is defined

similarly. All together, we define αCR (C) = (Size(C),EL(C),EC(C)).
The cluster size criterion allows us to concretely specify the min-

imum number of clients per cluster. The entropy-based criteria

allow us to quantify anonymity with respect to an adversary who

has no a priori knowledge of a given client’s location/country and

ensures that we provide sufficient anonymity over these sensitive

attributes [34, 46].

Finally, we must define ACR ∈ R3
, the minimum anonymity

score that must be achieved by each cluster in a valid clustering.

We set the components of ACR relative to the current Tor network.

In this work, we allow each cluster to reduce Tor’s anonymity by

a factor up to 20; we will show that the clusters produced at this

reduction-level still provide strong anonymity. Let L be the set

of all client locations present in the Tor network today. We set

ACR =
(
Size(L)/20,EL(L) − log

2
(20),EC(L) − log

2
(20)

)
.

After running the LP, we obtain a clustering C = {Ci }
n
i=1

.

4.2.3 LP Inputs. Sequentially, the LPs are defined and executed

after the clustering is complete, so we can use outputs from the

clustering algorithm as inputs to our LPs. In CLAPS-CR, we will

be obtaining an optimized guard-selection distribution for each

cluster.

For Lg, the set of positional locations input into the guard-relay

LP, we will use {Ci }
n
i=1

, the set of clusters. This will define one

guard-selection distribution for each cluster.

Next, we must define P
g
Ci r

, the penalty of cluster Ci choosing

relay r as a guard. Note that a penalty matrix must be defined only

for each positional location inLg and not the total set of locations L.

We define P
g
Ci r
= Σℓ∈Ci

[
Dℓ(1 − Rℓ,r)

]
; in other words, we define

the penalty for relay r to be the weighted linear combination of

the complement of hijack resilience for each client location in the

cluster. Since the LP minimizes penalty, hijack resilience will be

maximized. Weighting each penalty value by client density allows

us to provide more benefit to client locations with many Tor users;

note that, by our constraint, we will not make security worse for

any low-density client-locations whose penalties are not as heavily

reflected in this sum.

Finally, we must choose a value θg to provide guard placement

attack security. We find that θ has a large influence on the quality

of solutions we obtain. We explore the values recommended by

Wan et el[47]: θg ∈ {1.25, 2, 5}.

When defining middle and exit relay distributions for CLAPS-

CR, we set Lm = Le = {⊥}, P
m
⊥r = Pe⊥r = 1, and θm = θe = ∞.

These trivial settings indicate that all CLAPS-CR clients will use

middle and exit weights proportional to Vanilla Tor middle and exit

weights while maintaining the network’s load balance.

4.3 CLAPS-DN

4.3.1 Path-Selection Goal. In CLAPS-DN, our objective is to have

clients choose relays for circuits that avoid a set of suspect ASeswho

are likely to be on the client-guard and exit-destination paths when

building circuits in Vanilla Tor. We use the same set of eight suspect

ASes S8 = {AS1299, AS3356, AS6939, AS174, AS2914, AS3257,

https://github.com/orgs/CLAPS-CCS2020/

CCS ’20, November 9–13, 2020, Virtual Event, USA Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira

AS6453, AS9002} identified by Barton et al. [5]. Let S2 = {AS1299,

AS3356} (the two ASes avoided by DeNASA’s g-select algorithm).

4.3.2 Clustering Inputs. Similar to CLAPS-CR, we use clients’ au-

tonomous systems as the set of locations that will be clustered; in

part, a client’s autonomous system determines the suspects on the

client-guard paths, as was the case for CLAPS-CR.

We define dDN (ℓ1, ℓ2) = Σr ∈RgΣs ∈S8

[
Br |I

s
ℓ1,r
− I s

ℓ2,r
|

]
where

I s
ℓ,r is an indicator variable such that I s

ℓ,r = 1 if suspect AS s

in on the link between client location ℓ and relays r ; otherwise,
I s
ℓ,r = 0. Similar to the distance function defined for CLAPS-CR, this

distance function captures the magnitude of disagreement about

which suspects are present to the guards in the network.

We set αDN = αCR and ADN = ACR . Both algorithms use

autonomous systems for the set of client locations being clustered,

and so we can use the same anonymity criterion for both algorithms.

4.3.3 LP Inputs. Unlike CLAPS-CR, in CLAPS-DN we will define

non-trivial exit relay penalties that will mimic the design of De-

NASA. First, to obtain the guard selections distributions for each

cluster, we set the initial positional locations to Lg = {Ci }
n
i=1

.

We define P
g
Ci r
= Σℓ∈Ci

[
Dℓ ·max({I s

ℓ,r }s ∈S2
)

]
; i.e., the penalty

for relay r is the density-weighted combination of max({I s
ℓ,r }s ∈S2

)

for each location ℓ in the cluster. This penalty matches DeNASA’s

g-select algorithm, which selects guards only if neither suspect AS

in S2 is on the client-guard link.

We also use a CLAPS LP to generate exit selection distributions

that avoid suspect ASes. One exit-selection distribution is generated

for each cluster-guard relay pair. So, for this LP, we set the set of

positional locations to Le = {(Ci ,д)} for 1 ≤ i ≤ n and д ∈ Rg.
Let Pr[s ∈ (e ↔ D)] be probability that suspect AS s is on the link

between exit e and destination D, where the randomness is taken

over uniform choice of D from among the Top 200 Alexa websites

[5]. To match DeNASA’s e-select algorithm, we define Pe
(Ci ,д)r

=

Σℓ∈Ci Σs ∈S8

[
Dℓ · I

s
ℓ,д · Pr[s ∈ (r ↔ D)]

]
. In other words, for each

client location and guard ℓ,д, we compute the probability that a

suspect on the client-guard link is present on an exit-destination

link. The penalty for a relay r in the exit position is the weighted

combination of this value for each ℓ ∈ Ci .
For simplicity, we set θg = θe and run simulations for the recom-

mended values of θ (1.25, 2, and 5).

Similar to CLAPS-CR, Lm = {⊥}, P
m
⊥r = 1, and θm = ∞. These

settings indicate the CLAPS-DN clients should select middle re-

lays with weights proportional to Vanilla Tor while respecting the

network load balance.

4.4 Security Evaluation

4.4.1 Datasets & Methodology. We empirically evaluated the se-

curity of CLAPS-CR and CLAPS-DN through a series of analyses

and simulations on archived Tor and Internet data. We used Tor

consensus documents and server descriptors from 15 January 2019

[42]; at this time, there were approximately 6,600 relays in the

Tor network. We used Route Views Prefix-to-AS mappings from

15 January 2019 to map relays to their autonomous systems [33].

CAIDA’s AS Organization data from 1 January 2019 was used to

map autonomous systems to their organization and country [40].

We used CAIDA’s AS relationship topology from January 2019 in

Min Q1 Q2 Q3 Max

CLAPS-CR (14 Clusters)

Density 5.2% 5.2% 5.3% 8.7% 14%

Num. ASes 2267 3348 4381 5196 6898

Num. Countries 74 89 107 119 137

CLAPS-DN (16 Clusters)

Density 5.1% 5.1% 5.2% 6.2% 16%

Num. ASes 2974 3251 3627 4559 6481

Num. Countries 130 136 143 155 159

Table 1: Summary statistics describing the clusters obtained for

CLAPS-CR and CLAPS-DN. Q1, Q2, and Q3 denote the 25th, 50th,

and 75th percentile respectively.

order to infer AS paths between Internet hosts [39].
2
Inferred AS

paths are used to compute hijack resilience (for Counter-RAPTOR

and CLAPS-CR) and the presence of suspect ASes (for DeNASA and

CLAPS-DN). The programs for computing relay hijack resilience

were obtained directly from Sun et al[38]. We compute AS paths

using shortest, valley-free path inference [24], a technique that is

consistent with prior work [5, 46, 47].

We used autonomous systems as the client locations in our algo-

rithms. For our analyses, we consider any autonomous system in

the CAIDA’s AS topology that advertises at least one IPv4 address

as a client location; in total, there are 62,891 such ASes (many prior

works consider only tens or hundreds of ASes when analyzing

system security [5, 13, 38, 47]). CLAPS requires a measured density

(i.e., Tor user count) for each of these ASes. To estimate AS density,

we take Tor’s measured user-per-country statistics and distribute

users into ASes within their country proportional to the number

of IPv4 addresses each AS originates. These estimates can be im-

proved if measurement systems are put in place to directly measure

clients’ ASes. The top five highest-density ASes according to this

assignment are (1) AS12389, Rostelecom, RU; (2) AS3320, Deutsche

Telekom, DE; (3) AS23693, Telekomunikasi Selular, ID; (4) AS7018,

AT&T, US; and (5) AS15557, SFR SA, FR.

4.4.2 Clusters. In CLAPS, it is possible for a client to leak its clus-

ter to an adversary who observes path-selection behavior over time

[46]; therefore, it is crucial that each cluster contains a diverse

set of clients to provide anonymity. This is why we quantify clus-

ter anonymity (α) and ensure that the clusters meet a number of

anonymity criteria.

We ran our clustering algorithm in our simulated network. For

CLAPS-CR, we obtained a clustering with 14 clusters. For CLAPS-

DN, we obtained a clustering with 16 clusters. Table 1 contains

summary statistics describing the composition of the clusters. Note

that the minimum fraction of density in any cluster is 100%/20 =

5%, since we allow a 20× reduction in anonymity set size for the

anonymity criteria. Even the smallest cluster in our clustering con-

tains 74 distinct countries, thousands of ASes, and 5% of Tor’s

millions of users. We find that our clustering procedure does well

at producing balanced clusters—the largest clusters obtained are

only 3× denser than the least dense clusters in the clustering.

4.4.3 CLAP-CR Hijack Resilience. We examine CLAP-CR’s ability

to maximize client-guard hijack resilience, its primary objective. For

2
Our analysis of DeNASA and CLAPS-DN uses an older AS topology from February

2018. App. C shows our main security evaluation when instead using the 2019 topology.

CLAPS: Client-Location-Aware Path Selection in Tor CCS ’20, November 9–13, 2020, Virtual Event, USA

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
D
F
o
f
C
li
en
ts

Expected Resilience

Vanilla
Counter-RAPTOR (α = 0.5)
Counter-RAPTOR (α = 1.0)
CLAPS-CR (θ = 1.25)
CLAPS-CR (θ = 2.0)
CLAPS-CR (θ = 5.0)

Figure 3: Expected hijack resilience when choosing guards accord-

ing to Tor (Vanilla), C.R., and CLAPS-CR.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

C
D
F
o
f
C
li
en
ts

Expected Num. Intersecting Suspect ASes

Vanilla
DeNASA (τ = 0.1)
CLAPS-DN (θ = 1.25)
CLAPS-DN (θ = 2.0)
CLAPS-DN (θ = 5.0)

Figure 4: Expected number of suspects present on both the client-

guard and exit-destination path when building a random circuit.

each client location, we calculated a client’s expected client-guard

hijack resilience Σr ∈Rg Pr[r]Rℓ,r where the selection probability

Pr is defined under a particular path-selection algorithm. We con-

sidered three algorithms: (1) Vanilla, (2) Counter-RAPTOR, and (3)

CLAPS-CR. We considered Counter-RAPTOR when α = 0.5 (i.e.,

each guard’s selection probability is proportional to a 50/50 blend of

its resilience and bandwidth) and when α = 1.0 (i.e., each guard’s se-

lection probability is proportional to its resilience). Figure 3 shows

the results of this analysis. Expected hijack resilience under an

algorithm is plotted on the x-axis; the y-axis plots the cumulative

fraction of Tor clients that experience at most a given hijack re-

silience. When θ = 1.25, a conservative setting for θ , the CLAPS-CR
path selection algorithm is competitive with Counter-RAPTOR at

α = 0.5which is the α-value recommended by Sun et al.; the median

hijack resilience for Counter-RAPTOR (α = 0.5) is 0.62, whereas the

median hijack resilience for CLAPS-CR (θ = 1.25) is 0.63. By θ = 2,

the CLAPS-CR strategy dominates Counter-RAPTOR (α = 1.0)

for nearly all client locations, while simultaneously improving on

other aspects of Counter-RAPTOR, such as relay-placement attack

vulnerability (which will be shown) and information leakage over

time [46]. It offers a 13% improvement in hijack resilience at the

80th percentile (from 0.77 to 0.87). These improvements highlight

the benefit of using our optimization framework instead of relying

on heuristic approaches to achieve security.

4.4.4 CLAP-DN Suspect Avoidance. Here, we analyze CLAPS-DN’s
ability to avoid suspect ASes. We compute the expected number of

suspect ASes that will be on both the client-guard network path

and exit-destination network path where randomness is taken over

the choice of guard relay, the choice of exit relay, and the uniform

choice of web destination to visit. Following Barton et al.[5], we
used the Alexa Top 200 destinations as the set of destinations that

clients visit.We resolved these destinations to IP addresses and ASes

at a network vantage point in New York, USA. Figure 4 presents

our results; similar to the previous analysis, the expected number

of intersecting suspect ASes appears on the x-axis, and the y-axis
plots a CDF of clients.

Unlike Counter-RAPTOR,we are unable to obtain a path-selection

algorithm that dominates DeNASA. CLAPS-DN does offer substan-

tial protections over Vanilla Tor, and at θ = 2 offers comparable

protections in the median case (0.02 vs. 0.06 expected suspects).

We will see that DeNASA offers poor relay-placement protection

and prior work has shown it leaks location information quickly

[46]; CLAPS-DN provides a way to achieve similar security without

these critical vulnerabilities.

4.4.5 Relay-Placement Attacks. In addition to analyzing how well

these algorithms achieve their objectives, we also analyzed how

well these algorithms defend against relay placement attacks. In

this analysis, we consider an adversary who places some malicious

relays into the Tor network with the goal of having Tor clients

choose the malicious relays for circuits. We consider an adversary

who targets a particular cluster of users in CLAPS and the same

subset of users under Counter-RAPTOR and DeNASA. We present

results for the most vulnerable cluster which gives an upper-bound

on the adversary’s success probability.

For Counter-RAPTOR and CLAPS-CR, we identified an AS with

maximal hijack resilience that the adversary places relays into. We

ensured that this AS allows Tor relays, as it already contains guard

relays. The adversary in our attack places 100 malicious relays into

the identified AS, each relay with bandwidth approximately equal

to 7 Mbps (Wan et al. showed that effectively attacking Counter-

RAPTOR requires running many small relays instead of a few large

ones).We compute the likelihood that clients choose thesemalicious

relays and present the results in Figure 5a. In all three subfigures,

the x-axis denotes the adversary’s probability of succeeding in the

relay placement attack, and they-axis denotes the CDF over targeted
clients. Because all clients in a given cluster choose relays according

to the same distribution, the CDFs for CLAPS-CR appear as vertical

lines (this is also true for Vanilla Tor, where all clients choose relays

according to a single distribution). Indeed, our constraints provide a

concrete bound for the adversary’s success probability; for example,

in Vanilla Tor, the adversary achieves a success probability of 0.56%—

for θ = 2 in CLAPS-CR, the adversary’s success probability is 1.12%,

a 2× increase. However, for Counter-RAPTOR, this attack success

is much higher; for some client locations, the adversary succeeds

with probability 3.89% (α = 0.5) and 7.23% (α = 1.0), a 7× / 13×

increase in attack success probability relative to Vanilla Tor.

DeNASA suffers worse from relay placement attacks. We simu-

lated an adversary who places a single malicious guard relay and

single malicious exit relay into an AS that already contains Tor

relays. We let the relays have bandwidth approximately equal to

700 Mbps, which corresponds to the highest-bandwidth relays run-

ning in the Tor network. The adversary’s strategy remains the

same: the adversary targets the most vulnerable cluster and places

relays in ASes that maximize the likelihood that the malicious re-

lays are chosen. In this attack, the adversary maximizes the exit

relay selection probability conditioned on the malicious guard re-

lay being selected by a targeted client (in both CLAPS-DN and

DeNASA, exit-relay selection distributions are determined by a

CCS ’20, November 9–13, 2020, Virtual Event, USA Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

W
ei
g
h
te
d
C
D
F

Probability of Placement Attack Success (Percent)

Vanilla
C-R (α = 0.5)
C-R (α = 1.0)

CLAPS-CR (θ = 1.25)
CLAPS-CR (θ = 2.0)
CLAPS-CR (θ = 5.0)

(a)

0

0.2

0.4

0.6

0.8

1

0.125 0.25 0.5 1 2 4 8 16

W
ei
g
h
te
d
C
D
F

Probability of Placement Attack Success (Percent)

Vanilla
DeNASA (τ = 0.1)
CLAPS-DN (θ = 1.25)

CLAPS-DN (θ = 2.0)
CLAPS-DN (θ = 5.0)

(b)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

W
ei
g
h
te
d
C
D
F

Probability of Placement Attack Success (Percent)

Vanilla
DeNASA (τ = 0.1)
CLAPS-DN (θ = 1.25)

CLAPS-DN (θ = 2.0)
CLAPS-DN (θ = 5.0)

(c)

Figure 5: Probability of success when the adversary runs a relay placement attack. Figure (a) shows the probability of succeeding in a guard

placement attack against Counter-RAPTOR andCLAPS-CR. Figure (b) shows the probability of succeeding in a guard placement attack against

DeNASA and CLAPS-DN. Figure (c) shows the probability of succeeding in an exit placement attack against DeNASA and CLAPS-DN.

client’s guard relay). Figure 5b shows the probability that the ad-

versary’s guard placement attack succeeds, and Figure 5c shows

the probability that the adversary’s exit placement attack succeeds,

given that the guard-placement attack succeeded. As was the case

in CLAPS-CR, CLAPS-DN places a concrete bound on the adver-

sary’s success probability (the success probability against Vanilla

Tor is 0.55% in the guard position and 0.77% in the exit position).

Against DeNASA, the adversary succeeds in the guard-placement

attack against some client locations with ∼20% probability—a 40×

increase over Vanilla Tor. In the exit-placement attack, the adver-

sary achieves 5% probability (a 10× increase) for many locations.

These unbounded increases highlight the importance of CLAP’s

constrained approach to relay placement security.

4.5 Performance Evaluation

We evaluate CLAPS on three different Tor topologies and demon-

strate the performance issues of previous location-aware schemes.

All our experiments contain our Tor performance and security fixes

(our Tor Proposal 310 [30], summarized in Section 6).

4.5.1 Methodology. We ran our experiments using the Shadow

discrete-event network simulator [15, 16]. Our simulations are

scaled down to 2,400 Tor clients and 250 relays. We used the recom-

mended value for setting the Web/Bulk fraction of clients [17]. The

first topology, scaled down from a consensus in June 2017, is repre-

sentative of current Tor topologies
3
, and contains a large amount

of guard bandwidth relative to the other positions. Moreover, af-

ter balancing bandwidth between path positions, Vanilla Tor exit

bandwidth remains scarce; there is roughly half of the bandwidth

compared to what is available in middle and entry positions. The

second Tor topology is similar to previous Tor network states (e.g.,

March 2015) and contains a large amount of guard bandwidth, yet

not disproportionately high compared to the other positions (157%

more than all exit and exit+guard bandwidth). After balancing the

bandwidth between positions using the bandwidth-weight equa-

tions [43], the three positions have the potential to offer the same

total bandwidth to paths (which both Vanilla Tor and CLAPS can

achieve with a total of 245145 Consensus Weight for each position).

The third topology focuses on the client distribution, and assumes a

sudden increase of users from a chosen region of the world within

our network built from a June 2017 Tor consensus.

3
From 2016 onward, Tor exit bandwidth is scarce

4.5.2 Analysis. Figure 6 shows the measured results from the

Shadow simulations. Each plot is a CDF of client performance,

where the x-axis shows the median time to download a 2 MiB Web

page.

In the first column, Figure 6a and Figure 6d compare CLAPS-CR

and CLAPS-DN against Counter-RAPTOR/DeNASA and Vanilla

Tor. One goal of CLAPS stated in Section 3 is to offer similar perfor-

mance to Vanilla Tor from the load-balancing constraint defined in

the linear program. Surprisingly with CLAPS-CR in Figure 6a, about
20% of Tor clients perform even better than Vanilla Tor up to ≈ 5 sec-
onds in their median download time for our 2MiB page transfer. We

observed that this performance improvement increases as we relax

the guard placement attack constraint. When we relax the place-

ment constraint (i.e., we increase θ), we increase the probability for

CLAPS-CR clients to select guard relays with high resilience values.

We might expect this behavior to impact the quality of the path

regarding performance metrics that are not part of the optimization

constraint, such as path latency. Intuitively, from a given location,

highly resilient relays should be closer to the client hence shortening
the overall paths that these clients make. These shorter paths may

cause an overall increase in client performance compared to Vanilla

Tor while the load-balancing property is similar. Appendix D dis-

plays an analysis of path latency and path loss with respect to each

path selection and θ value, and the results are consistent with our

hypothesis.

Counter-RAPTOR and DeNASA perform worse than Vanilla Tor

in the first column (Figure 6a and Figure 6d). Yet, the performance

is not disproportionately worse, even when Counter-RAPTOR uses

the resilience values as the only selection criterion (α = 1), which

does not account for any performance factor. For both figures, the

distribution of bandwidth gives twice the quantity of bandwidth

in the entry and middle positions compared to the exit position

after applying bandwidth-weight equations. As previously observed

in Section 2.3, the impact of unbalanced path selection is partially
absorbed by the spare bandwidth capacity at the entry position. If the
condition of the network is not favorable to Counter-RAPTOR and

DeNASA (i.e., scarce guard bandwidth), performance can degrade

significantly.

Indeed, when removing this excess bandwidth (second column,

Figure 6b and Figure 6e), the performance of Counter-RAPTOR and
DeNASA degrades significantly while Vanilla Tor and CLAPS keep

performing almost as well as in the original topology. Given the

reduction of entry bandwidth, CLAPS’s most significant constraint

CLAPS: Client-Location-Aware Path Selection in Tor CCS ’20, November 9–13, 2020, Virtual Event, USA

becomes the load-balancing; hence, a given location does not focus

on the most secure guards as it does in Figure 6a. For CLAPS-CR,

this explains why CLAPS does not outperform Vanilla Tor in this

network.

Figure 6c and Figure 6f in the third column show how path

selection performs in the event of many Tor users connecting from

the same location in the world, such as a city or a country. Sudden

spikes of users connecting or disconnecting from the Tor network

happened several times in Tor’s history in various countries, often

due to censorship and societal events. Sudden spikes of users can

happen again, and a location-aware path selection algorithm should

be able to provide similar performance during these events, similar

to how Vanilla Tor performs. Previous works do not account for

heterogeneity in user density, which explains why they slow down

on this particular network state. In both Figures, we simulate a

20% increase in users from Michigan (a well-connected location

in our topology) which is causing poor load-balancing in Counter-
RAPTOR and DeNASA. CLAPS adapts by using weights subject

to our load-balancing constraint that accounts for the increased

usage of the network from this location. Note that Michigan was

chosen because it is a location close to the Tor relays in expectation,

and well connected to them (having low latency and low link loss).

Hence, performance loss might be caused by poor usage of the

available relays from the path selection algorithm.

Regarding CLAPS, note that the results slightly differ fromVanilla

Tor. We observed in this network configuration that CLAPS clients

were using paths with slightly better latency in the case of CLAPS-

CR, and slightly worse in the case of CLAPS-DN. Regarding CLAPS-

DN, by trying to avoid well-connected suspect ASes, network paths

chosen become significantly longer. Performance degradation in-

creases with θ as CLAPS-DN avoids more suspect ASes. Appendix D

shows path loss and latency results in this setup, showing CLAPS-

DN having higher latency and packet-loss as θ increases.

Recap. We conducted a performance analysis under three signif-

icantly different Tor network topologies: one similar to the current

state of the Tor network and two others reminiscent of previous

existing topologies or events. Our results confirm the efficiency of

our load-balancing constraint codified in our linear program and

the performance versatility of our scheme. Our results also show that
previous works in location-aware path selection algorithms underes-
timate the importance of network diversity in their approaches. We

conjecture that the same result would apply to other works we did

not explore here but which could be implemented with CLAPS as

well. Moreover, our results show that we can obtain a more secure

location-aware Tor network without undermining performance.

Using the CLAPS approach, Tor path selection is not limited by
a performance/security trade-off, but rather by a security/security
trade-off between different threat models when the goal is to achieve

a path selection algorithm that maintains similar performance to

Vanilla Tor.

4.6 Efficiency

In this section, we briefly discuss the practical costs of CLAPS. In

this analysis, we assume a Tor network with 6,700 relays. In CLAPS-

CR, clients must download an additional set of guard, middle, and

exit weights for the relays in the network. Assuming a 4 byte encod-

ing is used to store weights, clients will download approximately

80 KB additional data. Tor’s directory authorities will send approxi-

mately 1.60 MB additional data to each relay serving Tor directory

information (for 20 clusters).

The client cost in CLAPS-DN is similar—each client still down-

loads a set of CLAPS weights which costs 80 KB; however, the

client must download a new exit weight distribution each time a

new guard is selected, which happens infrequently. A single exit

weight distribution costs at most 27 KB. To each directory relay,

Tor Directory Authorities need to send (1) one guard weight distri-

bution per cluster, (2) a single middle weight distribution, and (3)

one exit weight distribution per cluster-guard-relay pair. (1) costs

approximately 536 KB. (2) costs approximately 27 KB. Without

compression, sending (3) can be expensive—approximately 175 MB.

However, by de-duplicating weight distributions for guards and

exits in common ASes, this cost can be reduced to about 10 MB.

Applying compression may further reduce this cost.

The linear programs formulated and solved in our evaluations

of CLAPS-CR and CLAPS-DN were manageable in complexity. The

largest LPs had approximately 100,000 rows (constraints) and 30,000

columns (variables) in MPS format. No LP took more than 5 minutes

to solve using CLP on a machine with an Intel Xeon E7-8891 CPU.

5 RELATEDWORK

A significant number of research works have targeted performance

improvements of the Tor network [1–3, 6, 11, 12, 22, 28, 35, 37,

45, 48]. Several of them had their claims disproved with more

recent research tools. For example, Snader and Borisov’s trade-

off [37] of security/performance does not improve performance

when the tune-up focuses on high bandwidth relays [6]. We also

demonstrated degraded performance of proposed path selection al-

gorithms relative to analyses performed in the original works [5, 38]

by considering an analysis involving network topology changes.

Regarding security, we can classify path-selection algorithms

within two broad categories: first, the ones that are not location-

aware: see [4, 31, 37]. For example, Waterfilling rebalances relay

weights to better defend against an adversary owning or compro-

mising relays to perform end-to-end correlation. [31]

Then, there have been many proposed location-aware path se-

lection algorithms [5, 10, 13, 18, 20, 21, 27, 38] (see Table 3 in the

appendix). Astoria, which focuses on AS-level adversaries, does al-

ready take advantage of a LP formulation to build a distribution that

would minimize the probability to encounter an adversary. How-

ever, their model lacks performance versatility, load-balancing, and

consideration for threats such as the relay placement and Tempest

attacks. By using CLAPS and modeling Astoria as a destination-

naive algorithm, Astoria could achieve the same load-balance as

Vanilla Tor with potentially as good compromised paths avoidance.

TAPS [18], another location-aware path selection algorithm, uses

a notion of trust to choose paths not likely to be observed be the

adversary. TAPS uses a clustering mechanism similar to location

masking to prevent leaking location information. However, this

mechanism is (1) specific to the TAPS algorithm, (2) includes a lim-

ited notion of anonymity, and (3) suffers from a deanonymization

attack [46]. We solve the attack with the addition of location guards.

CCS ’20, November 9–13, 2020, Virtual Event, USA Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D
F
o
f
C
li
en
ts

Download Time (s)

Vanilla
Counter-RAPTOR (α = 0.5)
Counter-RAPTOR (α = 1.0)
CLAPS-CR (θ = 1.25)
CLAPS-CR (θ = 2.0)
CLAPS-CR (θ = 5.0)

(a) CLAPS-CR andC.R. 2MiB download times

in a typical, present-day Tor network.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D
F
o
f
C
li
en
ts

Download Time (s)

Vanilla
Counter-RAPTOR (α = 0.5)
Counter-RAPTOR (α = 1.0)
CLAPS-CR (θ = 1.25)
CLAPS-CR (θ = 2.0)
CLAPS-CR (θ = 5.0)

(b) CLAPS-CRandC.R. 2MiBdownload times

without exit scarcity.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D
F
o
f
C
li
en
ts

Download Time (s)

Vanilla
Counter-RAPTOR (α = 0.5)
Counter-RAPTOR (α = 1.0)
CLAPS-CR (θ = 1.25)
CLAPS-CR (θ = 2.0)
CLAPS-CR (θ = 5.0)

(c) CLAPS-CR andC.R. 2MiB download times

with 20% more Michigan users.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D
F
o
f
C
li
en
ts

Download Time (s)

Vanilla
DeNASA (τ = 0.1)
CLAPS-DN (θ = 2.0)
CLAPS-DN (θ = 5.0)

(d) CLAPS-DN and DeNASA 2 MiB download

times in a typical, present-day Tor network.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D
F
o
f
C
li
en
ts

Download Time (s)

Vanilla
DeNASA (τ = 0.1)
CLAPS-DN (θ = 2.0)
CLAPS-DN (θ = 5.0)

(e) CLAPS-DN and DeNASA 2 MiB download

times without exit scarcity.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D
F
o
f
C
li
en
ts

Download Time (s)

Vanilla
DeNASA (τ = 0.1)
CLAPS-DN (θ = 2.0)
CLAPS-DN (θ = 5.0)

(f) CLAPS-DN and DeNASA 2 MiB download

times with 20% more Michigan users.

Figure 6: Simulation results comparing CLAPS-CR/DN to Counter-RAPTOR, DeNASA, and Vanilla Tor. (a) and (d) are scaled down networks

from June 2017 containing 250 relays and 2400 clients. The networks in (b) and (e) have 51% reduced guard bandwidth from the topologies

used in (a) and (d). Figures (c) and (f) show the performance of clients connecting fromMichigan assuming a sudden increase in those clients.

A recent work has showed the impact of information leak over

time of location-aware path selections [46]. In response to those

problems, DPSelect [13] applies a differential-private guard selec-

tion mechanism to Counter-RAPTOR to reduce the maximum di-

vergence between client distributions, yet it does not address per-

formance issues nor deal with relay placement attacks. CLAPS

supports a different idea, called location masking to make the leak

of information eventually only reveal the locationmask. This design

also applicable to previous location-aware schemes. Techniques

from DPSelect may be applied to CLAPS in order to slow the rate

at which location masks are potentially leaked.

A summary of each path selection goal which we could consider

for CLAPS is given in Table 3 in Appendix B. An instance of CLAPS

might be created for any these systems that take advantage of

pre-computed data.

6 DISCUSSION

There is no single path-selection algorithm that we recommend

with CLAPS. Instead, we aim to demonstrate how the common

obstacles to the use of existing proposals can all be solved with

CLAPS, making any one of them suitable for Tor. CLAPS can be

used with any client-location-aware path-selection algorithm that

does not take into account the destination’s location and take ad-

vantage of pre-computed data. Using the destination location is

more difficult, as it is highly variable and is not known before the

connection is needed. However, due to these issues, most of the

existing location-aware path-selection algorithms avoid using the

destination, and many can be usefully modified to only consider the

client’s location. For example, a version of LASTor [1] can be used

that minimizes latency from the client to the exit, no longer consid-

ering the destination. Moreover, the various proposed algorithms

have several different and important goals, and our general frame-

work provides a powerful methodology to combine and balance the

various criteria of these proposals within a single path-selection

algorithm.

Finally, in the course of investigating how to improve Tor’s

weight computations, we have observed a significant flaw in theway

that guards are selected. In Tor, guards are first sampled according

to their weights and then chosen uniformly at random from the

sampled set [41]. This process causes the effective weights for guard

to skew towards uniform weighting, where the skew increases with

the ratio of sampled to total guards. It especially can cause problems

in client-location-aware algorithms, as clients in certain locations

may choose from relatively few well-placed guards. It also causes a

serious problemwith the accuracy of research using Tor simulations,

as simulation networks are typically much smaller than the actual

Tor network [15]. We have proposed an efficient solution to this

issue, described in Tor Proposal 310. We have implemented it as a

patch, which we have used in our experiments. Our code has been

merged and tagged to be released in June 2020 with Tor 0.4.4.x.

7 CONCLUSION

We improve the security and performance of location-aware path-

selection algorithms for Tor by designing a generic framework for

location-aware path selection algorithms. CLAPS can be applied

to many of them to achieve their primary purpose while solving

performance and security problems. We describe how to apply

CLAPS to two specific client–location-aware algorithms: counter-

RAPTOR [38] and DeNASA [5]. Through experiments, we show

how CLAPS eliminates their performance deficits, solves their se-

curity flaws, and obtains results towards their primary goal that

are competitive or better than the original systems.

CLAPS: Client-Location-Aware Path Selection in Tor CCS ’20, November 9–13, 2020, Virtual Event, USA

ACKNOWLEDGEMENTS

This work has been supported by the Office of Naval Research. This

work was supported in part by the National Science Foundation

under grants CNS-1553437 and CNS-1704105. This material is based

upon work supported by the United States Air Force and DARPA

under Contract No. FA8750-19-C-0079. Any opinions, findings and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the

United States Air Force, DARPA, or any other sponsoring agency.

DISTRIBUTION STATEMENT A. Approved for public release:

distribution unlimited.

REFERENCES

[1] Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. 2012. LASTor: A

Low-Latency AS-Aware Tor Client. In IEEE Symposium on Security and Privacy,
SP 2012, 21-23 May 2012, San Francisco, California, USA. 476–490.

[2] Mashael AlSabah, Kevin S. Bauer, Tariq Elahi, and Ian Goldberg. 2013. The Path

Less Travelled: Overcoming Tor’s Bottlenecks with Traffic Splitting. In Privacy
Enhancing Technologies - 13th International Symposium, PETS.

[3] Robert Annessi andMartin Schmiedecker. 2016. Navigator: Finding faster paths to

anonymity. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 214–226.

[4] Michael Backes, Aniket Kate, Sebastian Meiser, and Esfandiar Mohammadi. 2014.

(Nothing else) MATor(s): Monitoring the Anonymity of Tor’s Path Selection. In

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security.

[5] Armon Barton and Matthew Wright. 2016. DeNASA: Destination-Naive AS-

Awareness in Anonymous Communications. In Proceedings on Privacy Enhancing
Technologies.

[6] Armon Barton, Matthew Wright, Jiang Ming, and Mohsen Imani. 2018. To-

wards Predicting Efficient and Anonymous Tor Circuits. In 27th USENIX Security
Symposium, USENIX Security.

[7] COIN-OR Linear Program Solver. COIN-OR Linear Program Solver. https:

//www.coin-or.org/Clp/index.html. (????).

[8] Thien-Nam Dinh, Florentin Rochet, Olivier Pereira, and Dan S Wallach. 2020.

Scaling Up Anonymous Communication with Efficient Nanopayment Channels.

Proceedings on Privacy Enhancing Technologies 3 (2020), 175–203.
[9] Directory Specifications. Bandwidth-Weights Specifications, Section 3.8.3. https:

//gitweb.torproject.org/torspec.git/tree/dir-spec.txt. (????).

[10] Matthew Edman and Paul Syverson. 2009. AS-awareness in Tor Path Selection.

In Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS ’09). 380–389.

[11] John Geddes, Rob Jansen, and Nicholas Hopper. 2013. How low can you go:

Balancing performance with anonymity in Tor. In International Symposium on
Privacy Enhancing Technologies Symposium. Springer, 164–184.

[12] John Geddes, Mike Schliep, and Nicholas Hopper. 2016. ABRA CADABRA:

Magically Increasing Network Utilization in Tor by Avoiding Bottlenecks. In

Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society
(WPES).

[13] Hans Hanley, Yixin Sun, Sameer Wagh, Mung Chiang, and Prateek Mittal. 2019.

DPSelect: A Differential Privacy Based Guard Selection Algorithm for Tor. Pro-
ceedings on Privacy Enhancing Technologies 2019, 2 (2019).

[14] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable

Website Fingerprinting Technique. In 25th USENIX Security Symposium (USENIX
Security 16).

[15] Rob Jansen, Kevin S. Bauer, Nicholas Hopper, and Roger Dingledine. 2012. Me-

thodically Modeling the Tor Network. In 5th Workshop on Cyber Security Experi-
mentation and Test, CSET ’12.

[16] Rob Jansen and Nicholas Hopper. 2012. Shadow: Running Tor in a Box for Accu-

rate and Efficient Experimentation. In Proceedings of the Network and Distributed
System Security Symposium - NDSS’12. Internet Society.

[17] Rob Jansen, Matthew Traudt, and Nicholas Hopper. 2018. Privacy-Preserving

Dynamic Learning of Tor Network Traffic. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 1944–1961.

[18] Aaron Johnson, Rob Jansen, Aaron D. Jaggard, Joan Feigenbaum, and Paul Syver-

son. 2017. Avoiding The Man on the Wire: Improving Tor’s Security with Trust-

Aware Path Selection. In 24th Annual Network and Distributed System Security
Symposium, NDSS.

[19] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. 2013.

Users Get Routed: Traffic Correlation on Tor by Realistic Adversaries (CCS ’13).
337–348.

[20] Katharina Kohls, Kai Jansen, David Rupprecht, Thorsten Holz, and Christina

Pöpper. On the Challenges of Geographical Avoidance for Tor. In Proceedings of
26th Annual Network and Distributed System Security Symposium (NDSS 2019).

[21] Zhihao Li, Stephen Herwig, and Dave Levin. 2017. DeTor: Provably Avoiding

Geographic Regions in Tor. In 26th USENIX Security Symposium (USENIX Security
17).

[22] Dong Lin,Micah Sherr, and Boon Thau Loo. 2016. Scalable andAnonymous Group

Communication with MTor. In Proceedings on Privacy Enhancing Technologies.
[23] Akshaya Mani, T Wilson-Brown, Rob Jansen, Aaron Johnson, and Micah Sherr.

2018. Understanding Tor Usage with Privacy-Preserving Measurement. In Pro-
ceedings of the Internet Measurement Conference 2018 (IMC ’18). ACM.

[24] Zhuoqing Morley Mao, Lili Qiu, Jia Wang, and Yin Zhang. 2005. On AS-Level

Path Inference. In Proceedings of the International Conference on Measurements
and Modeling of Computer Systems, SIGMETRICS. ACM.

[25] Steven J. Murdoch and George Danezis. 2005. Low-Cost Traffic Analysis of Tor. In

Proceedings of the 2005 IEEE Symposium on Security and Privacy (SP ’05). 183–195.
[26] Steven J. Murdoch and Piotr Zielinski. 2007. Sampled Traffic Analysis by Internet-

Exchange-Level Adversaries. In Privacy Enhancing Technologies, 7th International
Symposium, PET.

[27] Rishab Nithyanand, Oleksii Starov, Adva Zair, Phillipa Gill, and Michael Schapira.

2016. Measuring and mitigating AS-level adversaries against Tor.

[28] Andriy Panchenko, Fabian Lanze, and Thomas Engel. 2012. Improving Perfor-

mance and Anonymity in the Tor Network. In 31st IEEE International Performance
Computing and Communications Conference (IPCCC).

[29] Jian Qiu and Lixin Gao. 2005. AS path inference by exploiting known AS paths.

In Proceedings of IEEE GLOBECOM.

[30] Florentin Rochet, Aaron Johnson, Ryan Wails, Prateek Mittal, and Olivier Pereira.

Bandaid on entry guard selection. https://github.com/frochet/prop271_towards_

loadbalancing/blob/master/xxx-bandaid-on-guard-selection.txt. (????).

[31] Florentin Rochet and Olivier Pereira. 2017. Waterfilling: Balancing the Tor

networkwithmaximum diversity. Proceedings on Privacy Enhancing Technologies.
[32] Florentin Rochet and Olivier Pereira. 2018. Dropping on the edge: Flexibility and

traffic confirmation in onion routing protocols. Proceedings on Privacy Enhancing
Technologies 2018, 2 (2018), 27–46.

[33] Route Views. Routeviews Prefix to AS mappings Dataset for IPv4 and IPv6.

https://www.caida.org/data/routing/routeviews-prefix2as.xml. (????).

[34] Andrei Serjantov and George Danezis. 2002. Towards an Information Theoretic

Metric for Anonymity. In Privacy Enhancing Technologies, Second International
Workshop, PET 2002 (Lecture Notes in Computer Science), Vol. 2482.

[35] Micah Sherr, Matt Blaze, and Boon Thau Loo. 2009. Scalable Link-Based Re-

lay Selection for Anonymous Routing. In Proceedings of the 9th International
Symposium on Privacy Enhancing Technologies.

[36] Payap Sirinam, Mohsen Imani, Marc Juarez, and MatthewWright. 2018. Deep Fin-

gerprinting: Undermining Website Fingerprinting Defenses with Deep Learning.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security.

[37] Robin Snader and Nikita Borisov. 2008. A Tune-up for Tor: Improving Security

and Performance in the Tor Network. In Proceedings of 16th Annual Network and
Distributed System Security Symposium.

[38] Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang, and Prateek Mittal.

2017. Counter-RAPTOR: Safeguarding Tor Against Active Routing Attacks. In

IEEE Symposium on Security and Privacy. 977–992.
[39] The CAIDA AS Relationships Dataset, 2018-02-01. The CAIDA AS Relationships

Dataset, 2018-02-01. https://www.caida.org/data/as-relationships/. (????).

[40] The CAIDA UCSD AS to Organization Mapping Dataset, 2019-01-01. The CAIDA

UCSD AS to Organization Mapping Dataset, 2019-01-01. https://www.caida.org/

data/as_organizations.xml. (????).

[41] The Tor Project. Another algorithm for guard selection. https://gitweb.torproject.

org/torspec.git/tree/proposals/271-another-guard-selection.txt. (????).

[42] The Tor Project. CollecTor - Tor Project. https://metrics.torproject.org/collector.

html. (????).

[43] The Tor Project. Tor Directory Protocol. https://gitweb.torproject.org/torspec.

git/tree/dir-spec.txt. (????).

[44] The Tor Project. Tor Metrics Portal. https://metrics.torproject.org/. (????).

[45] Chris Wacek, Henry Tan, Kevin S. Bauer, and Micah Sherr. 2013. An Empirical

Evaluation of Relay Selection in Tor. In 20th Annual Network and Distributed
System Security Symposium, NDSS 2013.

[46] Ryan Wails, Yixin Sun, Aaron Johnson, Mung Chiang, and Prateek Mittal. 2018.

Tempest: Temporal Dynamics in Anonymity Systems. Proceedings on Privacy
Enhancing Technologies 2018, 3 (2018), 22–42.

[47] Gerry Wan, Aaron Johnson, Ryan Wails, Sameer Wagh, and Prateek Mittal. 2019.

Guard Placement Attacks on Path Selection Algorithms for Tor. Proceedings on
Privacy Enhancing Technologies 2019, 4 (2019).

[48] Tao Wang, Kevin S. Bauer, Clara Forero, and Ian Goldberg. 2012. Congestion-

Aware Path Selection for Tor. In Financial Cryptography and Data Security - 16th
International Conference, FC.

[49] Tao Wang and Ian Goldberg. 2016. On Realistically Attacking Tor with Website

Fingerprinting. Proceedings on Privacy Enhancing Technologies 2016 (2016).

https://www.coin-or.org/Clp/index.html
https://www.coin-or.org/Clp/index.html
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://github.com/frochet/prop271_towards_loadbalancing/blob/master/xxx-bandaid-on-guard-selection.txt
https://github.com/frochet/prop271_towards_loadbalancing/blob/master/xxx-bandaid-on-guard-selection.txt
https://www.caida.org/data/routing/routeviews-prefix2as.xml
https://www.caida.org/data/as-relationships/
https://www.caida.org/data/as_organizations.xml
https://www.caida.org/data/as_organizations.xml
https://gitweb.torproject.org/torspec.git/tree/proposals/271-another-guard-selection.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/271-another-guard-selection.txt
https://metrics.torproject.org/collector.html
https://metrics.torproject.org/collector.html
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://metrics.torproject.org/

CCS ’20, November 9–13, 2020, Virtual Event, USA Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira

Notation Description

A anonymity scores

α (C.R.) Percent resilience incorporated into relay weight

α (CLAPS) Allowable anonymity reduction factor

Br Bandwidth of relay r

β Maximum bandwidth in all positions at once

γ Allowed cluster distance increase

d(ℓ1, ℓ2) Distance between ℓ1 and ℓ2 when clustering

Dℓ Client density in location ℓ

δπi
ℓ

Positional client density

EC(C) Entropy of the distribution of users in countries in C

EL(C) Entropy of the distribution of users in locations in C

L Set of client locations

Lp Locations when choosing relay in position p

Λ(ℓ, r) Positional location after choosing relay r from ℓ

λℓℓ′ Probability to choose positional location ℓ′ from ℓ

ωπi
r Density weight at relay r in position πi
P Circuit positions: g, m, and e
P
p
ℓr Penalty for relay r in position p from location ℓ

π Sequence of positions during circuit relay selection

Rℓ,r BGP Hijack resilience of relay r from location ℓ

R Set of relays

Rp Relays admissible in position p

Size(C) Total density contained in set of locations C

τ DeNASA e-select parameter

θp Weight increase limit in position p over Vanilla Tor

v
p
r Vanilla weight for relay r in position p

V
p
ℓ

Expected penalty of p from ℓ with vanilla weights

w
p
ℓr Weight for relay r in position p from position ℓ

Table 2: Common notation used in this work.

A DESIGN DETAILS

A.1 Notation

Table 2 summarizes common notation used in this work.

A.2 Weight computation

LP1 in Figure 7 computes the maximum bandwidth β achievable

in all positions simultaneously. β takes the output value of b from

LP1.

We also give some detailed definitions for certain variables.

For ℓ′ ∈ Lπi , λℓℓ′ is the probability that a client in ℓ ∈ Lπj
chooses relays for the jth to (i − 1)st positions that yield positional

location ℓ′ ∈ Lπi . This can be expressed recursively as

λℓℓ′ =
∑

ℓ
′′
∈Lπi−1

λℓℓ′′
∑

r ∈R : Λ(ℓ
′′
,r)=ℓ′

wπi
ℓ
′′r
β
, (13)

where, for i = j, λℓℓ′ = 1 if ℓ = ℓ′ and λℓℓ′ = 0 otherwise.

V πi
ℓ

is the expected penalty in πi from positional location ℓ ∈

Lπj , j ≤ i , when using the vanilla weights to choose the jth to ith

positions in π order. Recall that v
p
r is the vanilla weight for relay r

in position p. Then let λv
ℓℓ′

be the probability to choose positional

Maximize b (8)

Maximize the total bandwidth in any position.

Subject to

∀r ∈ R :

∑
p∈P

w
p
r ≤ Br (9)

Limit each relay’s total weight to its bandwidth.

∀p ∈ P :

∑
r ∈R

w
p
r ≥ b (10)

Allocate at least b weight to each position.

∀p ∈ P, r ∈ R : w
p
r ≥ 0 (11)

Require weights to be non-negative.

∀p ∈ P, r ∈ R\Rp : w
p
r = 0 (12)

Set weight to zero when inadmissible in the position.

Figure 7: Linear program LP1, used to maximize the minimum po-

sitional bandwidth. Its variable are (1) {wp
r }p∈P,r ∈R , where wp

r is

the bandwidth relay r allocates to position p; and (2) b , which is the

minimum bandwidth in any position.

location ℓ′ from ℓ when using vanilla weights (i.e., withvπir /
∑
s v

πi
s

in place ofwπi
ℓ
′′r
/β in the definition of λℓℓ′). Then

V πi
ℓ
=

∑
ℓ′∈Lπi

λvℓℓ′
∑
r ∈R

v
p
r P

πi
ℓ′r∑

s ∈R v
p
r
. (14)

δπi
ℓ

is the client density of positional location ℓ ∈ Lπi . Given

weightswπi−1

ℓr for the (i − 1)st position (e.g., as obtained from LP2),

it can be expressed recursively as

δπi
ℓ
=

∑
ℓ′∈Lπi−1

∑
r ∈R : Λ(ℓ′,r)=ℓ

δπi−1

ℓ′
wπi−1

ℓ′r
β

. (15)

ωπi
r is the sum of the weights of relay r in position πi weighted

by the positional location densities. It can be expressed as

ωπi
r =

∑
ℓ∈Lπi

δπi
ℓ
wπi
ℓr . (16)

Constraints 17 and 18 are added to LP2 if a solution is not initially

found for all positions.

∀j > i, ℓ ∈ Lπ1
:

∑
ℓ′∈Lπi

λℓℓ′
∑
r ∈R

wπi
ℓ′r
β

V
πj
Λ(ℓ′,r) ≤ V

πj
ℓ

(17)

∀j > i, ℓ ∈ Lπi :

w
πj
ℓr
β
=

v
πj
r∑

s ∈R v
πj
s

(18)

B PATH SELECTION ALGORITHMS

Table 3 presents a summary of many proposed Tor path-selection al-

gorithms. We organize the algorithms into two broad categories: (1)

CLAPS: Client-Location-Aware Path Selection in Tor CCS ’20, November 9–13, 2020, Virtual Event, USA

Table 3: Proposed Tor path selection algorithms

Algorithm Goal Location Aware

Security Focused
Edman-Syverson [10] Prevent traffic analysis ✓
DistribuTor [4] Prevent traffic analysis

DeNASA [5] Prevent traffic analysis ✓
Astoria [27] Prevent traffic analysis ✓
TAPS [18] Prevent traffic analysis ✓
DeTor [18] Avoid geolocations ✓
Waterfilling [31] Prevent traffic analysis

Counter-RAPTOR [38] Prevent BGP hijacks ✓
DPSelect [13] Limit path selection info leakage ✓
TrilateraTor [20] Avoid geolocations ✓

Performance Focused
Coordinate [35] Improve e2e connection throuput

LASTor [1] Improve latency, prevent traffic analysis ✓
Panchenko’12 [28] Rebalance Tor ✓
Conflux [2] aggregated bw via multipath

ABRA [12] Avoid congested relays

CAR [48] Avoid congested relays ✓
PredicTor [6] Predict fast paths

NavigaTor [3] Measurement feedbacks to discard slow circs ✓
Mixed

Snader-Borisov [37] Improve load balance

security focused, and (2) performance focused. The security-focused
algorithms primarily aim to improve an aspect of Tor’s security (e.g.,

by preventing BGP hijack attacks), while the security-focused algo-

rithms aim to improve Tor’s performance (e.g., by having clients

choose short paths through the network). Many of these algorithms

are location-aware, denoted by the check mark in the rightmost

column of the table.

C DENASA & CLAPS-DN

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

C
D
F
o
f
C
li
en
ts

Expected Num. Intersecting Suspect ASes

Vanilla
DeNASA (τ = 0.1)
CLAPS-DN (θ = 2.0)

Figure 8: Expected number of suspects present on both the client-

guard and exit-destination path when building a random circuit.

In this appendix section we provide a brief analysis of Vanilla

Tor, DeNASA, and CLAPS-DN when AS paths are inferred with

CAIDA’s AS relationship topology from January 2019. We run se-

curity experiments in accordance with the methodology set out

in Section 4 to estimate the likelihood of a suspect AS appearing

on a client’s client-guard path and exit-destination path. (For this

analysis, our clustering algorithm chose n = 14 clusters.

Figure 8 shows the expected number of suspects present on

both the client-guard path and exit-destination path for Vanilla

Tor, DeNASA, and CLAPS-DN (analogous to Figure 4). We see a

similar relationship presented in Section 4: DeNASA offers the

best protection against the suspect ASes, but CLAPS-DN offers a

significant improvement over Vanilla Tor and is not vulnerable to

Tempest and relay placement attacks.

D NOTES ON EVALUATING PERFORMANCE

D.1 Changing Shadow Defaults

Default options for Tor simulation had to be changed to make more

circuit selections and make a more statistically relevant use of the

Tor network, including a reduction of the error rate. We did not

change the client model; we changed how would Tor react when

receiving new streams to handle. We made it closer to how Tor

behaves with Tor Browser: using a different circuit for each destina-

tion or destination port. In effect, the simulation sampled and used

10× more circuits with the same user model. Intuitively, it should

make the sampled circuit distribution closer to the theoretical true

distribution offering load-balancing with proportional use of each

relay.

To validate our approachwe compared our Shadow configuration

with the default configuration. Shown in Figure 9, we observed a

meaningful impact on the performance results, much greater than

the discrepancy from two different instances of a same experiment.

Then, we compared the empirical distribution of relay selection to

the ideal (relaxed from Family and /16 constraints) distribution of

CCS ’20, November 9–13, 2020, Virtual Event, USA Florentin Rochet, Ryan Wails, Aaron Johnson, Prateek Mittal, and Olivier Pereira

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D
F
o
f
C
li
en
ts

Download Time (s)

Vanilla
Vanilla w/ Stream Isolation

Figure 9: Shadow Tor experimentation with 250 relays and 2400

clients. The only difference is the SocksPort option: one simulation

turns on stream isolation by Addr and Port (similar to what Tor

browser does. Tor browser also multiplexes stream by same-origin

policy)

relay selection. We observed our configuration changes to make

the usage of relays closer to the theoretical (and ideal) distribution.

D.2 Details on Path Quality

During our experiments, we observed that CLAPS could deviate

from the expected performance results (i.e., similar to Vanilla Tor)

despite the load-balancing constraint being satisfied. Recall that

load-balancing in Vanilla Tor and in CLAPS is only expressed as a

function of the bandwidth and the overall bandwidth for each path

position. Our hypothesis for explaining these differences (some-

times better, sometimes worse) lays into the quality of paths that

the algorithm is selecting regarding metrics that aren’t part of the

load-balancing logic but could influence performance results. In

Shadow, all relays and clients are connected (it is a complete topol-

ogy), and each edge has a latency and a loss rate associated with it.

We measured those values from the paths built in the simulation to

observe whether a discrepancy into those values could explain our

performance results. Figure 10 shows that it is possibly the case.

Note that we do not show the path latency figures because loss and

latency are directly proportional in Shadow, hence the graphs are

similar. Loss is more meaningful to show for the context of time to

download, since this value influences TCP’s performance.

E NOTES ON PATH SELECTION

E.1 Performance Challenges

We claim that previous location-aware schemes (e.g., Counter-

RAPTOR and DeNASA[5, 38]) can display arbitrarily worse perfor-

mance compared to Vanilla Tor; however, many of these schemes

have been demonstrated in previous works to have satisfactory per-

formance characteristics. To understand our claim and our results,

we illustrate with the following example

Suppose that the network’s capacity is composed of 10 units

of guard-flagged relays, 2 unit of unflagged relays, 1 unit of exit-

flagged relays, and 2 units of guard-and-exit flagged relays. The

bandwidth-weight equations compute the position weights such

that multi-roles relays’ bandwidth are affected most where needed

to reach an equilibrium: 4 units of guard-flagged relays are used in

the middle position, and all units of guard-exit relays are used in

exit position. The network resource ends-up to be probabilistically

distributed to (6, 6, 3) for (entry, middle, exit) positions of. This

proportion is happening for our simulated network from June 2017

(i.e., Figure 11a) and on more recent consensuses as well. The state

of the Tor network is what explains Figure 11a, where the network

has a very constrained exit position with half of the capacity in total

compared to the entry and middle positions, generating congestion

at the exits. Therefore, the entry and middle relays have spare

bandwidth, or in other words, have a lower load than the exit relays.

As a consequence, it is likely that relays involved in entry or middle

positions (or both) can be unbalanced (to some extent) without

impacting the overall performance too much, leading to Counter-

RAPTOR’s ostensible good results, similar to other algorithms and

analysis in the literature [5, 13, 21].

A first example of non-versatility performance problem of pre-

vious location-aware path selection is linked to the distribution

of user locations. Previous works ignore the density of Tor usage

per client location which can lead to arbitrary performance for the

overall Tor users, and arbitrarily low performance from a location

in which a high density of users appears. Figure 11b shows a 20%

increase of Tor users from a given location and displays unusable

download times for a large fraction of them. Note that such a spike

of usage already happened several times in the Tor network.

We give in Figure 11c a second example of the non-versatility

issue based on a different network state that existed during several

years in the past, and that may again exist in the future. Figure 11c

shows a simulation scaled down from a consensus of March 2015,

where the network resources can be potentially distributed equally

between each position (which is the bandwidth-weights equations

objective of Vanilla Tor). In such a network state, a path selection

algorithm that unbalances one of the path positions (the entry, in

the case of Counter-RAPTOR) would yield increased congestion

and reduce the expected bandwidth, as depicted in Figure 11c. That

is, Counter-RAPTOR performs worse because there is no spare

resources in this network state to absorb the impact of the blending.

CLAPS: Client-Location-Aware Path Selection in Tor CCS ’20, November 9–13, 2020, Virtual Event, USA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.005 0.01 0.015 0.02

C
D
F

Path Loss Rate

CLAPS-CR (θ = 5)
Vanilla

(a) Cumulative link loss on path from the client to the exit relay.

Data collected from the experiment in Figure 6a.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000 40000

C
D
F

Path Length (km)

CLAPS-CR (θ = 5)
Vanilla

(b) Path length (in km) showing shorter paths forCLAPSCounter-

RAPTOR. Data collected from the experiment in Figure 6a.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.015

C
D
F

Path Loss Rate

Vanilla
CLAPS-DN (θ = 2)
CLAPS-DN (θ = 5)

(c) Cumulative link loss on path from the client to the exit relay.

Data collected from the experiment in Figure 6f.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5000 10000 15000 20000 25000 30000 35000 40000

C
D
F

Path Length (km)

Vanilla
CLAPS-DN (θ = 2)
CLAPS-DN (θ = 5)

(d) Path length (in km) showing longer paths for CLAPS DeNASA.

Data collected from the experiment in Figure 6f.

Figure 10: Path information collected from experiments conducted during CLAPS’s evaluation. Those results show the impact of the guard-

placement attack constraint θ on the length, loss, and latency of the paths built during the experiments.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D
F
o
f
C
li
en
ts

Download Time (s)

Vanilla
Counter-RAPTOR (α = 0.5)
Counter-RAPTOR (α = 1.0)

(a) June 2017 network state simulated with

2400 Tor clients and 250 relays.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D
F
o
f
C
li
en
ts

Download Time (s)

Vanilla [All]
C.R. (α = 0.5) [All]
C.R. (α = 0.5) [MI]
C.R. (α = 1.0) [All]
C.R. (α = 1.0) [MI]

(b) June 2017 network state simulated with

2400 Tor clients for which 20% of them are as-

signed to a particular location, and the others

are distributed according to available online

metrics. Uses the same 250 relays as in (a).

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
D
F
o
f
C
li
en
ts

Download Time (s)

Vanilla
Counter-RAPTOR (α = 0.5)
Counter-RAPTOR (α = 1.0)

(c) March 2015 network state simulated with

2400 Tor clients and 250 relays. Compared to

(a), this network state can be perfectly load-

balanced, hence has no spare bandwidth in

guard and middle positions.

Figure 11: These figures show the impact of congestion for Counter-RAPTOR path selection given different network states.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Selected Algorithms
	2.2 Vulnerabilities in Path Selection
	2.3 Performance Challenges in Path Selections

	3 Design
	3.1 Overview
	3.2 Locations and Densities
	3.3 Weight Computation
	3.4 Location Masking
	3.5 Circuit Construction

	4 Evaluation
	4.1 Implementation
	4.2 CLAPS-CR
	4.3 CLAPS-DN
	4.4 Security Evaluation
	4.5 Performance Evaluation
	4.6 Efficiency

	5 Related Work
	6 Discussion
	7 Conclusion
	References
	A Design details
	A.1 Notation
	A.2 Weight computation

	B Path Selection Algorithms
	C DeNASA & CLAPS-DN
	D Notes on Evaluating Performance
	D.1 Changing Shadow Defaults
	D.2 Details on Path Quality

	E Notes on Path Selection
	E.1 Performance Challenges

