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Abstract. Mixnets are a type of anonymous channel composed of a handful of trustees that,
each in turn, shuffle and rerandomize a batch ciphertexts. For applications that require veri-
fiability, each trustee provides a proof of correct mixing. Though mixnets have recently been
made quite efficient, they still require secret computation and proof generation after the mixing
process.
We introduce and implement Obfuscated Ciphertext Mixing, the obfuscation of a mixnet program.
Using this technique, all proofs can be performed before the mixing process, even before the
inputs are available. In addition, the mixing program does not need to be secret: anyone can
publicly compute the shuffle (though not the decryption). We frame this functionality in the
strongest obfuscation setting proposed by Barak et. al. [4], tweaked for the public-key setting. For
applications where the secrecy of the shuffle permutation is particularly important (e.g. voting),
we also consider the Distributed Obfuscation of a Mixer, where multiple trustees cooperate to
generate an obfuscated mixer program such that no single trustee knows the composed shuffle
permutation.

1 Introduction

Robust Mixnets are a type of verifiable anonymous channel first introduced by Chaum [11].
In recent years, they have been the focus of much research activity [2, 3, 23, 16, 20, 24, 21,
32]. Mixnets typically perform anonymization via private shuffling and rerandomization of
ciphertext inputs. The mixing computation is then followed by a zero-knowledge proof of
correct shuffling, indicating that inputs were neither duplicated nor lost. Most modern mixnets
use a cryptosystem with reencryption capability, like El Gamal [17] or Paillier [26], though
some recent constructions perform rerandomization through partial decryption [32]. In all
cases, the shuffle computation remains private, and the proof of correctness is performed after
the inputs have been mixed.

Program obfuscation, first formalized by Barak et. al. [4], is a functionality-preserving
transformation of a program’s source code such that it yields no more information than
black-box access to the unobfuscated program. Generalized program obfuscation, though it
would be fantastically useful in practice, has been proven impossible in even the weakest of
settings [4, 18]. To date, point functions are the only specific class of programs known to be
obfuscatable [9, 30].

1.1 The Big Picture

We show how to obfuscate a mixnet program. More precisely, we show how to shuffle cipher-
texts using public code that implements a secret permutation. This approach is a proof-of-
concept alternative to a classic mixnet, which performs shuffling in private. Our approach is
interesting because of its operational properties: all mixing is public, and all proofs of correct-
ness can be performed prior to having the input ciphertexts. Our solution is less efficient than
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private shuffling, as it requires O(n2) time and space. Obfuscated mixing is thus unworkable
for large shuffles, but may be practical enough for small shuffles, like a precinct-level election.
We anticipate this new cryptographic concept will become more practical with continued
research.

1.2 Our Results: Obfuscated Ciphertext Mixing

We define and implement all the necessary components to obfuscate the functionality of
a specific type of reencryption mixnet. We provide security definitions of our obfuscatable
functionality and appropriate security proofs of our implementation.

Deterministic Mixing. We define FDM , a deterministic mixing black-box functionality, which
is a slightly constrained version of a typical mixnet. Specifically, FDM has the following
properties:

– the shuffling permutation π is fixed before any inputs are provided,
– mixing can be performed multiple times on different inputs,
– a given sequence of inputs will always yield the same outputs.

We define chosen-permutation security for deterministic mixing, where an adversary can-
not distinguish which of two permutations a particular deterministic mixer implements. This
closely mirrors previous security definitions for mixnets [31].

Obfuscation in the Public-Key Setting. We tweak the definition of obfuscation [4] for the
public-key setting. Once the obfuscation distinguisher ∆ is chosen, a key pair (SK, PK) is
generated. The obfuscation function O, the adversary A, the simulator S, all have access to
the public key PK. None have access to the private key SK. All other details remain the
same as obfuscation in the plain setting. We note that this setup maps fairly naturally to
the real world: a program can be obfuscated using a public key, and its obfuscated version
remains functional, though unintelligible without the secret key.

Extending a Public-Key Cryptosystem. We define the notion of a public-key cryptosystem
with obfuscatable ciphertext mixing, which provides, in the public-key setting, an obfuscation
function for FDM . Note, again, that, just like a mixnet, the obfuscation function does not
require the cryptosystem’s private key, only its public key. More formally, obfuscated mixing
is defined as an extension of a public-key cryptosystem. In addition to the generation G,
encryption E , and decryption D algorithms, the additional mixer obfuscation algorithm O is
provided as follows:

O(π, PK):
on inputs π, a N -permutation, and PK, the public key generated by G, outputs an obfus-
cated program P̃π such that P̃π(c0, . . . , cN−1) outputs c′0, . . . , c

′
N−1 such that, ∀i,DSK(c′π(i)) =

DSK(ci).

We show the impact of obfuscation on the security of the underlying public-key cryptosys-
tem: if (G, E ,D,O) implements a chosen-permutation-secure FDM , then (G, E ,D) cannot be
CCA2-secure, but must be at least semantically secure.



Verifiable Obfuscated Mixing. We also define the notion of verifiable obfuscated mixing. In
this setting, we define a protocol where a party P, given π, PK, and the randomness used in
computing P̃π = O(π, PK), can prove to a verifier V the correctness of P̃π as an obfuscated
mixing function. This notion of verifiable obfuscation, which has not been presented before,
is necessary here because the outputs of P̃π are ciphertexts, meaning that V cannot check the
correctness of P̃π on his own.

Implementation of One-Time Obfuscated Mixing. Using a cryptosystem with additive and
one-time multiplicative homomorphisms – specifically Boneh, Goh and Nissim’s recent cryp-
tosystem (BGN) [8]–, we present a one-time obfuscated mixing scheme on ciphertexts of short
messages, secure against chosen-permutation attacks and according to our obfuscation defini-
tion. The obfuscation function O is implemented as the element-wise encryption of the matrix
representation of the desired permutation. The obfuscated mixing function P̃π simply con-
sists of a homomorphic matrix multiplication – made possible by the additive and one-time
multiplicative homomorphisms – of this encrypted permutation matrix by the vector of input
ciphertexts.

We give an efficient, honest-verifier zero-knowledge protocol for proving the correctness
of the obfuscated mixing function. Briefly, the verifer V uses the obfuscated program to
shuffle a vector of randomly selected plaintexts. P must then prove the correctness of this one
random shuffle instance. We call this the vector-challenge proof, which is based in large part
on concepts introduced by Neff [23].

Distributed Obfuscation of Mixing Function. We consider the distributed obfuscation of FDM .
A group of mutually distrusting parties can jointly generate an instance of FDM such that no
subset smaller than the entire group can distinguish between two obfuscated permutations.

We show how to perform distributed mixer obfuscation using our homomorphic matrix
multiplication scheme. The idea is to pass the rows of an identity matrix through a classic
reencryption mixnet. The mixing actions of all mix servers are effectively encapsulated into
the resulting encrypted permutation matrix. The resulting encrypted matrix is the obfuscated
mixing program P̃π where π is the composition of all the mix servers’ permutations. The
verification of each mix server can be performed by a variant of the vector-challenge proof
sketched above.

Application to Voting. The matrix construction requires O(n2) space and time. Thus, it is
not as efficient as modern mixnets, and its practical application is therefore limited. However,
the constant factors are such that this scheme is a reasonable proof-of-concept for certain
applications such as small elections. We estimate that, for an election with 2,000 voters and
32-byte ballots (enough text for about two races), the obfuscated mixing function would take
approximately 5 days to prepare and 11 days to execute on an average single-CPU PC. Note
also that the size of an obfuscated mixing program is pre-set, which requires the use of “filler
votes” in most real-life elections.

The advantage of obfuscated mixing is the interesting process it enables. All mixing proofs
can be pre-computed in the weeks leading up to an election, before anyone has voted. The
mixing process itself becomes entirely deterministic. Most importantly, the mixing code is
public, thus allowing an election precinct to operate its own anonymization service without



any private computation: there are no secrets to divulge 1. Obfuscated mixing has the potential
to greatly simplify election-day tasks.

1.3 Related Work

In voting schemes where only an aggregate tally of well-formed inputs is required — i.e.
the candidates are pre-determined and only the candidate totals matter — alternatives to
mixnets have been proposed using homomorphic encryption schemes, initially by Benaloh
[7, 6]. These homomorphic schemes have seen significant advances in recent years, including
various techniques to handle multiple races and multiple candidates per race [13, 29, 12, 14, 5,
20]. Homomorphic tallying is similar to obfuscated mixing in that, on and after election day,
only public computation is required for the anonymization process. However, homomorphic
tallying cannot recover the individual input plaintexts.

Recent work on streaming-data search using homomorphic encryption [25] defined the
notion of public-key program obfuscation. In Ostrovsky et al.’s definition, an obfuscated pro-
gram is run on plaintext inputs and provides ciphertext outputs: the operator is able to tell
that the program is searching the data, but cannot determine what keywords it is searching.
This work is conceptually quite similar to our notion of obfuscated mixing, with one notable
difference: the mixing inputs are ciphertexts while the keyword-search inputs are plaintexts.
This indicates that the techniques of Ostrovsky et al. cannot be immediately applied to the
obfuscated mixing problem, and that obfuscated mixing requires different security definitions.
As such, this paper uses a different term: program obfuscation in the public-key setting.

One may also notice a similarity between obfuscated mixing and oblivious transfer. We
show in section 3.5 how any obfuscated mixing scheme can easily be turned into an oblivious
transfer scheme, and note how the reverse is unlikely.

1.4 Outline.

In section 2, we review mixnets, program obfuscation and the BGN cryptosystem. In sec-
tion 3, we formally define the black-box deterministic mixing functionality, the notion of
chosen-permutation security, and the properties of a public-key cryptosystem with obfuscat-
able ciphertext mixing. In section 4, we build a one-time obfuscated mix using the BGN
cryptosystem (or any similarly homomorphic encryption scheme), and in section 5 we show
how to generate one in a distributed fashion. In section 6, we briefly discuss how this work
applies to electronic voting, before concluding with some open problems in section 7.

2 Preliminaries

2.1 Mixnets

First introduced by Chaum [11], a mixnet is a type of anonymous channel that shuffles and
rerandomizes ciphertext inputs such that the input-output permutation is unknown to an
outside observer. Verifiable mixnets offer, in addition, a proof of correct mixing to guarantee
that no input was duplicated or lost. In general, mixnets are composed of a sequence of
mutually distrustful mix serversMj , each of which shuffles and randomizes the inputs in turn.

1 We note, again, that threshold decryption of the mixed ballots remains a private operation. This paper does
not address decryption; it focuses on making the anonymization process much more public.



Many modern mixnets perform randomization by reencryption of inputs in a rerandomizable
scheme like El Gamal [17], though some constructions, including very recent ones, perform
rerandomization through partial decryption [32, 10].

2.2 Program Obfuscation

Informally, program obfuscation transforms a program such that the resulting source code
preserves the original functionality but provides no information beyond what black-box access
to the functionality naturally yields. The strongest definition of Barak et. al. [4], the one we
consider here, requires computational indistinguishability between an adversary with source
code access and a simulator with black-box access.
Pn refers to a class of programs on input of size n, and P refers to a single such program.

Definition 1. An algorithm O is an obfuscator for a class of programs {Pn}n∈N if:

1. Functionality: O(P) computes the same function as P.
2. Polynomial Blowup: There is a polynomial l(·) such that, for every P in P, |O(P)| ≤

l(|P|)
3. Virtual Black-Box Indistinguishability: for all non-uniform PPT adversaries A,

there exists a PPT simulator S and a negligible function ν(·) such that, for every n ∈ N,
for every P ∈ Pn, for every PPT distinguisher ∆,

Pr[∆(A(O(P))) = 1]− Pr[∆(SP(1n)) = 1] < ν(n).

2.3 BGN Cryptosystem

The BGN Cryptosystem [8] provides additive and one-time multiplicative homomorphic op-
erations. It operates in groups G1 and G2, both of order n = q1q2, where q1 and q2 are prime.
(We use multiplicative notation in both G1 and G2.) G1 and G2 exhibit a polynomial-time
computable bilinear map e(·, ·) such that (1) g generates G1, (2) e(g, g) generates G2, and
(3) ∀u, v ∈ G1 and ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.

Boneh et al. formulate the Subgroup Decision Assumption, which states that no PPT
A can distinguish between a uniform distribution on G1 and a uniform distribution on a
subgroup of G1 of order q1. The cryptosystem defines the following operations:

– G(1k): generate (q1, q2,G1,G2, e(·, ·)). Let n = q1q2. Pick generators g, u
R←− G1. Set

h = uq2 . Output PK = (n,G1,G2, e(·, ·), g, h) and SK = q1.
– EPK(m): pick r

R←− Z∗n and produce c = gmhr ∈ G1.
– DSK(c): given a secret key SK and a ciphertext c, compute cq1 = (gmhr)q1 = (gq1)m ∈ G1.

Taking the discrete log of cq1 base gq1 yields m. m must be at most polynomial in k.

Similar operations E ′,D′ work in G2, with G = e(g, g) and H = e(g, h).

Homomorphisms. This cryptosystem offers an additive homomorphism. With c1 = EPK(m1, r1)
and c2 = EPK(m2, r2), then c1 ·c2 = EPK(m1+m2, r1+r2). The additive homomorphism gives
a reencryption algorithm RE . It also offers a single multiplicative homomorphism operation:
e(c1, c2) = EPK(m1m2, r̃), with r̃ a function of m1,m2, r1, r2. Once the ciphertext is in G2,
only additive homomorphic operations are possible.



Semantic Security. Boneh et. al. prove semantic security [19] of this cryptosystem under the
subgroup decision assumption in G1 and G2.

3 Definitions

We formally define the black-box functionality for deterministic ciphertext mixing, as well
as the associated concept of chosen-permutation security. We then consider a tweak to the
obfuscation definition: obfuscation in the public-key setting. Based on these two concepts, we
define public-key encryption with obfuscatable mixing.

3.1 Deterministic Ciphertext Mixing

Informally, a deterministic ciphertext mixer is a black-box that can repeatedly mix ciphertexts
on demand. Its permutation and any required randomness are fixed before mixing begins.
Thus, if the same set of inputs is mixed twice by the same mixer, the exact same ciphertext
outputs are obtained. However, no information about the permutation should be gleaned from
any amount of mixing (without the secret key SK, of course). We now formalize this concept.

Definition 2. A family of black-box functionalities FDM for a semantically-secure cryp-
tosystem (G, E ,D) with reencryption capability RE is said to perform secure deterministic
ciphertext mixing if, given (SK, PK) ← G(1k), a N -permutation π, and random tape r,
FDM [PK, π, r] denotes an instance of a black-box functionality with the following properties:

1. Correctness: on input ciphertexts (c0, c1, . . . , cN−1), FDM [PK, π, r] outputs ciphertexts
(c′0, c

′
1, . . . , c

′
N−1), such that, ∀i ∈ [0, N − 1],DSK(c′π(i)) = DSK(ci).

2. Determinism: there is a fixed sequence of polynomial-time computable functions (f0, f1, . . . , fN−1),
such that, for every invocation of FDM [PK, π, r], given R the randomness extracted from
random tape r at the time of black-box instantiation, cπ(i) = RE(PK, ci, fi(R, c0, c1, . . . , cN−1)).
2

3. Chosen-Permutation Security: there exists a negligible function ν(·) such that, for any
non-uniform PPT adversary A = (A1,A2), random tape r:

Pr
[
(SK, PK) R←− G(1k); (π0, π1)

R←− A1(PK) ;

b
R←− {0, 1};AFDM [PK,πb,r]

2 (PK) = b
]

<
1
2

+ ν(k).

3.2 Obfuscation in the Public-Key Setting

Before we can consider obfuscating the functionality just described, we need a tweaked def-
inition of obfuscation that accounts for the public-key setting. Informally, the obfuscator
function should have the public key, as should the adversary, simulator, and distinguisher.
The key pair is generated after the distinguisher has been selected. We do not attempt to
obfuscate the program from a distinguisher with access to the private key (a fair, real-world
assumption, much like the generic public-key setting.)

2 In particular, this property implies that, for any given sequence of inputs {ci}, FDM [PK, π, r]({ci}) yields
the exact same ciphertext outputs {c′i} on multiple invocations.



Definition 3. The tuple of PPT algorithms (G, E ,D,O) provides Program Obfuscation in
the Public-Key Setting with security parameter k for a class of programs P = {Pn}, n =
poly(k), if:

1. (G, E ,D) form a classic public-key encryption scheme [19]:

– G: on input 1k, produces a pair (PK, SK).
– E: on input PK, message m ∈ {0, 1}k, produces c ∈ {0, 1}∗

– D: for all (SK, PK) R←− G(1k) and m ∈ {0, 1}k, DSK(EPK(m)) = m.

2. Functionality: Given (SK, PK) ← G(1k) and a program P ∈ Pn, O(PK,P) computes
the same function as P. 3

3. Polynomial Blowup: There is a polynomial l(·) such that, given (SK, PK) ← G(1k),
for every P in P, |O(P, PK)| ≤ l(|P|).

4. Virtual Black-Box Indistinguishability: for all non-uniform PPT adversaries A,
there exists a PPT simulator S and a negligible function ν(·) such that, for every n, for
every P ∈ Pn, for every PPT distinguisher ∆, for every (SK, PK) R←− G(1k):

Pr[∆(PK,A(O(P, PK))) = 1]− Pr[∆(PK,SP(PK)) = 1] < ν(k).

Note, again, that the distinguisher ∆ has access to PK, but not SK.

3.3 Obfuscatable Ciphertext Mixing

With the black-box functionality family FDM and the concept of program obfuscation in the
public-key setting in place, we can now simply define obfuscated ciphertext mixing.

Definition 4. A tuple of PPT algorithms (G, E ,D,O) is a public-key cryptosystem with
obfuscatable ciphertext mixing if it provides program obfuscation in the public-key setting for
a class of programs P that implements deterministic mixing functionality FDM .

In addition, we say that (G, E ,D,O) is secure against chosen-permutation attack if its pro-
gram class P implements a deterministic functionality also secure against chosen-permutation
attack.

3.4 Consequences to Public-Key Security

The very existence of the mixing obfuscation functionality in a public-key cryptosystem has an
impact on the security requirements and limitations of the underlying cryptosystem (G, E ,D).
Intuitively, this underlying cryptosystem must be semantically secure, and cannot be CCA2
secure. We prove this in detail in Appendix A.1.

3.5 Reduction to Two-Round 1-out-of-l Oblivious Transfer

An obfuscatable mixing scheme is reducible to a two-round, 1-out-of-l Oblivious Transfer
scheme [27]. We show this in Appendix A.3.

3 Some definitions allow the obfuscated program to fail with negligible probability. We’re interested in this
stronger definition – stronger from the point of view of a positive result.



4 Implementation of a One-Time Obfuscated Mix

We are now ready to present our construction of a public-key cryptosystem with one-time
obfuscatable mixing functionality. We call this scheme the Matrix Mixer, for reasons that
will become immediately clear. This construction is based on any semantically-secure cryp-
tosystem with additive and one-time homomorphic properties. Though BGN [8] is the only
such cryptosystem known, our construction remains generic, so that it may apply to future
cryptosystems.

First, we define a deterministic mixing scheme based on homomorphic matrix multiplica-
tion and prove that it is secure against chosen-permutation attacks. Then, we show that this
homomorphic matrix multiplication can be easily obfuscated, as the encrypted matrix is both
functional and permutation-hiding.

4.1 Matrix-Based Deterministic Mixing

Homomorphic Matrix Multiplication. Consider matrices A = [aij ], of dimensions m-by-h,
and B = [bjk], of dimensions h-by-n. Consider the matrix C = A × B = [cik] of resulting
dimensions m-by-n. We know that:

∀i ∈ [0,m− 1],∀k ∈ [0, n− 1] : cik =
h−1∑
j=0

aijbjk.

Now consider the notation M̃ = EPK(M) to indicate the element-wise encryption of a ma-
trix, such that M̃ = [EPK(mij)]. Note how the matrix multiplication operation above requires
a number of additions, but only one multiplication per input matrix element. Thus, using a
cryptosystem like BGN with homomorphic addition ⊕ and one-time homomorphic multipli-
cation ⊗, one can compute homomorphic matrix multiplication on element-wise encryptions
of matrices. Consider matrices Ã and B̃, the element-wise encryptions of matrices A and B
as above, respectively. We can homomorphically compute C̃ = [EPK(cik)] as follows:

∀i ∈ [0,m− 1],∀k ∈ [0, n− 1] : c̃ik =
h−1⊕
j=0

ãij ⊗ b̃jk.

Thus, a cryptosystem with additive and one-time homomorphic properties – e.g. BGN –
allows for one homomorphic matrix multiplication.

Deterministic Mixing by Matrix Multiplication. We construct FDM , a family of black-box
mixing functionalities, using this homomorphic matrix multiplication. Consider a homomor-
phic cryptosystem like BGN, represented by the tuple (G, E ,D). Given (SK, PK) R←− G(1k),
π a N -permutation, and r a random tape, the family FDM is defined as:

FDM [PK, π, r]:

1. π is encoded as its corresponding permutation matrix Mπ.
2. M̃π, the element-wise encryption ofMπ, is generated using randomization factors (r0, r1, . . . , rN2−1)

obtained from the random tape r.
3. Repeat the mixing as often as queried:

on inputs C = (c0, c1, . . . , cN−1), output C′ = C⊗Mπ.

Simple inspection shows that FDM provides correct and deterministic mixing functionality.



4.2 Chosen-Permutation Security

We now show that instances of the deterministic functionality family FDM defined above are
secure against chosen-permutation security. For modularity’s sake, the proof begins with a
lemma addressing matrix-level semantic security (which will be useful in the next section).

Lemma 1. Given a semantically-secure public-key cryptosystem (G, E ,D) with additive and
one-time multiplicative homomorphism properties , for all non-uniform PPT A = (A1,A2):

Pr
[
(SK, PK) R←− G(1k); (π0, π1)

R←− A1(PK) ;

b
R←− {0, 1}; M̃πb

R←− EPK(Mπb
);A2(M̃πb

) = b
]

<
1
2

+ ν(k).

where EPK(Mπ) denotes the element-wise encryption of Mπ.

Proof. This matrix-level semantic security follows from a generic hybrid argument, given that
an element-wise encrypted matrix is just a sequence of ciphertexts. We give a better, tight
reduction in Appendix A.2.

Given this lemma, it is clear that the black-box matrix functionality is chosen-permutation
secure: oracle-access to a computation that the adversary could perform directly with the
encrypted matrix certainly cannot yield any more information than the encrypted matrix
itself.

Theorem 1. The Matrix Mixer deterministic mixing functionality is secure against chosen-
permutation attack under the assumption that the underlying cryptosystem is semantically
secure.

Proof. Assume the Matrix Mixer is not secure against chosen-permutation attack. Then there
exists an adversary A which can distinguish between FDM [PK, π0, r] and FDM [PK, π1, r

′].
Using A, we construct A′, a new adversary which breaks Lemma 1.

A′(PK):

1. Run A to produce π0 and π1, and output them to the challenger.
2. Receive M̃ = EPK(Mπb

) for b ∈ {0, 1}, from the challenger.
3. Using M̃, simulate an instance of FDM for A. Note how this uses exactly the same code

as a known-permutation FDM , which means the simulation is perfect. Note also that A
can interact with this simulated functionality as much as it wants.

4. On guess b′ from A, return the same guess b′ to the challenger.

If A succeeds – i.e. b = b′ – with better than negligible probability, then so does A′.

4.3 Obfuscating the Matrix Mixer

We now have a well-defined black-box functionality family FDM , secure against chosen-
permutation attack. As it turns out, obfuscation of an instance of FDM is easy: simply
publish the encrypted permutation matrix. Anyone can compute the homomorphic matrix
multiplication, and semantic security enables easy simulation. More formally, given a BGN-
like cryptosystem (G, E ,D), consider the mixing obfuscation function:

O(PK, π):



1. Compute M̃π = EPK(Mπ).
2. Output the program Pπ̃ with source code:

(a) on input C = (c0, c1, . . . , cN−1), each a ciphertext in (G, E ,D),
(b) output the result of C′ = C⊗ M̃π.

Theorem 2. The homomorphic matrix-mixer obfuscator O is a secure obfuscator of deter-
ministic mixing functionality FDM in the public-key setting, assuming the underlying (G, E ,D)
is semantically secure.

Proof. We construct a simulator S for program obfuscation in the public-key setting, such
that, if ∆ succeeds at distinguishing A and S, a new adversary A′, built upon ∆ and A, can
break Lemma 1 and thus the underlying semantic security of the cryptosystem. Note that, in
the case of obfuscated mixing, the obfuscated program O(P, PK) fed to A is effectively M̃π,
an element-wise encryption of a permutation matrix.

SFDM [PK,π,r],A(PK):

1. Generate a random permutation π′ and its associated M̃π′ .
2. run A(PK, M̃π′), and output to ∆ the exact output of A.

If ∆ distinguishes between S and A, then A′ can instantiate two A’s, feed an encrypted matrix
to each one, and use the output from ∆ on the outputs of both A to distinguish between
the encrypted matrices. Thus, by contradiction, ∆ has a negligible property of distinguishing
between S and A, and O is a secure obfuscation function for deterministic mixing.

4.4 Verifiable Obfuscated Matrix Mixing

In a number of applications, a party may want some proof that P is indeed performing as
specified. This feature is particularly important in the public-key setting, where the pro-
gram’s operator cannot observe correct operation simply by looking at the program’s output.
This proof should be, of course, zero-knowledge, such that a program operator is guaranteed
nothing more than that P performs some permutation on the inputs.

In our implementation of deterministic mixing, this implies proving that M̃π is an element-
wise encryption of some permutation matrix. Though there are tedious ways of proving this
correct form directly using proofs of partial knowledge and the cryptosystem’s homomorphic
properties, there is a significantly more efficient approach that tests the encrypted matrix’s
functionality: the verifier can challenge the prover with a random vector of inputs. Since the
plaintexts of the random challenge vector are known, the matrix multiplication can be per-
formed using homomorphic addition and repeated squaring. The prover can then use a classic
Neff/Groth proof of shuffle of known plaintexts. Intuitively, if the encrypted matrix is any-
thing but a permutation matrix, it is extremely unlikely that it will behave as a permutation
matrix on a random input.

More formally, consider (SK, PK) the key pair for the public-key setting, π the obfuscated
permutation, M̃π the element-wise encrypted matrix, and R the randomness used in creating
the encrypted matrix. The proof protocol between P(PK, π,R, M̃π) and V(PK, M̃π) is as
follows:

VectorProof:

1. V challenges P with a random vector of plaintexts [mi].



2. Both V and P compute [ci] = [mi]⊗ M̃π.
3. P and V perform a HVZK proof of mixing from [mi] to [ci].

This proof protocol is based on known techniques due to Neff [23]. The matrix multiplication
with a plaintext vector, proof of known-plaintext shuffle, and proof that only a permutation
matrix can reliably permute a random challenge vector are detailed in Appendix B.

Theorem 3. VectorProof is an Honest Verifier Zero-Knowledge Proof that the encrypted
matrix M̃ encodes a permutation matrix.

Proof Sketch. We prove the usual properties of HVZK protocols:

– Completeness: an honest P clearly knows π and the encryption exponents of the matrix.
As described in detail in Appendix B, this gives P the reencryption factors from [mi] to
[ci], which lets P perform the Neff/Groth HVZK proof of known plaintext shuffle.

– Soundness: assuming the mixing proof is sound, one is left to verify that a non-permutation
matrix multiplied by a random input vector will yield some permutation of that vector
for only a negligible fraction of random challenge vectors. This is detailed in Appendix B.

– HVZK: P provides no information beyond its execution of the HVZK protocol of correct
mixing. Thus, the mixing proof simulator can simulate this higher-level transcript.

– Note on PoK: if the underlying proof of mixing is a proof of knowledge, then VectorProof
also becomes a proof of knowledge, as the underlying extractor can be used directly to
extract the permutation.

Note that the random message-vector challenge can be composed of short messages (50
bits or so). This significantly speeds up the modular exponentiations required to perform the
proof while maintaining the same security properties.

4.5 Performance

Consider N the number of ciphertext inputs to a permutation we wish to obfuscate. The
obfuscation function O requires O(N2) space and time to produce Pπ̃, and Pπ̃ requires O(N2)
space and time to operate.

5 Distributed Obfuscation and Encapsulated Mixing

So far, we have shown how a single party can obfuscate and prove the correctness of a
deterministic mixing function. However, for many applications, e.g. voting, single-party ob-
fuscation is insufficient: that single party will then know the shuffling permutation, breaking
the anonymity of the overall protocol. Unfortunately, we show in Appendix C that generic,
composable mixing is unlikely. Thus, we develop a method for the efficient, distributed ob-
fuscation of a deterministic matrix mixer. We consider the most straight-forward case, where
t trustees generate Pπ̃ in such a way that all t trustees must collude in order to determine π.

In our approach, the trustees mix the rows of an encrypted permutation matrix using a
typical mixnet. Instead of proving correct mixing of every row – which would require O(N2)
time for each trustee proof –, we propose a proof using the same input-vector challenge
approach as that used for single-party verifiable obfuscation.



5.1 Distributed Obfuscation of a Matrix Mixer

Cryptosystems like BGN clearly provide reencryption capability through the homomorphic
addition of an encryption of 0. Thus, the distributed obfuscation of a matrix mixer proceeds
as follows:

1. MID, the identity N -permutation-matrix, is encrypted with randomization 0 and used as
initial input M̃(0).

2. Each trustee Tl performs reencryption and shuffling on the previous trustee’s output M̃(l):

(a) generate secret N -permutation πl,
(b) generate N2 reencryption factors rij ,

(c) output a matrix whose elements are M(l+1)
ij = RE(M(l)

iπl(j)
, rij).

3. The final output is M̃π where π is the composition of all πl.

5.2 Verifying the Distributed Obfuscation of a Mixer

The challenge-vector approach to obfuscation verifiability is not immediately applicable to the
distributed obfuscation of a mixer, because no single trustee knows the overall permutation.
Instead, each trustee must prove that its modification to the matrix is a permutation. This
can be done with a variation of the vector-challenge proof.

The following proof protocol occurs after the t trustees have remixed the encrypted matrix,
publicly producing M̃(1), . . . , M̃(t) along the way.

MultiVectorProof:

1. V interacts with each trustee Tl in turn:

(a) V produces a random challenge vector [m(l)
i ].

(b) V and Tl each compute C
(l)
premix = [m(l)

i ]⊗ M̃(l−1)

(c) V and Tl each compute C
(l)
postmix = [m(l)

i ]⊗ M̃(l)

(d) V and Tl engage in a HVZK proof of correct mixing from C
(l)
premix to C

(l)
postmix, using the

Neff/Groth techniques that apply to a shuffle of homomorphic encryptions of unknown
plaintexts (Appendix B).

2. If a given trustee succeeds in proving correct mixing of its random challenge vector, then,
using the same argument as for VectorProof, that particular trustee indeed permuted and
reencrypted the rows of the encrypted matrix it received as input. If all trustees succeed,
then M̃(t) is a verified encrypted permutation matrix that contains π, the composition of
all trustees’ secret permutations πl.

This protocol is clearly complete and honest-verifier zero-knowledge, since, once again,
each trustee provides no information apart from that of the included sub-protocol for proving
a correct random vector mix. Soundness is guaranteed for each trustee by the same proof
as that of VectorProof. Again, if the underlying proof of mixing is turned into a proof of
knowledge of the permutation, then this protocol also becomes a proof of knowledge of each
trustee Tl’s permutation πl.



5.3 Encapsulated Mixing

At a high level, the protocols described here effectively capture the shuffling actions of the
trustees into the resulting encrypted permutation matrix, with all verification performed
before any mixing of real inputs has occurred. Upon using this encrypted permutation on real
ciphertext inputs, the shuffling actions of the trustees are effectively replayed in a deterministic
way. We call this process encapsulated mixing.

6 Application to Voting

6.1 Comparison to Existing Systems

Universally-verifiable voting currently employs two major types of anonymous routing and
tabulation: mixnets and homomorphic encryption. Mixnets offer free-form ballots, though
their operation requires significant private computation and a time-taking proof of correctness.
Homomorphic schemes are more limited in their ballot form, but offer a much faster, more
public operation.

In general, the most significant problem with homomorphic schemes is that, oftentimes,
election regulation requires the availability of individual, anonymized ballots at recount time.
Mixnets provide these individual ballots, but require significantly more secret computation
on election day. (Note that joint-decryption remains a secret computation in all cases.)

Obfuscatable Mixing may provide a best-of-both-worlds solution: the mixnet source code
becomes public with all proofs performed prior to election day. Anonymization on election
day requires no secret computation (though decryption still does). In addition, ballots can be
free-form, and all plaintext ballots are available at the end of the election, instead of a single
total count.

6.2 Long Messages & Variable-Size Mixing

The current BGN-based scheme accepts plaintext of limited length, because a discrete loga-
rithm is required at decryption time. For ballots longer than a few bytes, it may be necessary
to break up the ciphertext into a few pieces, each no longer than a few bytes. Each ciphertext
chunk will have to go through the deterministic mixer program in the same way.

Note also that mixnets can adapt to a variable mixing size, while an obfuscated mixing
program has a pre-set size. It is necessary to compute all the outputs of an obfuscated mixer,
even if some of the inputs are missing. Any filler input value can be used for the empty inputs,
along with proofs that these are filler votes. When the ballots are eventually decrypted, the
special filler values can be removed from the tally.

6.3 Proof of Anonymity in the Universally-Verifiable Setting

We have not proven that obfuscatable mixing remains permutation-hiding when used in the
universally-verifiable setting. In such a setting, the output ciphertexts are eventually de-
crypted by a set of trustees, and their corresponding plaintexts published for the world to see,
along with zero-knowledge proofs of correct decryption. If an adversary is given this one-time
decryption oracle, potentially on multiple sets of non-adaptively chosen ciphertexts as per
Section 6.2, do the obfuscation and chosen-permutation security properties survive?



Intuitively, we believe they do: a decryption simulator could fake decryption of the outputs
according to some random, probably incorrect, permutation. If the adversary were able to
distinguish between this fake decryption and a real one, then the semantic security of the
scheme would be broken. If the adversary were unable to distinguish and could still successfully
extract permutation information using fake decryption, then so could an adversary without the
decryption Oracle, once again breaking semantic security. Note how this simulated decryption
would not withstand multiple adaptive mixes.

For lack of space, and because we believe obfuscated mixing in the universally-verifiable
setting deserves its own, in-depth analysis and proper definitions, we leave the detailed proof
of this intuition to a later date.

6.4 Performance

Detailed analysis in Appendix D concludes that an election with 2,000 eligible voters, 32-byte
ballots (enough for two races), and 5 trustees will require 5 days to prepare, and approximately
11 days to mix on a single CPU, without any parallelization. Note that both preparation and
mixing are easily parallelizable with small numbers of CPUs, meaning a quad-CPU machine
could prepare the election in 36 hours and mix it in just under 3 days.

This makes obfuscated mixing an interesting proof of concept, though not a system that’s
voting-ready just yet. However, these numbers are not altogether outrageous: there’s reason
to believe that further research and continued parallelizations may yield perfectly acceptable
running times.

7 Conclusion

We introduced obfuscated ciphertext mixing, a new cryptographic construction that uses ho-
momorphic properties to enable the obfuscation of a mixnet program. With this constrution,
verifiable shuffling can be proven before the inputs are available, using public code. In devising
a distributed obfuscation mechanism, we also defined encapsulated mixing, where a set of
parties combine their mixing actions into an encrypted permutation, ready to be applied to
ciphertexts at a later date.

Future Work. Much work remains. It would be interesting to devise an obfuscated mixing
scheme on ciphertexts of full-length plaintexts. It will also be useful to explore partially com-
posable obfuscated mixing, where a ciphertext may be mixable a small number of times.
This could enable direct mixnet-like usage by a small number of mututally distrusting par-
ties, without a tedious distributed generation process. Additionally, this proof-of-concept idea
needs to be integrated into a universally-verifiable voting protocol. It should be considered,
in its current form, only a proof-of-concept.

On a separate front, the ability to obfuscate a function as complex as mixing is particu-
larly interesting. Certainly, the public-key setting is responsible for enabling such interesting
obfuscation. What other functions might be obfuscatable in this way? What other reasonable
definitions of obfuscation in the public-key setting might yield interesting applications?
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A Proofs

In this section, we detail some of the less-essential proofs of this work.

A.1 Obfuscated Mixing Effects on Public-Key Security

Note that, given our definition of obfuscatable mixing that requires O to successfully obfuscate
a permutation of any size, the following theorems could be easily proven with permutations of
specific sizes (i.e. sizes 2 and 1, respectively). We give more complete proofs, however, so that
these theorems follow even with a weaker definition of mixing obfuscation where O accepts
permutations of only certain sizes.

Theorem 4. Given a public-key cryptosystem with obfuscatable ciphertext mixing (G, E ,D,O)
secure against chosen-permutation attack, the public-key cryptosystem (G, E ,D) must be se-
mantically secure.

Proof. Assume (G, E ,D) is not semantically secure. We now show that (G, E ,D,O) cannot
be secure against chosen-permutation attack. If (G, E ,D) is not semantically secure, there
exists a PPT adversary A that selects messages m0 and m1 such that it can distinguish
between encryptions of one or the other. We can then construct a new adversary A′ that
breaks chosen-permutation security:

1. when A′ is prompted, it output (π0, π1) such that π0(0) = 0 and π1(0) 6= 0.
2. A′ receives P̃π from the Chosen-Permutation Challenger
3. A′ prompts A for m0 and m1.
4. A′ prepares a vector of N ciphertexts (c0, c1, . . . , cN−1) such that DSK(c0) = m0 and
∀i ∈ [1, N − 1],DSK(ci) = m1. A′ then computes (c′0, c

′
1, . . . , c

′
N−1) = P̃π(c0, c1, . . . , cN−1).

5. A′ passes c′0 to A
6. A responds with bit b that indicates its guess that DSK(c′0) = mb.
7. A′ outputs the same bit b, effectively guessing permutation πb.

A′ succeeds in breaking chosen-permutation security of (G, E ,D,O) with the same prob-
ability as A succeeds in breaking semantic security of (G, E ,D). Thus, by contradiction, if
(G, E ,D,O) is chosen-permutation secure, then (G, E ,D) must be semantically secure.



Theorem 5. Given a public-key cryptosystem with obfuscatable mixing (G, E ,D,O) secure
against chosen-permutation attack, the public-key cryptosystem (G, E ,D) is not CCA2-secure.

Proof. It is well understood that a public-key cryptosystem with reencryption capability
cannot be CCA2-secure, since an adversary with decryption-oracle access can simply reencrypt
the challenge ciphertext, query the decryption oracle with this new ciphertext, and obtain
the challenge decryption. We show that an obfuscated mixing program for a permutation of
any size N trivially provides this reencryption capability.

RE(PK, c):

1. select a random permutation π of size N and compute P̃π
R←− O(π, PK).

2. generate ciphertexts c1, c2, . . . , cN−1 for random plaintexts.
3. compute (c′0, c

′
1, . . . , c

′
N−1) = P̃π(c, c1, . . . , cN−1).

4. noting that π is known, output c′π(0).

Given that O is, by hypothesis, secure against chosen-permutation attack, the probability
that c′π(0) = c0 is negligible, otherwise the permutation would easily be distinguishable. Thus,
RE provides reencryption with overwhelming probability, and (G, E ,D) cannot be CCA2-
secure.

Note that the above proof does not rule out a RCCA-secure cryptosystem [28].

A.2 Semantic Security of an Encrypted Permutation Matrix

Assume there exists such an aversary A. Using A, one can construct A′, a PPT adversary
that breaks the semantic security of (G, E ,D):

A′(PK):

1. Select chosen plaintexts m0 = 0 and m1 = 1, output them to the semantic-security
challenger, and collect c = EPK(mb) from the challenger, for b = 0 or b = 1.

2. Homomorphically compute c̄, the encryption of (1−mb) (assuming multiplicative notation
for the homomorphic operation, c̄ = EPK(1)

c .)
3. run A to produce π0 and π1, the two permutations A will attempt to distinguish. These

two permutations are encoded as permutation matrices Mπ0 and Mπ1 .
4. Compose an encrypted matrix M̃′ as follows: (a) for all elements that Mπ0 and Mπ1 have

in common, simply include an encryption of that common element, and (b) for all elements
where Mπ0 and Mπ1 differ, use c if the element in Mπ0 is 0, and c̄ if the element in Mπ0

is 1. Note that, as a result of this manipulation, if c is the encryption of 0, then M̃′ is the
encryption of Mπ0 , but if c is the encryption of 1, then M̃′ is the encryption of Mπ1 .

5. Provide M̃′ to A, and obtain guess b′ in return.
6. Return b′ to the SSC, effectively indicating a guess that b = b′.

If A succeeds – i.e. b = b′ – with better than negligible probability, then so does A′. Note that
this is a tight reduction: A′ succeeds with the same probability as A.



A.3 Obfuscated Mixing Implies Two-Round 1-out-of-l Oblivious Transfer

Consider a sender S and a recipient R:

1. parameter l, the number of strings available to send via oblivious transfer, is public.
2. R sets up an obfuscatable mixing environment (G, E ,D,O), and computes (SK, PK) ←
G(1k). R then selects a permutation π such that π(0) = j where j is the desired index in
the 1-out-of-l OT, and computes P̃π = O(π, PK). R sends PK, P̃π to S.

3. S encrypts each value vi as ci with the appropriate public key received from R, checks
the validity of P̃π, and applies it to {ci}. S then takes the first output and sends it to R.

4. R decrypts the output received.

This protocol is clearly correct: R will receive an encryption of input j. The value of
j is clearly secret if the mixing scheme provides chosen-permutation security. The recipient
receives only the indexed value. Note that the communication efficiency of this OT scheme
is linear, which is not particularly impressive given known optimal OT schemes that achieve
log2 communication [22].

B Vector-Challenge Proof

Neff [23] introduced techniques for efficiently proving shuffles using vector dot-product and
proof of exponent product combinatorial arguments. Groth [20] later formalized this approach
using homomorphic commitments in generic homomorphic cryptosystems. We now adapt
these techniques to our setting, particularly BGN [8]. We also show that an encrypted matrix
that successfully shuffles a random set of inputs almost certainly encodes a permutation.

B.1 Homomorphic Matrix Multiplication with Vector of Known Plaintexts

The central idea to proving that the encrypted matrix performs a shuffle on a random chal-
lenge vector is that, given a random set of inputs whose plaintexts are known, the matrix’s
permutation effect can be carried out without homomorphic multiplication (in BGN, this is
equivalent to “staying in G1”). Specifically, consider the encrypted matrix M̃ = [ãij ]. To per-
form homomorphic matrix multiplication with a vector of known plaintexts, one can simply
invoke the multiplication by a known constant operation, which derives from the additive ho-
momorphism property. Given that the additive homomorphism is composable, all ciphertexts
remain in the same group, which enables the application of the Neff techniques with little
modification.

We assume, for simple notation, that homomorphic addition is performed by ciphertext
multiplication, and thus that multiplication by a known value is performed by exponentation.
(This is clearly the case for BGN.) Thus, assuming a random challenge input vector [mj ]N−1

j=0 :

cj =
N−1∏
i=0

ã
mj

ij

If ãij = EPK(aij , rij), then the prover (the creator of the matrix) knows the set {rij}. If π
is the permutation encoded by Ã, then in the computation above:

cj = EPK(mπ(j),

N−1∑
i=0

rijmj)



Note that this randomization exponent is the dot product of the message vector and the
j’th column of randomization exponents in the encrypted permutation matrix. Note also, of
course, that the prover knowns all of these randomization factors, since it knows the set of
{rij} and the vector of known plaintexts [mj ].

As the proofs below will make clear, the random message-vector challenge can be composed
of short messages (50 bits or so). This significantly speeds up the modular exponentiations
required to perform the proof while maintaining the same security properties.

B.2 Proof of Permutation Matrix

The important question in this proof is: if a matrix is not a permutation matrix, what is the
probability that the product of that matrix with a random challenge vector is a permutation
of that random challenge vector? Using Neff’s arguments of vector-dot-product combinatorics,
two cases arise:

1. at least one row of the matrix is not an identity row: the chance that the dot-
product of that row with the challenge vector will give one of the input values is at most
N/q, which is thus an upper bound on the fraction of challenge vectors that will succeed.

2. all rows are identity rows, in which case at least two rows are identical and
both select the j’th input: given a fixed matrix, for each challenge vector that succeeds,
there are (q − 1) that do not, thus at most 1/q of the challenge vectors succeed.

Thus, if the matrix is not a permutation matrix, at most N/q of the possible challenge
vectors will succeed. Note that this bound is loose, and a tight bound would be even smaller.
In any case, for any reasonable value of N and q, this is a negligible fraction of challenges.

Thus, if an encrypted matrix successfully shuffles a random challenge vector, then there
is an overwhelming probability that this matrix is a permutation matrix. This holds if the
challenge plaintexts are short (50 bits or so), as the probabilities of dot-product equality
remain the same with such challenges.

B.3 HVZK Proof of Shuffle of Known Plaintexts

VectorProof calls for a proof that a random challenge vector is mixed properly. Using the
techniques of Neff generalized by Groth to the generic homomorphic setting, it is straight-
forward to prove, in honest-verifier zero-knowledge, that {ci} is a permutation of the known
inputs {mi}. This is done by constructing two polynomials, one with roots {mi}, another with
roots the plaintexts of the outputs {ci}, and showing that they take on the same value at a
random challenge point t. This proof is performed by proof of equality of exponent products,
as per the Neff technique.

B.4 Proving a Distributed Obfuscation

When multiple trustees Tl reencrypt a permutation matrix in the distributed generation of
an obfuscated mix, trustees after T1 do not know the correspondence between their inputs
and the known challenge plaintexts, since they have been shuffled by the prior trustees.

However, if one denotes as M̃(l) the encrypted matrix just before trustee Tl reencrypts and
permutes its rows, then, given a random challenge of known plaintexts [mi], trustee Tl knows



the permutation πl and reencryption exponents {r(l)
ij } that effectively shuffle C(l) = [mi]⊗M̃(l)

into C(l+1) = [mi]⊗ M̃(l+1), both of which can be computed by the verifier.
Thus, each trustee Tl can be so challenged to provide a Neff/Groth-like proof of shuffle

of homomorphic encryptions between C(l) and C(l+1). The same technique of polynomial
evaluation applies, and trivially adapting the Pedersen commitment scheme to BGN yields
the homomorphic commitment scheme necessary for the protocol.

C Possibility of Composable Mixing

An immediate question arises from this work: what might it take to improve this one-time
mixer such that it might become composable? We show that accomplishing such a task is
no small feat: a composable mixing function might well enable universal computation on
ciphertexts. The proof, detailed below, describes how to implement an encrypted Fredkin
universal logic gate [15] using composable public mixing. We note that one might find wiggle
room in this reduction, which depends on the ability to express an encrypted permutation as
a series of normal ciphertexts within the same cryptosystem.

C.1 Universal Public Computation from Composable Public Mixing

We show how a composable public mixing scheme can be used to construct a public universal
computation mechanism. Our approach is to build a Fredkin gate using public mixing. Fredkin
gates are universal, thus it is sufficient to build a single Fredkin gate for our purposes.

The only assumption we make is that, in the public mixing scheme, the encrypted permu-
tation can be expressed as a sequence of ciphertexts. In other words, an encrypted permutation
can itself be fed through another encrypted permutation. This is a relatively mild assump-
tion, but it may preclude certain public mixing schemes if the encrypted permutation is of a
very different form than typical ciphertexts under the cryptosystem in question. Note that,
in our example of a one-time public mix scheme, the permutations are indeed expressable as
a sequence of ciphertexts.

The construction of an encrypted Fredkin gate is then fairly straight-forward. We consider
a typical Fredkin gate with three inputs x, y, z and three outputs x′, y′, z′ such that:

– z′ = z
– if z′ = 1, then x′ = y and y′ = x
– if z′ = 0, then x′ = x and y′ = y

We then consider 2-by-2 encrypted permutations for our public-mix scheme. Note that
there are only two such mixes: the identity permutation, and the flip permutation. We consider
the bit-value of the flip permutation to be 1, while the bit-value of the identity permutation
is 0. Thus, all circuit values are represented by encrypted permutations.

Then, the computation of a Fredkin gate output is as follows:

– z′ = z is simply passed through without modification
– x and y are publicly mixed using z as the encrypted matrix.

Thus, very simply, a Fredkin gate can be computed on ciphertext inputs that are specially
formed. A composable Public Mix implies that any number of Fredkin gates can be computed
on ciphertexts only, thus that complete ciphertext computation can be performed using a
Composable Publix Mix.



D Performance in a Voting Setting

D.1 Setup

Consider an election with 2,000 eligible voters, each ballot is 32 bytes (enough for the names
of two candidates), and the BGN scheme is used with a 1024-bit prime composite n. We
consider a 2.5Ghz single-CPU Pentium (entry-level PC as of late 2005).

No performance numbers on the BGN scheme have been published, but one can extrapo-
late from elliptic curve performance numbers published with the MIRACL crypto library [1].
As MIRACL shows a 1Ghz Pentium performing an elliptic curve 256 bit exponentiation in
26ms, we estimate that a 512-bit exponentiation in G1 of BGN on our reference PC (2.5Ghz)
will take 20ms. We also estimate that the bilinear mapping operation will be double the
work of a 512-bit IBE encrypt operation, which yields performance of about 30ms for a BGN
bilinear map.

D.2 Proof and Verification

Using Neff proofs, each trustee will need to perform 4,000,000 exponentiations in G1 with
exponents up to 512 bits (one of the two prime factors of n for the randomness hr) to prepare
a mixing matrix. The time to compute the mix of the random challenge vector as well as the
time to perform the Neff proof are negligible in comparison, since the prover can compute
the reencryption factors with simple modular multiplications and additions, and the Neff
proof is linear, not quadratic. The verifier, on the other hand, will need to perform 4,000,000
exponentiations to mix his random challenge, though these exponentiations will be much
faster given the small message challenges. With 50-bit messages, the exponentiation will be
about 10 times faster than full exponentiation on 500 bits, yielding an equivalence of 400,000
exponentiations.

Assuming 5 trustees, the mixer preparation, proof, and verification will require the equiv-
alent time of 22,000,000 exponentiations with 500-bit exponents. According to our above
estimations, this will take about 5 days, before any optimization or parallelization.

D.3 Mixing

The mixing process on real inputs will then take 4,000,000 bilinear maps per ciphertext chunk,
of which we consider that there may be 8 (4 bytes per ciphertext), thus 32,000,000 bilinear
maps. According to our above estimations, this will take approximately 11 days, again before
any optimizations or parallelizations. Note that mixing is particularly parallelizable.

D.4 Conclusion on Performance

Obfuscated mixing is good enough as a proof of concept, but not quite fast enough yet for
any real election. With significant parallelization (which is very much possible, especially for
mixing), these performance numbers for small elections could become practical.


