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Abstract. We apply the information-theoretic anonymity metrics to
continuous-time mixes, that individually delay messages instead of batch-
ing them. The anonymity of such mixes is measured based on their delay
characteristics, and as an example the exponential mix (sg-mix) is anal-
ysed, simulated and shown to use the optimal strategy. We also describe
a practical and powerful traffic analysis attack against connection based
continuous-time mix networks, despite the presence of some cover traf-
fic. Assuming a passive observer, the conditions are calculated that make
tracing messages through the network possible.

1 Introduction

Building blocks for anonymous communication operating by batching input mes-
sages in rounds, such as threshold or pool mixes, have recently been the subject
of extensive study [15, 16, 6, 17]. The same is not true for mixes that operate
in continuous-time, by individually delaying messages. An example of these is
the sg-mix construction presented by Kesdogan et al [10]. Its inventors present
an analysis of its anonymity, but this cannot easily be generalised to other mix
strategies.

We will present a new framework for analysing the anonymity provided by
mix strategies that individually delay messages. In order to make the analysis
easier, we assume that the rate of arrival of messages to the mixes is Poisson
distributed. Using the work presented here, different mix strategies can be anal-
ysed but we choose to illustrate our method with an analysis of the exponential
mix (sg-mix), both because it is relatively simple and because it has been exten-
sively mentioned in the literature. Furthermore, a section is devoted to showing
that given some latency constraints the exponential mix is the mixing strategy
providing maximal anonymity.

We then present a powerful attack that given enough packets, can break the
anonymity provided by connection-based mix networks functioning in continuous-
time. The attack relies on detecting an input traffic pattern, at the outputs of
the mixes or network, using signal detection techniques. A detailed description
is given on how to perform this attack, and confidence intervals are provided to
assess the reliability of the results. The attack can be used effectively against
many proposed anonymous communications systems such as Onion Routing [13],
Freedom [4], TARZAN [7] or MorphMix [14].



2 Delay characteristic and anonymity

The main aim of a mix, as introduced by Chaum [5], is to hide the correspon-
dence between the input and output messages it relays. First it makes its inputs
and outputs bitwise unlinkable, which means that a third party cannot link
them by observing their bit patterns without knowledge of the cryptographic
keys used to perform the transform. Secondly it blurs the timing correlations
between inputs and outputs by batching, introducing appropriate random de-
lays and reordering messages. Continuous-time mixes achieve this by delaying
each message individually and independently of the others.

We can say that a particular mix strategy is described by its delay character-

istic. This is a function f(β|α) that represents the probability a message injected
in the mix at time α leaves the mix at time β, where α ≤ β. Since f(β|α) is a
conditional probability distribution, it is normalised.

∀α.

∫ +∞

α

f(β|α) dβ = 1 . (1)

The inverse delay characteristic, f ′(α|β), of the same mix strategy is a proba-
bility distribution that describes the likelihood a message being ejected at time β
was injected at time α. Again because it is a conditional probability distribution
it is normalised.

∀β.

∫ β

−∞

f ′(α|β) dα = 1 . (2)

The two characteristics are related, since the second f ′ can be calculated
using Bayes theorem from f . Some knowledge of the probability of arrivals at
particular times is necessary to perform this conversion. To simplify things, we
will consider that arrivals are Poisson distributed with a rate λα. In a Poisson
process, the probability of an arrival is independent from other arrivals or the
time α.

f ′(α|β) =
f(β|α)Pr[Arrival at α]

∫ β

−∞ f(β|α)Pr[Arrival at α] dα
(3)

=
f(β|α)

∫ β

−∞ f(β|α) dα
(4)

Therefore, given the delay characteristics and some assumptions about the
traffic in the network we can calculate the inverse delay characteristic. These
will allow us to measure the effective sender and receiver anonymity for this mix
strategy.

We will use the metric introduced in [15] to calculate the sender anonymity
provided by a mixing strategy. This metric is based on defining a random variable
that describes the possible senders of a message and calculating the entropy of
its underlying probability distribution. The entropy is then a measure of the
anonymity provided, and can be interpreted as the amount of information an
attacker is missing to deterministically link the messages to a sender.



We assume that in a time interval (β − T, β), K messages arrive at the mix,
where K is distributed according to a Poisson distribution with parameter λα.
These messages arrive at times X1...K each distributed according to a uniform
distribution U(t) over the time interval of length T (as required by the Poisson
distribution).

Given the inverse delay characteristic of the mix f ′(α|β), the sender anonymity A
provided by the mix can be calculated. It represents the entropy of the proba-
bility distribution describing how likely each of the inputs Xi is to be output at
a particular time β.

A =

K
∑

i=1

f ′(Xi|β)
∑K

j=1 f ′(Xj |β)
log

f ′(Xi|β)
∑K

j=1 f ′(Xj |β)
= (5)

=
1

∑K
j=1 f ′(Xj |β)

(

K
∑

i=1

f ′(Xi|β) log f ′(Xi|β)

)

− log

K
∑

j=1

f ′(Xj |β) (6)

From the Law of Large Numbers1 we know that the sums converge to:

K
∑

j=1

f ′(Xj |β) →
K

T
→ λα (7)

K
∑

i=1

f ′(Xi|β) log f ′(Xi|β) →
K

T

∫ β

β−T

f ′(t|β) log f ′(t|β)dt → λαE [f ′(α|β)] (8)

Thus the fraction K/T converges to λα, which is the rate of arrival of mes-
sages to the mix and the integral (8) reduces to the entropy of the inverse delay
characteristic function E [f ′(α|β)]. Therefore the sender anonymity of a continu-
ous mix with delay characteristic f ′ and a rate of arrival λα can be expressed.

A → E [f ′(α|β)] − log λα (9)

Putting this into words, the effective sender anonymity set size of the mixing
strategy will converge towards the relative entropy of the inverse delay charac-
teristic, as defined by Shannon [19], minus the logarithm of the rate at which
messages are received. Similarly the recipient anonymity set size can be calcu-
lated using the same techniques and the delay characteristic of the mix strategy.

2.1 The exponential mix

In order to illustrate the calculations above we analyse the exponential mix. The
exponential mix has been presented as a mixing strategy by Kesdogan et al [10].
In their design additional features are implemented to avoid (n − 1) attacks [8,
16], that we are not concerned with in this work.

1 For large K and T , limK→∞

PK

j=1
f ′(Xj |β) = K

R β

β−T
U(t)f ′(t|β) dt → K

T
. Note

that for the approximation we do not assume the rate to be large, but simply the
observation period T to be large enough to observe some traffic.



The exponential mix can be abstracted as an M/M/∞ queue. We assume, as
required from the calculations above, the arrival rates of messages to be Poisson
distributed with rate λα. Each of the messages that arrives at the mix is delayed
according to a random variable that follows the exponential distribution with
parameter µ. Therefore the delay characteristic of the exponential mix is:

f(β|α) = µe−µ(β−α) . (10)

From equation (4) we can calculate the inverse delay characteristic f ′. Due to
the nature of the exponential distribution, it is equal to the delay characteristic f .

f ′(α|β) =
f(β|α)

∫ β

−∞ f(β|α) dα
= f(β|α) = µe−µ(β−α) (11)

Using the inverse delay characteristic, and (9) we can now calculate the
expected sender anonymity (E [·] is the entropy function).

A = E [Pr[α]] → E [f ′(α|β)] − log λα = (12)

=

∫ β

−∞

µe−µ(β−α) log µe−µ(β−α) dα − log λα = − log
λαe

µ
(13)

To check the above result (since it relies on the approximations (7) and (8)) a
simulation was run for some values of λα and µ, and the results were compared
with the metric predictions in equation (13). The inverse delay characteristic
was used to calculate the probability assigned to a number of messages arriving
at a mix. The number of messages was Poisson distributed according to λα, and
their time of arrival was chosen uniformly. Their delay was a random variable
distributed according to the exponential distribution with rate µ. The absolute
difference between the predictions (figure 1(a)) and the simulation (figure 1(b))
is shown in figure 1(c).

The main divergence of the simulated results from the predicted results, is
in the region where the metric predicts positive values for the entropy. This is
intuitively impossible and indeed is the largest error from the actual simulation
results. The conditions for which the model, that the equation (13) describes,
should not be considered accurate is described by:

− log
λαe

µ
> 0 ⇒ µ > λαe (14)

It is clear that an M/M/∞ queue with a departure rate µ larger than the
arrival rate λα would not provide much anonymity most of the time. The average
time a message would spend in the mix is 1

µ while the average time between

message arrivals is 1
λα

, which is larger. Therefore the mix would behave on
average as a first-in first-out queue.
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Fig. 1. Simulation of exponential mix for different µ and λ.



2.2 The latency of a mix strategy

The delay characteristic of a mix can also be used to calculate the latency in-
troduced by a mix strategy and its variance. This can be done trivially since
the latency of the mix strategy is the expectation E[·] of the delay characteristic
function f(β|α).

E[f(β|α)] =

∫ +∞

α

(β − α) f(β|α) dβ (15)

Similarly the variance V [·] of the delay can be calculated using the expecta-
tion:

V [f(β|α)] =

∫ +∞

α

(E[f(β|α)] − (β − α))2 f(β|α) dβ (16)

For the exponential mix the mean delay is 1
µ and its variance is 1

µ2 .

2.3 Optimal mixing strategies

So far, we have described how to measure the anonymity and latency of a
continuous-time mix, given its delay strategy. Naturally, the next problem is
finding a mix strategy that maximises entropy, and therefore anonymity.

We need to find a distribution f with a particular mean a, which represents
the average latency of the mix. Since a packet can only leave the mix after it
arrived, the function f can only occupy half the timeline, namely the interval
[0, +∞). We prove that the optimal probability distribution f is the exponen-
tial probability distribution. This result was first proved by Shannon [19] using
techniques from the calculus of variations [22]. We want to minimise:

E[f(x)] = −

∫ −∞

0

f(x) log f(x)dx (17)

Subject to the constraints:

a =

∫ −∞

0

xf(x)dx and

∫ −∞

0

f(x)dx = 1 (18)

Then by the calculus of variations [22] we must solve:

∂(−f(x) log f(x) + λxf(x) + µf(x))

∂f
= 0 (19)

⇒ −1− log f(x) + λx + µ = 0 (20)

⇒ f(x) = eλx+µ−1 (21)

After incorporating the constraints, the resulting function is:

f(x) =
1

a
e−

1

a
x (22)

This is exactly the exponential mix as analysed in section 2.1, which is therefore
optimal.



3 Traffic analysis of continuous mixes

In the previous sections we have considered the anonymity of single packets
mixed using a continuous-time mixing strategy. Continuous-time mixes can ap-
proximate circuit-based systems that implement minimal mixing, in order to
provide real-time communications. In such systems a number of packets, all be-
longing to the same stream, are quickly routed through the same path in the
network.

The Onion Routing project [20] first drew the community’s attention to the
need for traffic padding to protect against fine-grained traffic analysis. Since then
some publications have discussed traffic analysis and possible defences against
it [1, 12]. Others refer to the same problem in the context of intersection attacks
[3, 2, 9] and present padding as a potential protection.

Some previous work has drawn attention to the vulnerabilities of anonymous
systems to “timing” attacks [14], while Kesdogan et al [9] present a concrete
attack. Serjantov et al [18] present a traffic analysis attack based on counting
packets on the links, while Levine et al [11] uses more fine grained traffic patterns
to trace them. We will now present a very general way of performing traffic
analysis on streams of packets travelling through the same route in a continuous-
time mix network. We show that after a certain number of messages, that can
be calculated, the communication can be traced with high confidence.

3.1 Concrete traffic analysis techniques

We denote as f(t) the function that describes the traffic, to be traced, feeding
into a continuous mix with delay characteristic d(x). We assume that all messages
described by f(t) belong to the same stream, and will therefore be ejected on the
same output link. We will assume that there are two output links. The attacker’s
aim is to determine on which output link the stream is redirected.

On the first link we observe messages coming out at times X1···n and on
the second link messages come out at times Y1···m in the time interval [0, T ]. H0

represents the hypothesis the input stream f(t) is interleaved in the first channel
described by the observations Xi, and H1 that is in the second corresponding
with Yi.

In order to detect the streams we will make some approximations. We will
create two model probability distributions CX and CY and will assume that
all messages in the output channels are independent samples out of one of these
distributions. The difference between CX and CY is due to our attempt to model
the noise in the two output channels. We will also consider that all the other
messages are uniformly distributed in the interval t ∈ [0, T ] according to the
distribution U(t) = u.

When H0 is true the stream under observation is interleaved in the observa-
tions Xi. We will model each of them as following the probability distribution:

CX(t) =
λf (d ∗ f)(t) + (λX − λf )U(t)

λX
(23)



The probability distribution (d ∗ f)(t) is the convolution of the input signal
with the delay characteristic of the mix. The probability a message delayed by
d(x) is output at time t given an input stream of messages described by f(t) is
described by this convolution.

(d ∗ f)(t) =

∫

d(x)f(t − x)dx (24)

Furthermore λf is the rate of messages in the input signal, while λX is the
rate of the output channel. Finally U(t) = u is the uniform distribution in the
interval [0, T ].

Similarly if hypothesis H1 is true, the signal is interleaved in the observations
Yi that follow the distribution:

CY (t) =
λf (d ∗ f)(t) + (λY − λf )U(t)

λY
(25)

In order to decide which of the two hypothesis is valid, H0 or H1, we can
calculate the likelihood ratio of the two alternative hypothesis.

L(H0|Xi, Yj)

L(H1|Xi, Yj)
=

∏n
i=1 CX(Xi)

∏m
j=1 u

∏n
i=1 u

∏m
j=1 CY (Yj)

> 1 (26)

We choose to accept hypothesis H0 if condition (26) is true, and hypothesis
H1 otherwise. Section 3.3 will show how we calculate our degree of confidence
when making this choice.

3.2 A simple example

Figure 2 shows six diagrams illustrating the traffic analysis attack. The first
column represents, from top to bottom, the signal that we inject in a mix and
the two output channels, one of which contains the delayed signal. The right hand
side column represents the delay characteristic of the network, an exponential
distribution in this case (sg-mix), the “model” that is created by convolving the
input signal with the delay characteristic and, at the bottom, the log-likelihood
ratio.

The cover traffic or “noise” in the above experiments is assumed to be a
Poisson process. Noise is added both to the channel that contains the stream
under surveillance (in this case link 1, Xi) and the other link (Yi). The rate of the
signal f(t) in the traffic analysis graphs shown above is 50 messages, while the
noise added in Xi has a rate of 150 messages. The second link contains random
padding with a rate of 200 messages (Yi). The delay characteristic d(x) chosen
to illustrate the traffic analysis technique is exponential with a departure rate
of 30. The graphs therefore illustrate the traffic analysis of a sg-mix node. The

decision graph presents the logarithm of the likelihood, ratio log
L(H0|Xi,Yj)
L(H1|Xi,Yj)

, as

an attacker would compute it at each point in the simulation time. After 700
simulation ticks the log-likelihood ratio is clearly positive indicating that H0

should be accepted.
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Fig. 2. Final and intermediate results of traffic analysis.

3.3 Performance of the traffic analysis attack

There are two question that need to be answered concerning the traffic analysis
attack presented. First the conditions under which it is at all possible must be
established. Second the number of observations necessary to get reliable results
has to be calculated.

By simple mathematical manipulations with logarithms, we can derive that
the likelihood ratio test, applied to select the most appropriate hypothesis can
be expressed using sums of random variables:

LH0/H1
=

L(H0|Xi, Yj)

L(H1|Xi, Yj)
=

∏n
i=1 CX(Xi)

∏m
j=1 u

∏n
i=1 u

∏m
j=1 CY (Yj)

> 1 (27)

⇒ logLH0/H1
=

n
∑

i=1

log CX (Xi) −

m
∑

j=1

log CY (Yj) + (m − n) log u > 0 (28)

The expression above is equivalent to (26) the rule by which we choose the
hypothesis to accept. The condition for which the attack is possible is that the
decision rule (28) must not equal zero. This could be the case if both CX and
CY were uniform distributions. Even through the inequality might hold it does
not give us any measure of confidence in the result. We will therefore attempt
to find bounds within which we are confident that the decision is correct.



Note that the two sums will converge to the expectations nE [log CX(X) |Xi ∼ X ]
and mE [log CY (Y ) |Yj ∼ Y ]. The notation Xi ∼ X means that the samples Xi

are sampled from the distribution X , and the samples Yj from the distribution
Y . The two distributions X and Y are different according to which of the two
hypothesis is accepted. In case H0 then Xi ∼ CX , Yj ∼ U . Alternatively if H1 is
true then Xi ∼ U and Yj ∼ CY . Without losing generality we will demonstrate
when to accept hypothesis H0. The derivations are the same in the other case.

In case the hypothesis H0 is correct, E [log CX (X) |H0 : Xi ∼ CX ] converges
to the entropy of the probability distribution CX (t), denoted E [CX (t)], since the
probabilities assigned to each value of the random variable log CX(X) follow the
distribution CX .

E [log CX (X) |H0 : Xi ∼ CX ] =

∫ T

0

CX (t) log CX(t)dt = E [CX (t)] (29)

On the other hand E [log CY (Y ) |H0 : Yj ∼ U ] converges to the expectation
of CY namely E [log CY (t)].

E [log CY (Y ) |H0 : Yj ∼ U ] =

∫ T

0

u log CY (t)dt = E [log CY (t)] (30)

Therefore in case we accept hypothesis H0 the expected value of the decision
rule logLH0/H1

(28) is µH0
:

µH0
= E

[
∑n

i=1 log CX (Xi) −
∑m

j=1 log CY (Yj) + (m − n) log u
∣

∣H0

]

= nE [log CX (X) |H0] − mE [log CY (Y ) |H0] + (m − n) log u

= nE [CX(t)] − mE [log CY (t)] + (m − n) log u (31)

The variance can be calculated using the above observations:

V [log CX(X) |H0] =

∫ T

0

CX(t)(log CX (t) − E [CX(X)])2dt (32)

V [log CY (Y ) |H0] =

∫ T

0

u(log CY (t) − E [log CY (Y )])2dt (33)

Using these we will calculate the variance σ2
H0

of the decision rule logLH0/H1

(28) which is:

σ2
H0

= V
[
∑n

i=1 log CX(Xi) −
∑m

j=1 log CY (Yj) + (m − n) log u
∣

∣H0

]

= nV [log CX (X)
∣

∣H0] + mV
[

log CY (Y )
∣

∣H0

]

(34)

Using Chebyshev’s inequality2 we can derive the condition necessary in order
to accept hypothesis H0 with confidence p. We require the log-likelihood not to

2 If a random variable x has a finite mean µ and finite variance σ2, then

∀ k ≥ 0 Pr[|x − µ| ≥ k] ≤ σ2

k2 .



deviate, with probability greater than p, from its expected value (the mean)
more than its mean (which would invalidate our decision rule (28)).

p = Pr
[
∣

∣

∣
logLH0/H1

− µH0

∣

∣

∣
≥ µH0

]

≤
σ2

H0

µ2
H0

⇒ p ≤
σ2

H0

µ2
H0

(35)

An equivalent test can be derived to assess our confidence when accepting
hypothesis H1.

3.4 Traffic analysis of networks

We modify slightly the simple techniques described above to perform traffic
analysis against a mix network composed of continuous-time mixes. Instead of
performing a hypothesis test on two links, we compare all the links in the network
with the pattern extracted from the input stream that we want to trace. This
way each link is assigned a degree of similarity with the traced input. This can
be used to infer some information about the intermediate and final nodes on the
path.
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Fig. 3. Network, route and stream traced.

To illustrate our techniques we use a mix network made of 50 nodes with 10
links each. The network is sparse, which is consistent with quite a few fielded



systems, such as Freedom [4]. Five hundred streams (500) are routed through
this network, using a random path of 4 nodes (the same node cannot appear
twice in the path). Each stream contains 400 packets during the period the net-
work is under observation, which is 10000 simulation ticks. Mixes delay packets
individually using an exponential mix with mean 10 simulation ticks. Figure 3
presents a view of the network, along with the route that the stream under ob-
servation takes. The attacker’s objective is to uncover the route of this stream,
knowing only its input pattern and entry point, and the traffic on the network
links.

As before a pattern (figure 3(b)) is extracted for the input under observation
(figure 3(a)) that is compared with each link in the network. The convolution
of the input traffic with the exponential delay characteristic, has been used to
compute the pattern, but there has been no attempt to model the noise on each
channel.

The pattern is compared to the traffic on each link of the network. This
returns a measure of similarity of the link to the input traced. This in turn can
be used to classify the link, as containing the target input on its way to the
second mix (hop 1), the third mix (hop 2) or the final mix (hop 3). Alternatively
the link might be unrelated to the target input, and simply contain noise. We
choose the decision rule in such a way that we avoid false negatives. Figure 4
shows the classification curves that have been compiled after simulations.
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Fig. 4. Classification of the link (false positive and false negative curves)

The classification of each link as ‘noise’ or ‘candidate link’ allows us to sim-
plify the graph of the network. Information can also be extracted relating to how
likely the link is to contain the signal traced, and therefore a weighted graph
(figure 5(a)) and its corresponding matrix (figure 5(b)) can be extracted. The



intensity of the links or the entries in the matrix represents the likelihood a link
contains the stream under observation.
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Fig. 5. Simplified network (intensity is the likelihood of containing the target input)

A random walk is performed for one to three hops on the resulting graph,
starting that the entry point of the observed stream. This provides us with
the likely second, third or final nodes of the path (figures 6(a), 6(b) and 6(c)
respectively). The stars on the graphs indicate the actual nodes that relay the
target stream. In the example shown the final node is not guessed correctly, but is
within the three nodes with highest probability. In the presence of longer delays
or more traffic the correct nodes might not be the ones with highest likelihood but
the attack still yields a lot of information and significantly reduces the effective
anonymity provided to the users.

4 Further considerations and future work

Measuring anonymity. The work presented measures the average anonymity pro-
vided by a mix strategy. One of the important assumptions is that the expected
number of messages is received in any time interval t, namely λαt. The actual
number of messages received in any interval may vary according to the Poisson
distribution. Should a mix be flooded by the attacker’s messages the rate needs
to be adjusted to the level of genuine traffic.

Mix strategies that take into account the number of messages queueing or
that adapt their parameters according to the rate of arrival of messages have
not been explicitly studied. The metric proposed should still be usable with
them, although their delay characteristic function may be dependant of addi-
tional factors such as the rate of arrival of messages λα. We expect the functions
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Fig. 6. Likely second, third and final nodes on the path.

that depend upon the delay characteristic, such as the mean and variance of the
latency, to still be usable.

Traffic analysis. More work needs to be done on how far the traffic analy-
sis attack presented against stream-based anonymity systems can be exploited.
Techniques from transient signal detection, as surveyed in [21], can be used as
the foundation for a theory of traffic analysis. Some straightforward extensions
of the work presented could be to simplify the extracted patterns, by retaining
only the parts that are good at discriminating well the target stream, or at mak-
ing the matching quicker. An experimental evaluation of how the length of the
stream, or a more realistic distribution of packets, affects anonymity should also
be easy to perform.

The attack assumes that an adversary can observe a “naked” stream some-
where in the network, in order to build a model later used for detection. An
attacker might acquire the knowledge that a series of messages belong to the
same stream by observing unpadded links at the edges of the mix network or
by the means of subverted nodes. This assumption might be invalidated if cover
traffic is used on all links, but variants of the attack might still work. Some
preliminary results suggest that good models can be created despite this.

The attack can be performed by a passive adversary, without any knowledge
of the relationships between packets on the attacked links. When an attacker
knows the relationship between packets in the same stream, as a subverted node
would, it is much easier to perform the statistical tests since the cover traffic can
be discarded. In other words we expect most of the anonymity provided, up to
the point where the path goes through a corrupt node, to be easily cancelled if
the node applies our attack.

Furthermore the attacks are passive, in the sense that the attacker does not
modify in any way the characteristics of the traffic. An active attacker would
modulate the input traffic in order to maximise the chances of detecting it. They



could introduce periodicity, allowing for periodic averaging for noise cancellation
or injecting patterns of traffic specially designed to be easily detected. Unless
the anonymity system takes special steps beyond delaying the traffic to destroy
such structure, traffic streams will quickly be traceable.

5 Conclusions

The information theoretic anonymity metric is adapted to describe the proper-
ties of mixes that simply delay individual packets. We proved that the optimal
delaying strategy is the exponential mix, for which we calculate the anonymity
and latency.

A very powerfully attack is then presented that traces streams of messages
following the same path through a delaying mix network. We present the condi-
tions under which it is possible, and derive expressions that an adversary can use
to assess his confidence. The attack is efficient enough to to be applied against
whole networks by a global passive adversary. When performed by an adversary
controlling subverted nodes or with the ability to shape traffic on the links, its
effects are even more devastating. This attack is applicable to systems that pro-
vide real-time anonymous communications and leaves us very sceptical about
the possibility of secure and efficient such constructions, in the absence of heavy
amounts of cover traffic or delay.
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