
Tokens for anonymous Communications in the Internet

Arjan Durresi1, Vamsi Paruchuri1, Leonard Barolli2, Raj Jain3, Makoto Takizawa4

1Department of Computer Science, Louisiana State University
durresi@csc.lsu.edu

2Department of Information and Communication Engineering, Fukuoka Institute of Technology
barolli@fit.ac.jp

3Department of Computer Science and Engineering, Washington University in St. Louis
jain@cse.wustl.edu

4Department of Computers and Systems Engineering, Tokyo Denki University
taki@takilab.k.dendai.ac.jp

Abstract

With the growth and acceptance of the Internet, there
has been increased interest in maintaining anonymity in
the network. Using traffic analysis, it is possible to infer
who is talking to whom over a public network. This work
develops a novel approach to hide the senders and the
receivers of messages. Routes are chosen and frames
traverse these routes. Each frame consists of a token and
a node can send a message through a frame only when
the corresponding token is free. The best thing about our
protocol is that it poses no bandwidth overhead when
there is at least some traffic while posing minimal
bandwidth overhead when there is no traffic at all.

1. Introduction

By using traffic analysis, it is possible to infer who is
talking to whom over a public network. For example, in a
packet switched network, packets have a header used for
routing, and a payload that carries the data. The header,
which must be visible to the network (and to observers of
the network), reveals the source and destination of the
packet. Even if the header were obscured in some way,
the packet could still be tracked as it moves through the
network. Encrypting the payload is similarly ineffective,
because the goal of traffic analysis is to identify who is
talking to whom and not (to identify directly) the content
of that conversation.

The efficiencies of the public Internet are strong
motivation for companies to use it, instead of private
intranets. However, these companies may want to protect
their interests. For example, a researcher using the World
Wide Web (Web) may expect his particular focus to
remain private, and inter-company collaborations should
be confidential. Individuals may wish to protect their
privacy as well. For example, the sending of e-mail
should keep the identities of the sender and recipient

hidden from observers. Also, a person shopping online
may not want his visits tracked. Certainly someone
spending anonymous e-cash would expect that the source
of the e-cash be untraceable. The use of a packet switched
public network should not require revealing who is
talking to whom.

A purpose of traffic analysis is to reveal who is talking
to whom. The mechanisms described here are designed to
be resilient to traffic analysis i.e., to make it difficult for
observers to learn identifying information about the
connection. We present a novel approach to hide the
senders and the receivers of messages. We use tokens for
achieving anonymity. Routes are chosen and frames are
scheduled to traverse these routes. Each frame is assigned
a token and a node can send a message through a frame
only if the token if free. The key advantage of the
protocol is that it poses no bandwidth overhead when
there is any traffic in the network, while posing minimal
traffic when there is no traffic at all. We evaluate our
protocol in terms of time complexity and communication
complexity.

The remainder of this paper is organized as follows.
Section 2 examines prior work in the areas of traffic
analysis, privacy and anonymity; Section 3 defines the
threat model for the system; Section 4 describes our
protocol and its evaluation; Section 5 presents various
enhancements and extensions; Section 6 presents some
concluding remarks.

2. Related Work

In [5], Chaum describes a way to enable one
participant to anonymously broadcast a message (DC-
net). If the message is destined to a specific user, it can be
encrypted with the user’s public key. Since the message is
received by all parties, recipient anonymity is trivially
maintained. Unfortunately, this method has several
serious drawback, among which that potential of Denial

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

of Service, a participant can deny services to others by
constantly sending messages through the DC-net.
Improvement of DoS [2],[21],[22] still suffer from
efficiency problems.

Secure multi-party computations are a related problem
that has received considerable attention [6],[8],[9],[19]. A
multi-party computation protocol can be used to hide
participants’ communication partners [17]. Multi-party
computations that are secure in an asynchronous network
are even more complex [4].

In [4], Chaum introduced the idea of the mix-net.
Rackoff and Simon [17] define (and provide a proof of
security for) a system that uses mix-nodes. Additional
work has been done on mix-nets [7],[11],[12],[13],[14],
[15]. In general, mix-nodes introduce some latency
because messages are delayed by the mix, which can be
acceptable for applications such as e-mail but less so for
applications such as web surfing. On a more practical
side, several systems providing fast, anonymous,
interactive communication have been implemented. The
first one was the Anonymizer [1] from Anonymizer.com.
This solution offers rather weak security (no log
safeguarding and a single point of vulnerability).

Crowds [18] consists of a number of network nodes
that are run by the users of the system. Web requests are
randomly chained through a number of them before being
forwarded to the web server hosting the requested data.
Crowds is also vulnerable to passive traffic analysis.

Onion Routing [10], [20] is another system that allows
anonymous browsing. In this system, a user sends
encrypted data to a network of so-called Onion Routers
(essentially, these are real-time mixes). A trusted proxy
chooses a series of these network nodes and opens a
connection by sending a multiply encrypted data structure
called an “onion” to the first of them. Each node removes
one layer of encryption, which reveals parameters such as
session keys, and forwards the encrypted remainder of the
onion to the next network node. Once the connection is
set up, an application specific proxy forwards HTTP data
through the Onion Routing network to a responder proxy
which establishes a connection with the web server the
user wishes to use. The user’s proxy multiply encrypts
outgoing packets with the session keys it sent out in the
setup phase; each node decrypts and forwards the packets,
and encrypts and forwards packets that contain the
server’s response.

In spite of the similar design, Onion Routing cannot
achieve the traffic analysis protection of an ideal mix-net
due to the low-latency requirements [24]. The same is the
case for the Freedom network as shown in [24]. In [16],
the mix-net concept is extended to allow for interactive
use in the special setting of digital telephony, while
retaining most of its security features.

Beimel and Dolev in [23] describe a design inspired by
the operation of a city bus. The protocol assumes all

communicating nodes have a unique public/private key
pair and know the unique predetermined circular path of
the bus. The protocol also assumes a global clock with a
global pulse such that a message can be delivered from
one node to its neighboring node in one clock pulse.

3. The System and Thread Models

We consider a network of n processors, denoted p1; : :
: ; pn, connected by m communication links. We use the
communication graph G(V;E) to represent our network, V
is the set of processors and E is the set of communication
links connecting the processors (that is n = |V| and m =
|E|). We assume that G is connected. Processors
communicate by sending and receiving messages.

Some processor, pi, called sender, may decide to
communicate with another (not necessarily neighboring)
processor pj , called receiver. Our objective is to hide the
fact that pi communicates with pj . That is, we want to
hide the identities of pi and pj. Furthermore, our protocol
even hides the fact that a message was sent. A protocol
that achieves these goals is called an anonymous message
delivery protocol.

We consider two types of adversaries listening
adversary and Byzantine adversary. The listening
adversary, also known as a honest-but-curious adversary,
can monitor all the communication links of the network.
We do not allow the adversary to monitor the internal
contents of any processor. This adversary is honest, i.e., it
cannot change any messages, delete messages, add any
messages, or change the state of any processor.

The Byzantine adversary is more powerful than the
listening adversary. The Byzantine adversary can monitor
all the communication links of the processors of the
network (except the memory of the sender and the
receiver). In addition, for some parameter t, it can monitor
and control up to t processors in the network. The
Byzantine adversary if able to see the internal contents of
these processors and also can insert messages, delete
messages, through these monitors or arbitrarily change
messages that they receive (before forwarding the
messages). That is, these processors can deviate from the
pre-defined protocol.

We evaluate a solution by its time complexity, its
communication complexity, and its buffer complexity: the
time complexity is the worst case time required to
transmit a message from a sender to a receiver, the
communication complexity is the maximal number of
messages that are sent simultaneously by the processors
in the network, and the buffer complexity is the buffer
size required for each processor to store incoming and
outgoing messages in each time step.

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

4. A simple token base Scheme for
anonymous Communications

In this section we describe our scheme to achieve
anonymous routing using tokens. In Section 5, we present
various extensions and enhancements to generalize the
idea of this protocol.
Notation: Public and Private Keys: We assume the
presence of a Public Key Infrastructure. We denote the
private and public keys of a node i as Ei and Di. We
denote the E(M, k) and D(M, k) to denote the encryption
and decryption of message M with key k.

Network setup: We initially fix a spanning tree in the
graph. Next, using an Euler tour (which is nothing but a
DFS tour) of the spanning tree in the graph, we define a
ring.

Tokens and Frames: At anytime there can be only one
frame traversing through the ring1. The nodes use a token
passing access mechanism to access a frame passing
through the network. A node wishing to send data should
first receive permission. When it gets control of the token,
it may transmit data in that frame. Each frame is of fixed
length and contains the status of the token itself. A token
can be either in free status or occupied status. The format
of the frame is as follows:
<E((Token||E(FrameHeader,Ed)||E(FrameData,Ed)),Ei)>
where Ei is the public key of the node i, that is upstream
neighbor of sender and Ed is the public key of the
destination.

The format of the Token is as follows:
< Redundancy predicate || Status >

Redundancy predicate is used for checking the validity
of the frame. For the frame to be verified successfully by
node i, upon decryption the Redundancy predicate must
be fulfilled. Status specifies if the token is occupied or
free. If a token is free, a node can send data through that
frame; else it cannot. The format of the FrameHeader is as
follows:
< Redundancy predicate || Source Address || Destination
Address>

Again Redundancy predicate is used for checking the
validity of E(FrameHeader, Ed).

The format of FrameData is as follows:
<Data length || Data || Padding>
Data length specifies the length of the total data in the

packet. This is crucial when the amount of data needed to
be sent is not enough to fill the whole frame. In that case,

1 For simplicity and illustration purposes, we presently
consider only one frame. Later in section 5, we present
enhancements to deal with multiple frames.

data to be sent is padded with some random number to
meet the constraint that the size of the frame is of fixed
length.

4.1 The Protocol

Whenever a node i receives a frame, it decrypts the
frame using its private key Di and verifies the redundancy
predicate. If the Redundancy predicate is not fulfilled, it
reports an error to its downstream node (the node from
which the frame was received). If the nodes were unable
to recover the frame from the error, an error message is
broadcasted and a new frame with a fresh token is
generated. The claim process is detailed in Section 4.5. If
the Redundancy predicate is fulfilled, then the following
algorithm is executed.
1. If the node has no data to send, it just encrypts the

resultant plain frame with its upstream node’s public
key and retransmits the packet on to the ring.

2. If the status of the token is free and the node has some
data to send to another node D, then i constructs the
frame as follows:

Node i constructs FrameHeader and FrameData as
explained earlier using Destinations public key.
Node i sets the status field in the token to
occupied.
Computes<E((Token||E(FrameHeader,Ed)
||E(FrameData,Ed)),Ei)> using its upstream router’s
public key and transmits the packet on the ring.

3. If the status of the token is set to occupied, the node
checks if the data in the frame is destined to itself by
decrypting (,)Header dE Frame E with its private key
and checking if the Redundancy predicate is fulfilled.

If the frame is addressed to node i, then it makes a
copy of it. Then it encrypts the whole frame with
the public key of its upstream node and transmits
the frame on to the ring.
Else, if the node is not the destination then the
node just encrypts the whole frame with the public
key of its upstream node and transmits the frame
on to the ring.

4. Once the frame returns to the source, the source
repeats the procedure as long as it has data to send.
When it has no more data to send it sets the status
field of the token to free, assigns the whole frame to
some randomly generated data. Then it encrypts the
token whole frame with its upstream router’s public
key and transmits the frame on the ring.

4.2 The claim process

Initially, when the ring is defined, a node is assigned
an Active Monitor. One way of selecting an Active
Monitor is to elect the node with highest MAC address as

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

the Active Monitor. An Active Monitor, which potentially
can be any station on the network, performs a variety of
ring-maintenance functions. One of these functions is the
removal of continuously circulating frames from the ring.
When a sending device fails, its frame may continue to
circle the ring. This can prevent other stations from
transmitting their own frames and essentially can lock up
the network. The active monitor can detect such frames,
remove them from the ring, and generate a new token.
Another function of the active monitor is to generate a
fresh frame when an error is detected in the circulating
frame as explained in section

4.3. Protocol Evaluation

The communication complexity of the protocol is one
and buffer complexity O(size of frame). The time
complexity between two nodes is the distance between
the nodes in the communication graph.

The protocol is very robust against both listening and
byzantine adversaries. A listening adversary can monitor
all the communication links of the network. Still, he
would not be able to figure out the sender and destination
pair because at node the frame is decrypted and encrypted
and the frame is kept fixed in terms of length, thus giving
no information to the adversary if the node is transmitting
data or not. And as each node (including destination)
retransmits the packet on the ring, the identity of
destination is concealed. Even a Byzantine adversary
cannot figure out the source-destination pair unless he is
able to capture either of those nodes.

The protocol does not need high buffer space and the
time complexity is also very good. But, the
communication complexity is just one, which implies that
a node cannot send more than one frame worth of data at
a time and only one node can be sending at a time.

5. Enhancements

In this section, we present enhancements to achieve
more efficiency in terms of communication complexity.
That is more than one node can be communicating at a
time. Also, we present some schemes that prevent any
node from using up a frame all the time and also to
achieve fairness among the nodes. That is, each node gets
a fair chance to transmit the data.

5.1 Multiple Frames

In order to enable several nodes to be communicating
simultaneously, we introduce multiple frames in ring,
with each frame having its own token. This improves the

efficiency of the network and also enables multiple
communications to occur simultaneously.

The number of frames traversing the ring can be
constant and this number can be obtained based on the
amount of traffic in the network. Though, this is a simple
method, this does not accommodate bursty traffic. So,
instead we dynamically introduce (remove) frames into
(from) the ring based on the ongoing traffic.

The monitor keeps a history of the ratio of number of
occupied frames to the number of free frames for past T
seconds. When this average goes above a threshold value,
the monitor introduces new frames in to the ring. Also, a
node can make an explicit request to the monitor for new
frames. To enable this we introduce a new field – have
large data to send – in to the token. A node when
retransmitting a frame sets this field to one and then
encrypts the frame with its upstream router’s public key
and then transmits the frame. Once the monitor gets a
frame, it checks if any node has a lot of data to send and
if some node indeed has, it introduces new frames.

Whenever the ratio of number of occupied frames to
the number of free frames goes below a threshold, the
monitor removes some frames from the ring. This ensures
that the frames are nit unnecessarily transmitted in the
ring.

5.2 Priority

We define a priority system that allows stations with
high priority to use the network more frequently. The
priority is defined by the frame's priority and reservation
fields in the token. New format of the token is as shown
below:

< Redundancy predicate || Status || Priority ||
Reservation>

Each node in the ring is assigned a priority level. In
order to seize a token a station must have priority, which
equals or is higher than the priority field of the token.
Only then the station can reserve the token for the next
pass around the network. This way when a node frees the
token, the node with highest priority gets to capture the
token. Nodes must change the priority back to its
previous value after their transmission has completed.

6. Conclusion

In this paper, we presented a protocol for anonymous
communications that is based on tokens. One advantage
of our protocols over previous works is that they are not
based on statistical properties for the communication
pattern. Another advantage is that they do not require that
all the processors in the communication network are busy.
Our protocol poses no bandwidth overhead when there is

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

enough traffic while posing little overhead when there is
no traffic at all or when the traffic is fluctuating a lot.

References

[1] anonymizer.com, The anonymizer.

[2] J. Bos and B.D. Boer, “Detection of disrupters in the DC
protocol,” In Advances in Cryptology – EUROCRYPT ’89
(1989), pp. 320–327.

[3] R. Canetti, “Studies in Secure Multiparty Computation and
Applications,” PhD thesis, Department of Computer Science
and Applied Mathematics, The Weizmann Institute of Science,
June 1995. revised version.

[4] D. Chaum, “Untraceable electronic mail, return addresses,
and digital pseudonyms,” Communications of the Association
for Computing Machinery, 24, 2, Feb. 1981, pp. 84–88.

[5] D. Chaum, “The Dining Cryptographers Problem:
Unconditional sender and recipient untraceability,” Journal of
Cryptology, 1, 1, 1988, pp. 65–75.

[6] R. Cramer, I. Damgard, Ard, S. Dziembowski, M. Hirt, T.,
Rabin, “Efficient multiparty computations with dishonest
minority,” In Advances in Cryptology— EUROCRYPT 99,
March 1999, vol. 1561 of Lecture Notes in Computer Science,
Springer- Verlag, pp. 311–326.

[7] Y. Desmedt and K. Kurosawa, “How to break a practical
mix and design a new one,” In Advances in Cryptology –
EUROCRYPT ’2000 (2000), Lecture Notes in Computer
Science, International Association for Cryptologic Research,
Springer-Verlag, Berlin Heidelberg, pp. 557–572.

[8] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified VSS
and fast-track multiparty computations with applications to
threshold cryptography,” In PODC: 17th ACM SIGACTSIGOPS
Symposium on Principles of Distributed Computing, 1998.

[9] O. Goldreich, S. Micali, and A. Wigdreson, “A. How to play
any mental game—A completeness theorem for protocols with
honest majority,”. In Proceedings of the nineteenth annual ACM
Symposium on Theory of Computing, New York City, May 25–
27, 1987, New York, NY 10036, USA, 1987, ACM, Ed., ACM
Press, pp. 218–229.

[10] D. Goldshlag, R. Reed, and P. Syverson, “Onion routing
for anonymous and private internet connections,”
Communications of the ACM (USA) 42, 2, Feb. 1999, 39–41.

[11] M. Jakobsson, “Flash mixing,” In PODC: 18th ACM
SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, 1999.

[12] JAKOBSSON, M. A practical mix. Lecture Notes in
Computer Science 1403 (1998).

[13] JAKOBSSON, M., AND JUELS, A. Millimix: Mixing in
small batches. Tech. Rep. 99-33, DIMACS, June 10 1999. Thu,
22 Jul 1999.

[14] OHKUBO, M., AND ABE, M. A length-invariant hybrid
mix. In Advances in Cryptology –ASIACRYPT ’2000 (2000),
Lecture Notes in Computer Science, International Association
for Cryptologic Research, Springer-Verlag, Berlin Heidelberg,
pp. 178–191.

[15] C. Park, K. Itoh, and K. Kurasawa, “Efficient anonymous
channel and all/nothing election scheme,” Lecture Notes in
Computer Science 765, 1994.

[16] A. Pfitzmann, B. Pfitzmann, and M. Waidner, “ISDN-
MIXes: untraceable communication with very small bandwidth
overhead,” In Information Security, Proc. IFIP/Sec ’91, 1991,
pp. 245–258.

[17] C. Rackoff and D. R. Simon, “Cryptographic defense
against traffic analysis,” In Proceedings of the Twenty-Fifth
Annual ACM Symposium on the Theory of Computing, San
Diego, California, 16–18 May 1993, pp. 672–681.

[18] M. K. Reiter and D. A. Rubin, “Anonymous Web
transactions with crowds,” Communications of the ACM 42, 2,
Feb. 1999, pp. 32–48.

[19] A. Smith and A. Stiglic, “A. Multiparty computation
unconditionally secure against adversary structures,” Cryptology
SOCS-98.2, School of Computer Science, McGill University,
Montreal, Canada, 1998.

[20] P. F. Syverson, G. Tsudik, M. G. Reed, and C. E.
Landwehr, “Towards an analysis of onion routing security,” In
Proc. Workshop on Design Issues in Anonymity and
Unobservability, 25–26 July 2000, ICSI RR-00-011, pp. 83–
100.

[21] M. Waidner, “Unconditional sender and recipient
untraceability in spite of active attacks,” In Advances in
Cryptology – EUROCRYPT ’ 89 (1990), J.-J. Quisquater and J.
Vandewalle, Eds., Lecture Notes in Computer Science,
International Association for Cryptologic Research, Springer-
Verlag, Berlin Germany, pp. 302–319.

[22] M. Waidner and B. Pfitzmann, “The dining cryptographers
in the disco: Unconditional sender and recipient untraceability
with computationally secure serviceability,” In Advances in
Cryptology—EUROCRYPT 89 (10–13 Apr. 1989), J.-J.
Quisquater and J. Vandewalle, Eds., vol. 434 of Lecture Notes
in Computer Science, Springer-Verlag, 1990, p. 690.

[23] A. Beimel and S. Dolev, “Buses for anonymous message
delivery,” In Second International Conference on FUN with
Algorithms, Elba, Italy, May 2001, pp. 1–13.

[24] A.Back, U.Moller and A.Stiglic, “Traffic Analysis Attacks
and Trade-Offs in Anonymity Providing Systems,” In
I.S.Moskowitz, editor, IH 2001, Volume 2137 of Lecture Notes
in Computer Science, Springer-Verlag, 2001, pp 245-257.

Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA'06)
0-7695-2641-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

