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Abstract. We extend earlier research on mounting and resisting passive
long-term end-to-end traffic analysis attacks against anonymous message
systems, by describing how an eavesdropper can learn sender-receiver
connections even when the substrate is a network of pool mixes, the
attacker is non-global, and senders have complex behavior or generate
padding messages. Additionally, we describe how an attacker can use
information about message distinguishability to speed the attack. We
simulate our attacks for a variety of scenarios, focusing on the amount of
information needed to link senders to their recipients. In each scenario,
we show that the intersection attack is slowed but still succeeds against
a steady-state mix network. We find that the attack takes an impractical
amount of time when message delivery times are highly variable; when
the attacker can observe very little of the network; and when users pad
consistently and the adversary does not know how the network behaves
in their absence.

1 Introduction

Mix networks aim to allow senders to anonymously deliver messages to recipients.
One of the strongest attacks against current deployable designs is the long-term
intersection attack. In this attack, a passive eavesdropper observes a large volume
of network traffic and notices that certain recipients are more likely to receive
messages after particular senders have transmitted messages. That is, if a sender
(call her Alice) maintains a fairly consistent pattern of recipients over time, the
attacker can deduce Alice’s recipients.

Researchers have theorized that these attacks should be extremely effective
in many real-world contexts, but so far it has been difficult to reason about when
these attacks would be successful and how long they would take.

Here we extend a version of the long-term intersection attack called the sta-
tistical disclosure attack [13] to work in real-world circumstances. Specifically,
whereas the original model for this attack makes strong assumptions about
sender behavior and only works against a single batch mix, we show how an
attacker can learn Alice’s regular recipients even when:

• Alice chooses non-uniformly among her communication partners, and can
send multiple messages in a single batch.



• The attacker lacks a priori knowledge of the network’s average behavior
when Alice is not sending messages.

• Mixes use a different batching algorithm, such as Mixmaster’s dynamic-pool
algorithm [25, 30] or its generalization [17].

• Alice uses a mix network (of any topology, with synchronous or asynchronous
batching) to relay her messages through a succession of mixes, instead of
using just a single mix.

• Alice disguises when she is sending real messages by sending padding traffic
to be dropped by mix nodes in the network.

• The attacker can only view a subset of the messages entering and leaving
the network (so long as this subset includes some messages from Alice and
some messages to Alice’s recipients).

• The cover traffic generated by other senders changes slowly over time. (We
do not address this case completely.)

Each deviation from the original model reduces the rate at which the attacker
learns Alice’s recipients, and increases the amount of traffic he must observe.

Additionally, we show how an attacker can exploit additional knowledge, such
as distinguishability between messages, to speed these attacks. For example, an
attacker who sees message contents can take into account whether messages are
written in the same language or signed by the same pseudonym, and thereby
partition messages into different classes and analyze the classes independently.

The attacks in this paper fail to work when:

• Alice’s behavior is not consistent over time. If Alice does not produce enough
traffic with the same recipients, the attacker cannot learn her behavior.

• The attacker cannot observe how the network behaves in Alice’s absence. If
Alice always sends the same number of messages, in every round, forever, a
passive attacker cannot learn who receives messages in Alice’s absence.

• The attacker cannot tell when Alice is originating messages.

We begin in Section 2 by presenting a brief background overview on mix
networks, traffic analysis, the disclosure attack, and the statistical disclosure
attack. In Section 3 we present our enhancements to the statistical disclosure
attack. We present simulated experimental results in Section 4, and close in
Section 5 with recommendations for resisting this class of attacks, implications
for mix network design, and a set of open questions for future work.

2 Previous work

Chaum [10] proposed hiding the correspondence between sender and recipient
by wrapping messages in layers of public-key cryptography, and relaying them
through a path composed of mixes. Each mix in turn decrypts, delays, and re-
orders messages, before relaying them toward their destinations. Because some
mixes might be controlled by an adversary, Alice can direct her messages through
a sequence or ‘chain’ of mixes in a network, so that no single mix can link her
to her recipient.



Many subsequent designs have been proposed, including Babel [21], Mix-
master [25], and Mixminion [14]. We will not address the differences between
these systems in any detail: from the point of view of a long-term intersection
attack, the internals of the network are irrelevant so long as the attacker can ob-
serve messages entering and leaving the network, and can guess when a message
entering the network is likely to leave.

Another class of anonymity designs aims to provide low-latency connections
for web browsing and other interactive services [6, 9, 18, 28]. We do not address
these systems here because short-term timing and packet counting attacks seem
sufficient against them [31].

Attacks against mix networks aim to reduce the anonymity of users by linking
anonymous senders with the messages they send, by linking anonymous recipi-
ents with the messages they receive, or by linking anonymous messages with one
another. For detailed lists of attacks, consult [2, 27]. Attackers can trace messages
through the network by observing network traffic, compromising mixes, compro-
mising keys, delaying messages so they stand out from other traffic, or altering
messages in transit. They can learn a given message’s destination by flooding
the network with messages, replaying multiple copies of a message, or shaping
traffic to isolate a target message from other unknown traffic [30]. Attackers
can discourage users from using honest mixes by making them unreliable [2, 19].
They can analyze intercepted message text to look for commonalities between
otherwise unlinked senders [26].

2.1 The long-term intersection attack

Even if we foil all the above attacks, an adversary can mount a long-term inter-
section attack by correlating times when senders and receivers are active [8].

A variety of countermeasures make intersection attacks harder. Kesdogan’s
stop-and-go mixes [23] provide probabilistic anonymity by letting users specify
message latencies, thereby broadening the range of time when messages might
leave the mix network. Similarly, batching strategies [30] as in Mixmaster and
Mixminion use message pools to spread out the possible exit times for messages.

Rather than expanding the set of messages that might have been sent by a
suspect sender, other designs expand the set of senders that might have sent a
target message. A sender who also runs a node in the mix network can conceal
whether a given message originated at her node or was relayed from another
node [5, 20, 29]. But even with this approach, the adversary can observe whether
certain traffic patterns are present when a user is online (possibly sending) and
absent when a user is offline (certainly not sending) [33, 34].

A sender can also conceal whether she is currently active by consistently
sending decoy (dummy) traffic. Pipenet [11] conceals traffic patterns by constant
padding on every link. Unfortunately, a single user can shut down this network
simply by not sending. Berthold and Langos aim to increase the difficulty of
intersection attacks with a scheme for preparing plausible dummy traffic and
having other nodes send it on Alice’s behalf when she is offline [7], but their
design has many practical problems.



Finally, note that while the adversary can perform this long-term intersection
attack entirely passively, active attacks (such as blending attacks [30] against a
suspected sender) can help him reduce the set of suspects at each round.

2.2 The disclosure attack

In 2002, Kesdogan, Agrawal, and Penz presented the disclosure attack [22], an
intersection attack against a single sender on a single batch mix.

The disclosure attack assumes a global passive eavesdropper interested in
learning the recipients of a single sender Alice. It assumes that Alice sends mes-
sages to m recipients; that Alice sends a single message (recipient chosen at
random from m) in each batch of b messages; and that the recipients of the
other b− 1 messages are chosen at random from the set of N possible recipients.

The attacker observes the messages leaving the mix and constructs sets Ri

of recipients receiving messages in batch i. The attacker then performs an NP-
complete computation to identify m mutually disjoint recipient sets Ri, so that
each of Alice’s recipients is necessarily contained in exactly one of the sets.
Intersecting these sets with subsequent recipient sets reveals Alice’s recipients.

2.3 The statistical disclosure attack

In 2003, Danezis presented the statistical disclosure attack [13], which makes the
same operational assumptions as the original disclosure attack but is far easier
to implement in terms of storage, speed, and algorithmic complexity. Unlike
its predecessor, statistical disclosure only reveals likely recipients; it does not
identify Alice’s recipients with certainty.

In the statistical disclosure attack, we model Alice’s behavior as an unknown
vector −→v whose elements correspond to the probability of Alice sending a mes-
sage to each of the N recipients in the system. The elements of −→v corresponding
to Alice’s m recipients will be 1/m; the other N − m elements of −→v will be 0.
We model the behavior of the covering “background” traffic sent by other users
as a known vector −→u each of whose N elements is 1/N .

The attacker derives from each output round i an observation vector −→oi , each
of whose elements corresponds to the probability of Alice’s having sent a message
to each particular recipient in that round. That is, in a round i where Alice has
sent a message, each element of −→oi is 1/b if it corresponds to a recipient who
has received a message, and 0 if it does not. Taking the arithmetic mean O of a
large set of these observation vectors gives (by the law of large numbers):

O =
1
t

t∑
i=i

−→oi ≈
−→v + (b− 1)−→u

b

From this, the attacker estimates Alice’s behavior:

−→v ≈ b

∑t
i=1

−→oi

t
− (b− i)−→u



Danezis also derives a precondition that the attack will only succeed when
m < N

b−1 , and calculates the expected number of rounds to succeed (with 95%
confidence for security parameter l = 2 and 99% confidence for l = 3) [12]:

t >

[
m · l

(√
N − 1

N
(b− 1) +

√
N − 1
N2

(b− 1) +
m− 1

m

)]2

3 Extending the statistical disclosure attack

3.1 Broadening the attack

Here we examine ways to extend Danezis’s statistical disclosure attack to systems
more closely resembling real-world mix networks. We will simulate the time and
information requirements for several of these attacks in Section 4 below.

Complex senders, unknown background traffic: First, we relax the re-
quirements related to sender behavior. We allow Alice to choose among her
recipients with non-uniform probability, and to send multiple messages in a sin-
gle batch. We also remove the assumption that the attacker has full knowledge
of the distribution −→u of cover traffic sent by users other than Alice.

To model Alice’s varying number of messages, we use a probability function
Pm such that in every round Alice sends n messages with probability Pm(n).
We still use a behavior vector −→v to represent the probability of Alice sending to
each recipient, but we no longer require Alice’s recipients to have a uniform 1/m
probability. Alice’s expected contribution to each round is thus −→v

∑∞
n=0 nPm(n).

To mount the attack, the attacker first obtains an estimate of the background
distribution −→u by observing a large number t′ of batches to which Alice has not
contributed any messages.1 For each such batch i, the attacker constructs a
vector −→ui , whose elements are 1/b for recipients that have received a message in
that batch, and 0 for recipients that have not. The attacker then estimates the
background distribution −→u as:

−→u ≈ U =
1
t′

t′∑
i=1

−→ui

The attacker then observes, for each round i in which Alice does send a
message, the number of messages mi sent by Alice, and computes observations
−→oi as before. Taking the arithmetic mean of these −→oi gives us

O =
1
t

t∑
i=1

−→oi ≈
m · −→v + (b−m)U

b
where m =

1
t

∑
mi

1 The attack can still proceed if few such Alice-free batches exist, so long as Alice
contributes more to some batches than to others. Specifically, the approach described
below (against pool mixes and mix networks) can exploit differences between low-
Alice and high-Alice batches to infer background behavior.



From this, the attacker estimates Alice’s behavior as

−→v ≈ 1
m

[
b ·O − (b−m)U

]
Attacking pool mixes and mix networks: Most designs have already aban-
doned fixed-batch mixes in favor of other algorithms that better hide the relation
between senders and recipients. Such algorithms include timed dynamic-pool
mixes, generalized mixes, and randomized versions of each [17, 30]. Rather than
reordering and relaying all messages whenever a fixed number b arrive, these al-
gorithms store received messages in a pool, and at fixed intervals relay a fraction
of the pooled messages based on the pool’s current size.

When attacking such a mix, the attacker no longer knows for certain which
batches contain messages from Alice. Instead, the attacker can only estimate,
for each batch of output messages, the probability that the batch includes one
or more of Alice’s messages.

Following Dı́az and Serjantov’s approach in [17], we treat these mixing algo-
rithms as follows: a mix relays a number of messages at the end of each round,
depending on how many messages it is currently storing. All messages in the
mix’s pool at the end of a round have an equal probability of being included in
that round’s batch. Thus, we can characterize the mix’s pooling algorithm as a
probability function PMIX(b|s)—the probability that the mix relays b messages
when it has s messages in the pool.

We denote by P i
R(r) the probability that a message arriving in round i leaves

the mix r rounds later. We assume that the attacker has a fair estimate of PR.2

Now, when Alice sends a message in round i, the attacker observes round i
through some later round i + k, choosing k so that

∑∞
j=k+1 P i

R(j) is negligible.
The attacker then uses PR to compute Ow, the mean of the observations from
these rounds, weighted by the expected number of messages from Alice exiting
in each round:

Ow =
∑

i

k∑
r=0

P i
R(r) ·mi · −−→oi+r ≈

m · −→v + (n−m)−→u
n

To solve for Alice’s behavior −→v , the attacker now needs an estimate for
the background −→u . The attacker gets this by averaging observations −→ui from
batches with a negligible probability of including messages from Alice. Such
batches, however, are not essential: If the attacker chooses a set of −→ui such that
each round contains (on average) a small number δa > 0 of messages from Alice,
averaging them gives:

U ′ ≈ δa

n
−→v +

1− δa

n
−→u

2 The attacker can estimate PR by sending test messages through the mix, or by
counting the messages entering and leaving the mix and deducing the pool size.



and the attacker can solve again for −→v in the earlier equation for Ow, now using

−→u ≈ 1
1− δa

[
n · U ′ − δa · −→v

]
Senders can also direct their messages through multi-hop paths in a network

of mixes. While using a mix network increases the effort needed to observe all
messages leaving the system, it has no additional effect on intersection attacks
beyond changing the system’s delaying characteristics. Assume (for simplicity)
that all mixes have the same delay distribution PR, and that Alice chooses paths
of length `0. The chance of a message being delayed by a further d rounds is now

P ′
R(`0 + d) =

(
`0 + d− 1

d

)
(1− PD)`0P d

D

Danezis has independently extended statistical disclosure to pool mixes [12];
Danezis and Serjantov have analyzed it in detail [15].

Dummy traffic: Alice can also reduce the impact of traffic analysis by period-
ically sending messages that are dropped inside3 the network.

Although this padding can slow or stop the attacker (as discussed below in
Section 4), the change in the attack is trivial: Alice’s behavior vector −→v no longer
adds to 1, since there is now a chance that a message from Alice will not reach
any recipient. Aside from this, the attack can proceed as before, so long as Alice
sends more messages (including dummies) in some rounds than in others.

Partial observation: Until now, we have required that the attacker, as a global
passive adversary, observe all the messages entering and leaving the system (at
least, all the messages sent by Alice, and all the messages reaching Alice’s re-
cipients). This is not so difficult as it might seem: to be a “global” adversary
against Alice, an attacker need only eavesdrop upon Alice, and upon the mixes
that deliver messages to recipients. (Typically, not all mixes do so. For example,
only about one third of current Mixminion servers support delivery.)

A non-global attacker’s characteristics depend on which parts of the network
he can observe. If the attacker eavesdrops on a fraction of the mixes, he receives
a sample4 of the messages entering or leaving the system. If such an attacker
can see some messages from Alice and some messages to her recipients, he can
guess Alice’s recipients, but will require more rounds of observation.

Alternatively, an attacker who eavesdrops on a fraction of the users receives
all messages sent to or from those users but no messages sent to or from other
3 Alice might also send dummy traffic to ordinary recipients. This approach has its

problems: how should Alice generate cover texts, or get the list of all possible re-
cipients? In any case, it is unclear whether Alice can obscure her true recipients
without sending equal volumes of mail to all of her non-recipients as well, which is
impractical.

4 But possibly a biased sample, depending on Alice’s path selection algorithm.



users. So long as one of these users is Alice, the network (to such an attacker) is
as if the messages sent by Alice to unobserved recipients were dummy messages.
Now the attack converges only against observed recipients: the attacker learns
which of observed recipients get messages from Alice, and which do not.

Time-variant background traffic: If Alice’s behavior changes completely and
radically over time, long-term intersection attacks cannot proceed: the attacker
cannot make enough observations of any version or subset of Alice’s behavior to
converge on a v for any of them.

On the other hand, if Alice’s behavior −→v remains consistent while the be-
havior of the background traffic −→u changes slowly, the attacker still has some
hope. Rather than estimating a single U from rounds to which Alice does not
contribute, the attacker estimates a series of successive Ui values based on the
average behavior of the network during comparatively shorter durations of time.
The attacker observes −→oi and computes the average of −→oi − Ui, as before. Now,

−→v ∝ 1
t

t∑
i=1

−→oi − Ui

So if an attacker can get good local estimates to −→u , the intersection attack
proceeds as before.

Attacking recipients: Finally, we note that an attacker can find recipients as
well as senders by using slightly more storage and the same computational cost.

Suppose the attacker wants to know who is sending anonymous messages to
a given recipient Bob. The analysis remains the same: the attacker compares
sender behavior in rounds from which Bob probably receives messages with be-
havior in rounds from which Bob probably doesn’t receive messages. The only
complication is that the attacker cannot tell in advance when Bob will receive a
message. Therefore, the attacker must remember a window of recent observations
at all times, such that if Bob later receives a message, the chance is negligible
that the message was sent before the first round in the window.

3.2 Strengthening the attack

Section 3.1 extended the original statistical disclosure attack to link senders and
recipients in a broader range of circumstances. In this section, we discuss ways
to reduce the required amount of traffic by incorporating additional information.

Partitioning messages: The attack is simplified if some output messages are
linkable—that is, if they are likelier to originate from the same sender than are
two randomly chosen messages. We consider a special case of linkability, in which
we can partition messages into separate classes such that messages in the same
class are likelier to have the same sender than messages chosen at random.



For example, in a typical pseudonym service, each sender has one or more
pseudonyms and each delivered messages is associated with a pseudonym. To
link senders and recipients, an attacker only needs to link senders to their
pseudonyms. He can do so by treating pseudonyms as virtual message desti-
nations: instead of collecting observations −→oi of recipients who receive messages
in round i, the attacker now collects observations −→oi of linkable classes (e.g.
pseudonyms) that receive in round i. Since two distinct senders don’t produce
messages in the same linkability class, the elements of Alice’s −→v and the back-
ground −→u are now disjoint, and thus easier for the attacker to separate.

It’s also possible that the partitioning may not be complete: sometimes many
senders will send messages in the same class. For example, two binary documents
written with the same version of MS Word are more likely to be written by the
same sender than two messages selected at random.5

To exploit these scenarios, the attacker chooses a set of c partitioning classes
(such as languages or patterns of use), and assigns each observed output mes-
sage a probability of belonging to each class. Instead of collecting observation
vectors with elements corresponding to recipients, the attacker now collects ob-
servation vectors whose elements correspond to number of messages received by
each 〈recipient, class〉 tuple. (If a message might belong to multiple classes, the
attacker sets the corresponding element of each possible class to the probability
of the message’s being in that class.) The attack proceeds as before, but messages
that fall in different classes no longer provide cover for one another.

Exploiting a priori suspicion: Finally, the attacker may have reason to be-
lieve that some messages are more likely to have been sent by the target user
than others. For example, if we believe that Alice studies psychology but not
astrophysics, then we will naturally suspect that a message about psychology is
more likely to come from Alice than is a message about astrophysics. Similarly, if
users have different views of the network, then an attacker will suspect messages
exiting from mixes Alice probably doesn’t know about less than other messages.

To exploit this knowledge, an attacker can (as suggested in the original sta-
tistical disclosure paper) modify the estimated probabilities in −→oi of Alice having
sent each delivered message.

4 Simulation results

In Section 3.1, we repeatedly claim that each complication of the sender or the
network forces the attacker to gather more information. But how much?

5 Encrypting all messages end-to-end would address most of these attacks, but is
difficult in practice. Most recipients do not run anonymity software, and many don’t
support encrypted email. Thus, many messages still leave today’s mix networks in
plaintext. Furthermore, today’s most popular encryption standards (such as PGP
and SMIME) have enough variation for an attacker to tell which implementations
could have generated a given message.



To find out, we ran a series of simulations of our attacks, first against the
model of the original statistical disclosure attack, then against more sophisti-
cated models. We describe our simulations and present results below.

The original statistical disclosure attack: Our simulation varied the pa-
rameters N (the number of recipients), m (the number of Alice’s recipients), and
b (the batch size). The simulated “Alice” sends a single message every round to
one of her recipients, chosen uniformly at random. The simulated background
sends to b− 1 additional recipients per round, also chosen uniformly at random.
We ran 100 trial attacks for each chosen 〈N,m, b〉 tuple. Each attack was set
to halt when the attacker had correctly identified Alice’s recipients, or when
1,000,000 rounds had passed. (We imposed this cap to keep our simulator from
getting stuck on hopeless cases.)

Figure 1 presents the results of our simulation (the low-m curves are at
the bottom). As expected, the attack becomes more effective when Alice sends
messages to only a few recipients (small m); when there are more recipients to
whom Alice does not send (large N); or when batch sizes are small (small b).
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Complex sender behavior and unknown background traffic: The next
simulation examines the consequences of a more complex model for background
traffic, and of several related models for Alice’s behavior.

We model the background as a graph of N communicating parties, each of
whom communicates with some of the others. We build this graph according to
the “scale-free” model [3, 4]. Scale-free networks share the “six degrees of sepa-
ration property” (for arbitrary values of six) of small-world networks [32], but
also mimic the clustering and ‘organic’ growth of real social networks, includ-
ing citations in journals, co-stars in IMDB, and links in the WWW. For these
trial attacks, the background messages were generated by choosing nodes from
the graph with probability proportional to their connectedness. This simulates
a case where users send messages with equal frequency and choose recipients
uniformly from among the people they know.



We simulated trial attacks for different values of N (number of recipients)
and m (number of Alice’s recipients). Instead of sending one message per batch,
however, Alice now sends messages according to a geometric distribution with
parameter PM (such that Alice sends n messages with probability Pm(n) =
(1 − PM )Pn

M ). We tried two methods for assigning Alice’s recipients: In the
‘uniform’ model, Alice’s recipients are chosen according to their connectedness
(so that Alice, like everyone else, is likelier to know well-known people) but Alice
still sends to her recipients with equal probability. In the ‘weighted’ model, not
only are Alice’s recipients chosen according to their connectedness, but Alice also
sends to them proportionally to their connectedness. We selected these models
to examine the attack’s effectiveness against users who behave with the same
model as other users’, and against users who mimic the background distribution.

The results are in Figure 2, along with the results for the original statisti-
cal disclosure attack as reference. As expected, the attack succeeds easily, and
finishes faster against uniform senders than weighted senders for equivalent val-
ues of 〈N,m, b〉. Interestingly, the attack against uniform senders is faster than
the original statistical disclosure attack—because the background traffic is now
clustered about popular recipients, Alice’s recipients stand out more.

Attacking pool mixes and mix network: Pooling slows an attacker by
increasing the number of output messages that could correspond to each input
message. To simulate an attack against pool mixes and mix networks, we abstract
away the actual pooling rule used by the network, and instead assume that the
network has reached a steady state, so that each mix retains the messages in
its pool with the same probability (Pdelay) every round. We also assume that all
senders choose paths of exactly the same length.

Unlike before, ‘rounds’ are now determined not by a batch mix receiving a
fixed number b of messages, but by the passage of a fixed interval of time. Thus,
the number of messages sent by the background is no longer a fixed b−na (where
na is the number of messages Alice sends), but now follows a normal distribution
with mean BG = 125 and standard deviation set arbitrarily to BG/10.6

To examine the effect of pool parameters, we fixed m at 32 and N at 216,
and had Alice use the ‘uniform’ model discussed above. The results of these
simulations are presented in Figure 3. Lines running off the top of the graph
represent cases in which fewer than half of the attacks converged upon Alice’s
recipients within 1,000,000 rounds, and so no median could be found.

From these results, we see that increased variability in message delay slows
the attack by increasing the number of output messages that may correspond to
any input message from Alice, effectively ‘spreading’ each message across several
output rounds. More interestingly, pooling is most effective at especially high or

6 It’s hard to determine standard deviations for actual message volumes on the de-
ployed remailer network: automatic reliability checkers that send messages to them-
selves (“pingers”) contribute to a false sense of uniformity, while some users generate
volume spikes by sending enormous fragmented files, or maliciously flooding discus-
sion groups and remailer nodes. Neither group blends well with the other senders.
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especially low volumes of traffic from Alice: the ‘spreading’ effect here makes it
especially hard for the attacker to discern rounds that contain messages from
Alice when she sends few messages, or to discern rounds that don’t contain
Alice’s messages when she sends many messages.

The impact of dummy traffic: Several proposals exist for using dummy mes-
sages to frustrate traffic analysis. Although several of them have been examined
in the context of low-latency systems [24], little work has been done to examine
their effectiveness against long-term intersection attacks.

First, we choose to restrict our examination (due to time constraints) to
the effects of dummy messages in several cases of the pool-mix/mix network
simulation above. Because we are interested in learning how well dummies thwart
analysis, we choose cases where, in the absence of dummies, the attacker had
little trouble in learning Alice’s recipients.

Our first padding strategy (“independent geometric padding”) is based on
the algorithm used in current versions of Mixmaster: Alice generates a random
number of dummy messages in each round according to a geometric distribution
with parameter Pjunk, independent of her number of real messages.

This strategy slows the attack, but does not necessarily stop it. As shown in
Figure 4, independent geometric padding is most helpful when the mix network
has a higher variability in message delay to ‘spread’ the padding between rounds.
Otherwise, Alice must send far more padding messages to confuse the attacker.

Our second padding strategy (“imperfect threshold padding”) assumes that
Alice attempts to implement the otherwise unbreakable threshold padding strat-
egy (always send M messages total in every round, adding dummies up to M and
delaying messages after M as necessary), but that she is only sometimes online
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(with probability Ponline), and cannot send real messages or padding when she is
offline. (This will be typical for most real-world users attempting to implement
threshold padding in a world of unreliable hardware and network connections.)

Figure 5 shows the result of imperfect threshold padding. As before, Alice
benefits most from padding in networks with more variable delays. Interestingly,
in the low delay-variability cases (short paths, low Pdelay), padding does not
thwart the attack even when Alice is online 99% of the time.

For our final dummy traffic simulation, we assume that Alice performs thresh-
old padding consistently, but that the attacker has had a chance to acquire a
view of the network’s background behavior before Alice first came online.7 Here,
our goal was to confirm our earlier suspicion that padding helps not by disguising
how many messages Alice sends, but by preventing the attacker from learning
how the network acts in Alice’s absence.

Figure 6 compares results when Alice uses consistent threshold padding and
the attacker knows the background to results when Alice does not pad and the
background −→u is unknown. Not only can an attacker who knows the background
distribution identify Alice’s recipients with ease, regardless of whether she uses
padding, but such an attacker is not delayed by increased variability in message
delays.

The impact of partial observation: Finally, we examine the degree to which
a non-global adversary can mount a statistical disclosure attack.

Clearly, if Alice chooses only from a fixed set of entry and exit mixes as
suggested by [34], and the attacker is watching none of her chosen mixes, the at-
tack will fail—and conversely, if the attacker is watching all of her chosen mixes,
the attack proceeds as before. For our simulation, therefore, we assume that all
senders (including Alice) choose all mixes as entry and exit points with equal

7 As usual, we assume that the background traffic patterns are unchanging. If back-
ground traffic changes significantly over time, Alice can defeat this attack by joining
the network, sending nothing but padding until the network’s background charac-
teristics have changed on their own, and only then beginning to send her messages.
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probability for each message, and that the attacker is watching some fraction
f of the mixes. We simulate this by revealing each message entering or leaving
the network to the attacker with probability Pobserve = f . The attacker sees a
message when it enters and when it exits with probability (Pobserve)2.

The results in Figure 7 show that the attacker can still implement a long-term
intersection attack even when he is only observing part of the network. When
most of the network is observed (Pobserve > 70% in our results), the attack is
hardly impaired at all. As more of the network is concealed (.4 < Pobserve < .7)
the attack becomes progressively harder. Finally, as Pobserve approaches 0, the
required number of rounds approaches infinity.

5 Conclusions

Our results demonstrate that long-term end-to-end intersection attacks can suc-
ceed even in the presence of complicating factors. Here we suggest several open
questions for future work, and offer recommendations for mix network designs.

A more realistic model: Our model differs from reality in five major ways.
First, although real social networks behave more like scale-free networks than

like the original disclosure attack’s model, our models for user behavior
still have room for improvement. Real users do not send messages with a time-
invariant geometric distribution: most people’s email habits are based on a 24-
hour day, and a 7-day week. Early research on traffic patterns in actual mix
networks [16] suggests that this variation is probably significant.

Second, real user behavior changes over time. Section 3.2 discusses how
an attacker might handle a scenario where the background traffic changes slowly
over time, and perhaps a similar approach would also help against a sender
whose recipients were not constant. In the absence of a model for time-variant
user behavior, however, we have not simulated attacks for these cases.

Third, it seems clear that systems with message linkability, such as pseudony-
mous services, will fall to intersection attacks far faster than anonymizing ser-



vices without linkability. How linkable are messages “in the wild,” how much
does this linkability help an attacker, and how can it be mitigated?

Fourth, real attackers are not limited to passive observation. We should gen-
eralize our attacks to incorporate information gained by an active attacker.
Past work on avoiding blending attacks [30] has concentrated on preventing an
attacker from being certain of Alice’s recipients—but in fact, an active attack
that only reveals slight probabilities could speed up the attacks in this paper.

Fifth, Alice has incentive to operate a mix, so an attacker cannot be sure
if she is originating messages or just relaying them [1]. Can we treat this relayed
traffic (which goes to actual recipients) as equivalent to padding (which goes
to no recipients)? Can Alice employ this relayed traffic for a cheaper padding
regime, without opening herself up to influence from active attacks?

Other questions for future research: Our analysis has focused on the impact
of Alice’s actions on Alice alone. How do Alice’s actions (for example, choice of
padding method) affect other users in the system? Are there incentive-compatible
strategies that provide good security for all users?

It would be beneficial to find closed-form equations for expected number of
rounds required to mount these attacks, as Danezis does for statistical disclosure.

Many of our simulations found “sweet spots” for settings such as mix pool
delay, message volume, padding volume, and so on. Identifying those points of
optimality in the wild would be of great practical help for users. Systems could
perhaps then be designed to adaptively configure their pooling strategies to
optimize their users’ anonymity.

Implications for mix network design: First, high variability in message
delays is essential. By ‘spreading’ the effects of each incoming message over
several output rounds, variability in delay increases each message’s anonymity
set, and amplifies the effect of padding.

Padding seems to slow traffic analysis, especially when the padding is con-
sistent enough to prevent the attacker from gaining a picture of the network
in Alice’s absence. On the other hand, significant padding volumes may be too
cumbersome for most users, and perfect consistency (sending padding from the
moment a network goes online until it shuts down) is likely impractical.

Users should be educated about the effects of message volume: sending
infrequently is relatively safe, especially if the user doesn’t repeat the same
traffic pattern for long.

Mix networks should take steps to minimize the proportion of observed
messages that a limited attacker can see entering and exiting the network.
Possible approaches include encouraging users to run their own mixes; choosing
messages’ entry and exit points to cross geographical and organization bound-
aries; and (of course) increasing the number of mixes in the network.

Much threat analysis for high-latency mix networks has aimed to provide
perfect protection against an eavesdropper watching the entire network. But
unless we adopt an unacceptable level of resource demands, it seems that some



highly distinguishable senders will fall quickly, and many ordinary senders will
fall more slowly, to long-term intersection attacks. We must stop asking whether
our anonymity designs can forever defend every conceivable sender. Instead, we
should attempt to quantify the risk: how long our designs can defend which
senders against an adversary who sees how much.

Acknowledgments

Thanks go to Gerald Britton, Geoffrey Goodell, Novalis, Pete St. Onge, Peter
Palfrader, Alistair Riddoch, and Mike Taylor for letting us run our simulations
on their computers; to Peter Palfrader for helping us with information on the
properties of the Mixmaster network; and to George Danezis for his comments
on drafts of this paper.

References

1. Alessandro Acquisti, Roger Dingledine, and Paul Syverson. On the economics of
anonymity. In Rebecca N. Wright, editor, Financial Cryptography. Springer-Verlag,
LNCS 2742, 2003.
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