
Thwarting Web Censorship with Untrusted

Messenger Discovery

Nick Feamster, Magdalena Balazinska, Winston Wang, Hari Balakrishnan, and
David Karger

MIT Laboratory for Computer Science
200 Technology Square, Cambridge, MA 02139

{feamster,mbalazin,wwww,hari,karger}@lcs.mit.edu

Abstract. All existing anti-censorship systems for the Web rely on prox-
ies to grant clients access to censored information. Therefore, they face
the proxy discovery problem: how can clients discover the proxies without
having the censor discover and block these proxies? To avoid widespread
discovery and blocking, proxies must not be widely published and should
be discovered in-band. In this paper, we present a proxy discovery mech-
anism called keyspace hopping that meets this goal. Similar in spirit to
frequency hopping in wireless networks, keyspace hopping ensures that
each client discovers only a small fraction of the total number of proxies.
However, requiring clients to independently discover proxies from a large
set makes it practically impossible to verify the trustworthiness of every
proxy and creates the possibility of having untrusted proxies. To address
this, we propose separating the proxy into two distinct components—the
messenger, which the client discovers using keyspace hopping and which
simply acts as a gateway to the Internet; and the portal, whose iden-
tity is widely-published and whose responsibility it is to interpret and
serve the client’s requests for censored content. We show how this sepa-
ration, as well as in-band proxy discovery, can be applied to a variety of
anti-censorship systems.

1 Introduction

Many political regimes and corporations actively restrict or monitor their em-
ployees’ or citizens’ access to information on the Web. Many systems try to cir-
cumvent these censorship efforts by using cooperative proxies. Anonymizer [1] is
one of the oldest such systems. Peekabooty [15], Safeweb [11], and Zero Knowl-
edge’s WebSecure [13] use an SSL-encrypted channel to communicate requests to
proxies outside of the censored domain, which then return the censored content
over this encrypted channel. In Infranet [3], clients communicate with cooperat-
ing proxies by constructing a covert and confidential channel within an HTTP
request and response stream, without engendering the suspicion that a visibly
encrypted channel might raise.

These systems require a client within the censored domain to discover and
communicate with a cooperating proxy outside of the domain, as shown in Fig-
ure 1. Each of these systems assumes that a censor blocks access to a Web server

2 Feamster et al.

Internet

TargetProxy

CENSOR

Client

Fig. 1. Current censorship circumven-
tion schemes rely on access to trusted
proxies that serve clients’ requests for
censored content.

Internet

Target

Messengers

CENSOR

Client Portal

Fig. 2. Forwarding a message and de-
coding that request can be decomposed
into two separate operations.

based on its identity (i.e., IP address or DNS name) and that the censor allows
access to any host that does not appear to be delivering objectionable content.
Thus, the livelihood of these systems depends on the existence of proxies that
the censor does not know about.

All proxy-based censorship avoidance systems face the troubling proxy dis-
covery problem. To gain access to censored content, clients must have access
to cooperating proxies. However, if the censor can operate under the guise of
a legitimate client, it can discover these proxies and block access to them. For
example, China’s firewall previously blocked access to the Safeweb proxy. An
effective proxy discovery technique must allow a client to easily discover a few
participating proxies but make it extremely difficult for a censor to discover all
of these proxies. Any reasonable solution to the problem must defend against
both out-of-band discovery techniques (e.g., actively scanning or watching traffic
patterns) and in-band ones (e.g., where the censor itself becomes a client).

To achieve these goals, a proxy-based censorship avoidance system should
have the following characteristics:

– The system should have a large number of proxies. A system with no more
than a few proxies is useless once those proxies are blocked. A system with
more proxies makes it more difficult for a censor to block all of them.

– Clients must discover proxies independently of one another. If every client
discovers the same few proxies, a censor could block access to these popular
proxies and render the system useless.

– The client must incur some cost to discover a proxy. Because the censor can
assume the identity (i.e., IP address) of any client behind its firewall, it is
relatively easy for a censor to operate a large number of clients solely to
discover proxies. As such, discovering a proxy should require a non-trivial
investment of resources, such as solving a client puzzle [6].

– Brute-force scanning techniques must not expose proxies. A censor may sus-
pect that a host is a proxy and try to verify this in some fashion (e.g., by
acting as a client and seeing if it acts as a proxy, etc.). Thus, to an arbitrary
end-host, a proxy should look innocuous.

We propose a proxy discovery technique called keyspace hopping that limits
in-band discovery of proxies by ensuring that no client knows more than a small

Lecture Notes in Computer Science 3

random subset of the total set of proxies. The technique also prevents out-of-band
discovery by distributing client requests across the set of proxies and ensuring
that each cooperating end-host only assumes the role of a proxy for a small set
of clients at any given time.

The requirement that clients discover proxies independently implies that
clients will utilize arbitrary proxies that they may not trust. This introduces
a fundamental tradeoff: while having a large number of independently discov-
erable proxies makes the system more robust to being blocked, it also makes it
increasingly difficult to ensure that all proxies are trustworthy. An ideal proxy
discovery system should be resistant to blocking and ensure that the client only
exposes its requests for censored content to trusted parties.

We propose a solution that achieves this goal by recognizing that the proxy
actually serves two functions: providing access to content outside the firewall,
and serving requests for that content. Our solution, summarized in Figure 2,
employs a large number of untrusted messengers, which carry information to
and from the uncensored Internet, without understanding that information; and
a smaller number of portals, which a client trusts to faithfully serve requests for
censored content without exposing its identity.

2 Proxy Discovery using Keyspace Hopping

Proxy-based anti-censorship systems must enable clients to discover proxies with-
out enabling the censor to discover and block access to all of the proxies. Existing
systems assume that there is some way to enable this discovery, but the problem
has no obvious solution when the censor can become a client. Because of this
possibility, no single client (or small group of clients) should ever discover all
proxies. Proxies must come into existence more quickly than the censor can block
them, and proxy discovery must be based on some client-specific property like
IP address to raise the cost of impersonating many clients. In this section, we
explore the design space for proxy discovery and describe our proposed mech-
anism, called keyspace hopping, that controls the rate at which any one client
can discover proxies. In this section, we assume that the censor cannot operate
a proxy, except for our analysis of in-band discovery in Section 2.3. We discuss
how to completely relax this assumption in Section 3.

2.1 Design Considerations for Proxy Discovery

Anti-censorship systems should ensure that almost every client can always con-
tact at least one proxy, even if the censor is able to block some of these proxies.
The set of proxies should be difficult enough to discover that the only reasonable
response by the censor would be to block access to the entire Internet.

A censor can discover proxies in two ways: in-band, by acting as a client of the
anti-censorship system itself, and discovering proxies in the same manner as any
other client; and out-of-band, by actively scanning Internet hosts to determine
whether any of them behaves like a proxy (we have previously explained the

4 Feamster et al.

Technique Description Design principles

In-band Censor becomes a client
and attempts to discover

proxies in the same way a
client would.

– Use client-specific properties for proxy discovery.

– Ensure no client can discover more than a small set of all
proxies at any time.

Out-of-band Censor uses traffic anoma-

lies or active scanning
techniques to discover
proxies.

– Distribute clients evenly among available proxies.
– Ensure a host only acts as a proxy for a small subset of

clients at any time.

Table 1. A censor can discover and block proxies using either in-band or out-of-band
discovery.

importance of maintaining proxy covertness for this reason [3]). Additionally, a
censor can notice traffic anomalies that expose a proxy or a client, such as a
sudden increase in traffic to a particular Web site or a group of clients that have
very similar browsing patterns. Table 1 summarizes these discovery techniques
and the corresponding design considerations.

Limiting In-Band Discovery If we assume that a censor can become a client,
the censor can use the same discovery mechanisms that a client uses to discover
proxies. Thus, the set of proxies that any one client can discover should be small
and relatively independent from the sets that other clients discover. This client-
specificity implies that clients should discover proxies through some in-band
mechanism (note that this is a departure from our previous thoughts about
proxy discovery [3]).

To slow in-band discovery, we impose the following constraints: the proxies
that any client discovers should be a function of some characteristic that is 1)
reasonably specific to that client, 2) not easily modified, and 3) requires signif-
icant resources to compute. Two obvious characteristics of a client that satisfy
the first two constraints are the client’s IP address and subnet. Unfortunately,
a censor that operates a firewall can easily assume an IP address or subnet be-
hind that firewall. Hence, we must also require some significant investment of
resources per-client, such as client puzzles [6], that makes it reasonably expensive
for one entity to assume many different identities.

Limiting Out-of-Band Discovery A censor might try to discover proxies
using out-of-band discovery techniques. For example, all Web servers that run an
Infranet responder might behave in a similar fashion (e.g., providing slower than
normal Web response times, etc.). Alternatively, if many clients send requests to
a single proxy within a small time period, a censor might notice a large increase
in the number of connections to a host that does not ordinarily receive much
traffic. It should be reasonably difficult for a censor to discover all proxies using
these types of out-of-band discovery techniques.

Lecture Notes in Computer Science 5

i,t
= My ID ?ProxyIDClient

Clientj

i

Target Host
Clients

ProxyID
j,t
= My ID ?

S

Sj

i

InternetCensor

��������������������
���������������
������������
������

���������������
���������������
	�		�	
�

�

������

��������
������
���
������������
������

���
�������

��
�
��

����������

��
�

!�!"#$
%%
%
&&

'�'(�()*

++
+
,,

-�-./0

11
1
22

3�3456

77
77
77
77

88
88
88
88

99
99
99
99

::
::
::
::

;;
;;
;;
;;

<<
<<
<<
<<

==
==
==
==

>>
>>
>>
>>

??
??

@@
@@

AA
AA
BB
BB

CC
CC

DD
DD
EE
EE

Fig. 3. In keyspace hopping, clients and proxies agree on which proxy forwards which
client’s request. Each client discovers a unique set of proxies.

To make out-of-band discovery more difficult, a host should only act as a
proxy for a certain subset of clients at any time. This prevents one proxy from
attracting traffic from an abnormally large number of clients. More importantly,
it prevents a host from always appearing as a proxy to all clients, thus making it
less likely that an out-of-band probe from an arbitrary host will expose the proxy.
Furthermore, the set of clients that a proxy serves should change over time. This
makes proxy discovery more difficult for the censor because the censor does not
know which hosts are acting as proxies for which clients.

2.2 Keyspace Hopping

We apply the design principles from Section 2.1 to our proxy discovery system,
called keyspace hopping because of its similarities to frequency hopping [9]. Fre-
quency hopping is used in wireless communication; the basic idea is to modulate
a signal on a carrier frequency that changes pseudorandomly over time. Wireless
communication uses frequency hopping to resist jamming, since an adversary
must either saturate the entire frequency band with noise or track the frequency
hopper’s choice of carriers.

We propose a similar idea, with the exception that the censor is attempting
to jam communication channels by preventing a client from reaching any proxies.
At any given time, a certain proxy (or set of proxies) agrees to serve requests
for a client, and the client forwards its requests to that proxy, as shown in
Figure 3. To block a client’s communication with its proxies, the censor must
block communication with all of the client’s proxies.

Keyspace hopping must solve several problems. The first problem is proxy
assignment: what is the appropriate mechanism for assigning clients to proxies?
Next, clients must perform lookup: how do clients discover the IP addresses of
their proxies while preventing the censor from performing arbitrary lookups to
discover all proxies? Finally, the system must have a bootstrapping phase: how

6 Feamster et al.

can the client, initially knowing nothing, obtain the necessary information to
discover its set of proxies? The rest of this section addresses these problems.

Proxy Assignment To guarantee that no single client can ever discover a large
fraction of the proxies, keyspace hopping assigns a small subset of all proxies to
each client. To prevent proxies from being actively scanned, and to balance
client requests across proxies, keyspace hopping dictates when a client can use
a particular proxy in its subset.

To facilitate the mapping, each proxy is assigned a globally unique identifier
ProxyID, such as a hash of the proxy’s IP address. The set of proxies for a client
is then determined by computing a client-specific index into the total keyspace,
and by selecting a constant number of proxies whose identifiers most closely
follow the index. The index is computed from a client-specific identifier (which
could be, for example, the client’s IP address) and a shared secret hkey that
prevents an adversary from computing the subspace.

A client determines the proxy with which it communicates by adding the
output of a uniform collision-resistant hash function, Bi (its base index in the
keyspace), to a time-dependent PreProxyID, which is determined from the out-
put of a universally-agreed upon pseudorandom number generator, G. ProxyID
must be based on hkey to prevent a censor from recomputing a suspected client’s
sequence of ProxyIDs and tracking a suspected client’s path through a sequence
of proxies (this is particularly important for Infranet, which seeks to preserve
client deniability).

The following equations present the assignment more formally:

Bi ← H(Client ID, hkey)

PreProxyIDt,i ← G(Client ID, hkey, t)

ProxyIDt,i ← (Bi + (PreProxyIDt,i mod |Si|)) mod |P |

where Si is the set of proxies that client i knows about, and P is the set of all
proxies in the system.1 Both |Si| and |P | are well-known constants, and |Si| is
the same for all clients i. ProxyIDt,i is rounded up to the closest ProxyID in the
client’s set.

The size of the subset of the keyspace that client i uses, |Si|, addresses a
fundamental design tradeoff—the flexibility gained through using more proxies
vs. independence from the fate of other clients (obtained by not sharing proxies
with other clients). Smaller proxy subsets decrease the likelihood that one client’s
proxies will share a proxy with some other client, but mean that a client may
appear more conspicuous by sending more traffic to a smaller number of hosts.
A client with smaller set of proxies is also less resilient to having proxies blocked.

To minimize the likelihood that the censor discovers a proxy and blocks it,
we require that any proxy only serve a small subset of clients at any time. For
a given request, the proxy must determine whether or not it should serve that

1 We assume for simplicity that this value is constant. We describe how to relax this
assumption in Section 2.3.

Lecture Notes in Computer Science 7

particular client’s request for censored content. This is easily done—the proxy
can simply determine the IP address from which the client request originated and
check whether the computed ProxyID for the current time interval t matches its
own ProxyID. The proxy only treats the client’s request as a request for censored
content if this value matches (regardless of whether or not it is such a request) .

The client may need to rediscover proxies when the proxies that it is using
either leave the system or become unreachable; this can be done in the same
way that the client bootstraps its original set of proxies, as described below.

Lookup and Initialization To use keyspace hopping to contact proxies, the
client must know two things: the mapping from ProxyIDs to IP addresses for its
set of proxies, and the value for hkey.

To prevent a censor from harvesting IP addresses to discover and block prox-
ies by performing arbitrary lookups, a client should only be able to lookup IP
addresses for ProxyIDs that it will use for keyspace hopping. The first proxy
that a client contacts will return the ProxyID to IP address mappings for only
the ProxyIDs that the client needs to know. Because the proxy that the client
originally contacts knows the client’s IP address and the value of hkey that it
assigned to that client, the proxy also knows the set of proxies that the client
will attempt to contact. To make it more difficult for a censor to assume the
identities of many clients (e.g., by changing IP addresses, etc.), the proxy can
make this discovery more expensive for the client by encrypting the mapping
and forcing the client to solve a puzzle to recover the mapping, such as a partial
brute force decryption given only k bits of an n-bit encryption key [6]. To ensure
that the client cannot bias its keyspace assignment, hkey must be set by a proxy,
rather than chosen by the client. The proxy that assigns hkey must also inform
the other proxies in the client’s proxy set; if proxies are not trusted, this must
be done differently, as discussed in Section 2.3.

Bootstrapping With the approach we have described above, the client must
contact some proxy that will send it hkey and ProxyID mappings. However, to
perform this bootstrapping operation, the client must first know the IP address of
at least one proxy. This sounds like the original problem: if the censor happens to
block a well-known bootstrapping proxy, new clients will not be able to discover
the subset of proxies that they need for keyspace hopping. Thus, we must also
ensure that clients discover their first proxy reasonably independently.

A client only needs to discover one proxy to bootstrap. A client might already
know of an operational proxy (out-of-band), or clients could establish a web of
trust (as in PGP [8]) where a client could divulge one of the proxies in its subset
to trusted friends. To prevent out-of-band discovery, a proxy should bootstrap a
client that it has never seen before only with a certain probability. Alternatively,
a proxy might bootstrap only clients that are referred to it explicitly by clients
that it already knows.

8 Feamster et al.

0

100000

200000

300000

400000

500000

600000

700000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 T

ria
ls

Fraction of Proxies Blocked

Fig. 4. Blocking 95% of 105 proxies would requires the censor to solve about 300,000
puzzles.

2.3 Analysis and Discussion

In this section, we analyze how well keyspace hopping resists discovery and
blocking. We also discuss the deniability properties of keyspace hopping.

In-Band Discovery We analyze the likelihood that a given client will be de-
nied access to any proxy in its subset of known proxies, given that a censor
has the capability to impersonate a certain number of clients in a reasonable
amount of time. In the bootstrapping phase, each client discovers a specific set
of proxies based on some client-specific identifier (e.g., its IP address). Since the
censor controls all of the IP address space behind the censorship firewall, it can
impersonate any IP address behind its firewall to discover what set of proxies a
client from that IP address might use.

Because a client cannot discover the proxies in its subset before solving a
puzzle, a censor must solve one of these puzzles for each subset of proxies that it
wants to discover. However, because each legitimate client will only have to solve
the puzzle once, the puzzle can be sufficiently difficult (a draconian approach
would require each client to spend a week decrypting its subset of proxies).

How many clients does the censor need to impersonate to know about a
significant fraction of all proxies? Let’s assume for simplicity that each puzzle
allows the censor to discover one proxy selected randomly from P (i.e., |Si| = 1).
If the censor already knows about n proxies, then the probability of discovering
a new proxy is (P − n)/P . Thus, assuming an independent Bernoulli process,
the censor will discover a new proxy after impersonating P/(P − n) clients,
or 1/(P − n) of the total number of proxies. On average, the censor will have

discovered N proxies after
∑N

k=1 P/(P −k) impersonations (this is known as the

Lecture Notes in Computer Science 9

“coupon collector problem”). For example, if P = 105, then a censor must solve
about 70,000 puzzles to discover 50% of the proxies, and about 300,000 puzzles
to discover 95% of all proxies.2 Figure 4 shows the relationship for P = 105—
it becomes increasingly hard for the censor to discover and block all proxies,
or even a large fraction of them. If we design the system so that it is difficult
enough to solve each puzzle (e.g., a day per puzzle), then it will take the censor
almost 200 years to discover half of the proxies. If the system is able to detect
that it is being scanned by a censor, it can also increase the difficulty of the
client puzzles to slow the censor down even further.

If a censor can operate a proxy, it can discover clients by determining which
clients make requests for censored content. This problem arises because the proxy
can identify clients solely based on which hosts are contacting it with meaningful
requests. To address this, the proxy functionality can be decomposed into an un-
trusted messenger and a trusted portal, where only trusted portals should be able
to determine which hosts request censored content (we describe this approach in
detail in Section 3). In this case, the censor can operate a malicious messenger,
but that messenger will not be able to distinguish anti-censorship requests from
innocent messages; this is particularly true in the case of Infranet, where innocent
clients will be sending HTTP requests to that messenger under normal circum-
stances. For this technique to be effective with other anti-censorship systems,
there must be an innocent reason for a client to send messages to that mes-
senger; otherwise, there is no plausible deniability for sending messages through
that messenger.

The requirement that the proxy know ProxyID to IP address mappings and
IP address to hkey mappings is problematic because this implies that the cen-
sor can discover other proxies by becoming a proxy and can discover clients by
discovering hkey mappings. Of course, proxies can inject a large number of false
IP address to hkey mappings; however, a better solution uses untrusted messen-
gers and trusted portals to control who knows this information. Trusted portals
can assign ProxyID to IP address mappings to clients. In this case, portals can
inform messengers about which clients it should serve during any time slot with-
out requiring messengers to ever learn of other messengers. Portals can also tell
messengers about only the hkey mappings for clients that have that messenger in
its set. Portals can also simplify proxy assignment, since they can inform clients
about changing values of |P | or simply compute the keyspace subset Si for each
client i, using the current value of |P |. We discuss messengers in further detail
in Section 3.

Out-of-Band Discovery A censor can discover clients out-of-band by watch-
ing for traffic anomalies (e.g., a client sending messages to a specific set of hosts
outside the firewall) and can discover proxies out-of-band by probing for be-
havior typical of a proxy (e.g., serving visible HTTP requests more slowly than

2 Recent studies suggest that the number of Web servers on the Internet is on the
order of 107 and growing [7]; having 1% of these act as proxies is a reasonable goal.

10 Feamster et al.

a normal Web server, in the case of Infranet). Keyspace hopping makes out-
of-band discovery more difficult because, given an arbitrary message from the
censor, the proxy will ignore the censor’s request.

A censor could mount out-of-band discovery by computing the sequence of
proxies that a client would use to serve its requests and determining whether
any clients send messages to proxies according to the same schedule. For this
reason, the ProxyID for a particular client and time interval must depend not
only on the client’s IP address, but also some key hkey that is known only to the
client and its set of proxies Si. Thus, if the censor does not know hkey, it does
not know either the keyspace for that client, nor does it know the progression of
proxies that the client will take through that keyspace.

In the case where the censor operates at least one of the proxies in Si, the
censor knows all the information to hypothesize that a certain host might be
operating an anti-censorship client. A simple solution relaxes frequency hopping
to allow the client to pass requests to any of the ProxyIDs that were valid for the
n most recent time intervals. However, this still allows the censor to ascertain
that a suspected client is contacting machines that are within the client’s proxy
set Si. Another solution is to distribute a set of hkeys to the client and allow
the client to send messages on any one of multiple channels. The censor would
then have to know the secrets for all of these channels to successfully track the
client through a series of proxies.

Deniability Infranet explicitly tries to make a client’s requests for censored
content as similar as possible to normal-looking Web traffic; we would like
to preserve such deniability when incorporating keyspace hopping. Other anti-
censorship systems do not provide deniability at all, so there is no risk of com-
promising client deniability in these cases.

Keyspace hopping presents several potential vulnerabilities that might com-
promise the client deniability goals of anti-censorship systems such as Infranet [3].
First, a client may arouse suspicion by attempting to contact a recently-blocked
proxy. However, this weakness is no worse than that which exists in the original
Infranet design. Second, the hopping sequence between proxies must be chosen
so that both the hopping interval and the proxies between the client hops seems
like a reasonable browsing pattern for a normal user. Because the keyspace hop-
ping schedule we have presented does not rely on client-specific time intervals, a
censor could potentially single out anti-censorship clients by correlating browsing
request patterns with other known anti-censorship clients. Designing a hopping
schedule that does not arouse suspicion is a challenging problem for future work.

Infranet clients should make visible requests to proxies in a way that pre-
serves client deniability. Keyspace hopping does not affect this aspect of client
deniability since it only affects how a client hops between proxies (i.e., between
“responders”, in Infranet parlance), not the visible requests the client makes to
any particular responder.

Lecture Notes in Computer Science 11

H(message, HTTP Request Stream, U tunnel

,

)

H(response, HTTP Response Stream, skey)

Requester Responder

Fig. 5. Without messengers (orig-
inal design).

H(message, HTTP Request Stream, U tunnel

,

)

H(ciphertext, HTTP Response Stream, skey)

Requester Responder

H(message, HTTP Request Stream, U tunnel)

Messenger

E(response, ekey) −> ciphertext

Fig. 6. With messengers.

3 Communication through Untrusted Messengers

With the keyspace hopping technique that we described in Section 2, the client
cannot verify the trustworthiness of every proxy that it contacts. In this section,
we describe how to rectify this problem. Specifically, we decompose the functions
of the proxy into two distinct modules: the messenger, which acts as the gateway,
or access point, to the Internet, and the portal, which deciphers and serves clients’
requests, as shown in Figure 2. The messenger acts as untrusted intermediary
through which the client and portal communicate.3

Because traffic passes through the messenger in the same way that it passes
through the censor, a messenger can mount every attack that a censor can mount
(as outlined in previous work [3]); in addition, the messenger can disrupt com-
munication between the client and the proxy by failing to deliver packets to the
intended destination. In this section, we describe how an untrusted messenger
can be implemented in the context of both Infranet and SSL-based systems.

3.1 Infranet Messenger

The original Infranet design proposes that clients circumvent censors by sending
requests via an Infranet requester, which hides requests for censored content in
a visible HTTP requests to the Web site of the Infranet responder, as shown
in Figure 5. In the case of Infranet, the responder acts as the portal. To sepa-
rate forwarding messages from decoding messages and serving requests, we use
two separate entities: the Infranet messenger, which is the machine that the
client directly communicates with; and the Infranet responder, which uses the
same upstream and downstream modulation techniques as before. The messen-
ger simply acts as a conduit for the requester and responder’s messages. We
present an overview of the necessary modifications to the original Infranet re-
quester/responder protocol and follow with a discussion on the implications of
the Infranet messenger on deniability and other security properties of Infranet [3].

3 This differs from the Triangle Boy approach, where the messengers (i.e., Triangle Boy
nodes) must be (1) widely announced and (2) trusted (since they are intermediaries
in the SSL handshake with the Safeweb server).

12 Feamster et al.

Client Messenger PortalCensor

URL URL

Hidden

content

Hidden

content

(UID, Link

number)

(UID,

Encrypted
content)

Fig. 7. An improved architecture separates the forwarding and decoding of hidden
messages in both directions. This allows a potentially untrusted messenger to service
requests and serve hidden content. The UID serves to demultiplex requesters.

Overview Figure 7 shows the Infranet architecture with the separation of the
Infranet proxy into a messenger and responder (i.e., portal). The Infranet respon-
der functions as before and assumes responsibility for translating the Infranet
requester’s visible HTTP requests into requests for censored content. The mes-
senger informs the responder about the visible HTTP requests of certain clients
(e.g., from Section 2, those which should be hopping to its ProxyID), and hides
the appropriate encrypted content in its HTTP responses for the appropriate
users. Figures 5 and 6 show the conceptual distinction between the two ver-
sions of the Infranet protocol with and without the messenger. For simplicity,
we discuss the comparison for steady-state communication only.

Without Infranet messengers, the requester hides a message using the hiding
function H and an upstream modulation function Utunnel known only to the
requester and responder. In the downstream direction, the responder hides the
requested content with the downstream hiding function (e.g., steganography),
using a secret hiding key skey known only to the requester and responder. Using
untrusted messengers does not affect upstream hiding; the messenger simply tells
the responder which request was made by a particular requester, but the message
remains hidden, as far as the messenger is concerned. The output of the upstream
hiding function is an HTTP request stream, and it suffices for the messenger to
pass this request sequence directly to the responder. Note that this is an HTTP
request stream for objects on the messenger’s Web site, which the responder
can then decode into message fragments (as described in previous work [3]). The
responder no longer needs to run a Web site, although the messenger must do
so. Only the requester and responder understand the semantics of the visible
HTTP request stream.

The downstream communication protocol is similar to that proposed in the
original Infranet design, except that two keys must be used in the downstream
direction. In the original design, the Infranet responder encrypts and stegano-
graphically embeds the requested content in images from its Web site that it
would subsequently serve to the client. In this case, the responder can use the
same key to encrypt and steganographically embed the content.4 However, be-
cause the messenger is not necessarily a trusted entity (i.e., it could in fact be

4 Technically, encryption of the content to be hidden is a part of the steganographic
embedding [10], but we mention both operations separately for clarity.

Lecture Notes in Computer Science 13

a malicious node), the responder must first separately encrypt the requested
content under a key that is unknown to the messenger. However, the messenger
must steganographically embed the requested content in its own visible HTTP
responses, and thus needs a separate key to do so. Of course, the requester must
know both of these keys to successfully retrieve the hidden content; the respon-
der can generate these keys and send them to the requester as in the original
Infranet design. Thus, the three parties must now come to agreement on two
keys: an encryption key, ekey, that is shared between the requester and re-
sponder, and is unknown to the messenger; and a hiding key, skey, which the
requester and the messenger must know, and the responder may also know.

Analysis and Discussion Infranet provides client deniability disguising client
request stream as a user’s “normal” browsing pattern because the requester’s
browsing pattern is determined in the same manner as before by an upstream
modulation function as agreed upon by the requester and responder. Because
introduction of a messenger does not affect the requester’s use of an upstream
modulation function, the stream of visible of HTTP requests and responses still
looks innocuous to any entity that does not know the upstream modulation
function. Solely based on seeing the HTTP request stream from a client, the
messenger has no more knowledge about whether a client is an Infranet requester
or an innocent client; only the responder knows how to map this request stream
to the requester’s hidden message.

In the downstream direction, the messenger knows that it is embedding ci-
phertext in one of its images and returning that ciphertext to some client. How-
ever, it does not know 1.) whether that ciphertext contains any useful data or
what that data might be, or 2.) if that ciphertext corresponds to a request made
by a particular client. A responder could return bogus content for clients that
are not Infranet requesters without the messenger’s knowledge.

Because we have separated the process of forwarding messages from decoding
these messages, a requester does not need to trust the messengers, but it still
needs to trust the responder. This separation allows the identity of responders to
be widely published, since a censor’s knowledge about the identities of Infranet
responders does not enable it to block a client’s access to the messengers. Thus,
requesters can pass messages through a set of untrusted messengers (which, as we
know from Section 2, can be made resistant to complete discovery and blockage)
to well-known, trusted Infranet responders.

While a malicious messenger cannot distinguish clients that are making re-
quests for censored content from ordinary Web clients (since only Infranet re-
questers and responders know whether the visible HTTP request stream has any
hidden semantics), it can certainly disrupt the communication between the re-
quester and responder by refusing to pass some messages or message fragments
from the requester to the responder, and vice versa. For example, the messenger
may fail to pass some URLs that it hears from a requester along to the responder;
alternatively, it might neglect to embed certain pieces of content in responses
to the requester. These are the same types of attacks that the censor can per-

14 Feamster et al.

form itself at the firewall; previous work provides detailed discussion about how
to handle these types of attacks [3]. The client can easily detect these types of
attacks—either the responder will serve an incomplete or wrong request, or the
requester will not receive the full data that it requested. Presumably, this mes-
senger could then be marked as malicious, faulty, or misbehaving, and removed
from the set of candidate messengers.

3.2 Messengers for SSL-Based Systems

Other existing systems, including Safeweb/Triangle Boy [11], Zero Knowledge’s
WebSecure [13], and Peekabooty [15], use an encrypted channel between the
client and the proxy to send requests and receive censored content. Although
these systems do not provide covert censorship circumvention (SSL is vulnerable
to fingerprinting attacks, for one [5, 12]), these systems nevertheless potentially
allow clients to circumvent censorship techniques using one or more proxies.
Nevertheless, these SSL-based proxy systems can also benefit by separating the
proxy into a messenger and a portal, which would allow them to use the mes-
senger discovery techniques described in Section 2.

It might seem that we could use a messenger as a conduit for an SSL con-
nection in the same way that was possible for the Infranet messenger. In fact,
SSL-based proxies are less amenable to the separation of the proxy into a mes-
senger and a portal—traffic must appear to originate from the messenger, but
the SSL handshake includes a step whereby the portal returns to the client a
certificate with the portal’s public key. Using this naive approach, these systems
cannot attain the same level of resistance to blocking that a system that is not
based on SSL can achieve. Any modifications to the SSL protocol itself (e.g.,
removing this portion of the handshake, etc.) would also arouse suspicion from
the censor, which we would like to avoid.

Using onion-routing to tunnel the initial SSL handshake results in connec-
tion establishment that does not require suspicious modifications to SSL and
is more robust to the presence of untrusted messengers [14]. For example, with
knowledge of a messenger’s public key, a client can encrypt its half of the SSL
handshake with the messenger’s public key, and the messenger can unwrap this
and send it to the portal. The messenger must also establish the equivalent of a
reply block, so that the messenger can send the portal’s half of the SSL hand-
shake encrypted back to the client. Using the discovery mechanisms proposed
in Section 2, however, it is not possible for the client to trust the messenger’s
public key. To achieve greater assurance that these untrusted messengers will
not compromise the client’s confidentiality, the client can specify that the ini-
tial handshake be routed through multiple messengers. An alternative approach
would be to use Tarzan [4] to establish the initial SSL handshake, or even to
conduct the entire communication over Tarzan.

Lecture Notes in Computer Science 15

4 Conclusion

We have presented the proxy discovery problem, which is faced by every proxy-
based anti-censorship system: how can clients discover the proxies that will as-
sist them in gaining access to censored information without having the censor
discover and block these proxies? Because a censor can discover proxies both
in-band (by becoming a client itself) and out-of-band (by actively scanning for
proxies, or by noticing odd traffic patterns between clients and suspected prox-
ies), our techniques ensure that it is difficult for a censor to discover more than a
small subset of all proxies using either method. We have proposed keyspace hop-
ping, which defends against both in-band and out-of-band widespread discovery
by any one client. Because each client selects its proxy from a set determined by
client-specific information that is not easily forged (i.e., the client’s IP network),
it is difficult for any one client to discover a large set of proxies. In addition,
proxies are configured to “hop” with clients, so each one will only act as a proxy
for some small subset of clients at any given time.

Because keyspace hopping does not allow clients to choose specific proxies,
clients must use untrusted hosts as gateways to the uncensored Internet. To rem-
edy this problem, we have separated the functions of the proxy into two distinct
components—an untrusted messenger, which clients discover through keyspace
hopping and only serve to pass along clients’ hidden messages to portals, widely-
known and trusted hosts with which clients communicate to request and retrieve
censored content. Although messengers have the ability to disrupt communica-
tion between clients and portals, messengers cannot distinguish anti-censorship
clients from innocuous clients.5 This separation also allows the identities and
public keys of portals to be widely-published, since knowledge of these hosts
does not allow a censor to block access to messengers.

This paper presents many possibilities for future work. We intend to de-
velop a prototype of our proposed designs for use with Infranet. Designing
a keyspace hopping sequence that more closely mimics the habits of normal
browsing remains an open question. The proxy discovery problem mirrors the
structure of “leaderless resistance” social networks, which are composed of small,
independently-operating sets and are robust to infiltration by disruptive agents [2];
we may gain insight into the proxy discovery problem by studying the structure
of these networks more closely.

Acknowledgments

We are grateful to David Andersen for many helpful discussions and for the sug-
gestion of using client puzzles. Thanks also to Jean Camp and Daniel Rubenstein
for thoughtful discussions, and to Sameer Ajmani, Kevin Fu, Stuart Schechter,
and the anonymous reviewers for comments on drafts of this paper.

5 In Infranet, an innocuous client is an ordinary Web client. For SSL-based schemes,
an innocuous client would be an onion-routing or Tarzan client.

16 Feamster et al.

References

1. Anonymizer. http://www.anonymizer.com/.
2. Louis Beam. Leaderless resistance. http://www.louisbeam.com/leaderless.htm,

February 1992.
3. Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, and David

Karger. Infranet: Circumventing Web censorship and surveillance. In Proceedings
of the 11th USENIX Security Symposium, San Francisco, CA, August 2002.

4. Michael J. Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing
network layer. In Proceedings of the 9th ACM Conference on Computer and Com-
munications Security, Washington, D.C., November 2002.

5. A. Hintz. Fingerprinting websites using traffic analysis. In Workshop on Privacy
Enhancing Technologies, San Francisco, CA, April 2002.

6. A. Juels and J. Brainard. Client puzzles: A cryptographic defense against con-
nection depletion attacks. In Proceddings of the Network and Distributed System
Security Symposium (NDSS’99), San Diego, CA, February 1999.

7. Netcraft web server survey. http://www.netcraft.com/survey/, 2003.
8. PGP FAQ. http://www.faqs.org/faqs/pgp-faq/.
9. J. Proakis and M. Salehi. Communication System Engineering. Prentice-Hall,

Englewood Cliffs, NJ, 1994.
10. N. Provos. Defending against statistical steganalysis. In Proceedings of the 10th

USENIX Security Symposium, Washington, D.C., August 2001.
11. SafeWeb. http://www.safeweb.com/.
12. Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkat Padmanab-

han, and Lili Qiu. Statistical identification of encrypted Web browsing traffic. In
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, May
2002.

13. Zero-Knowledge Systems. Freedom WebSecure. http://www.freedom.net/

products/websecure/.
14. Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous connec-

tions and onion routing. In Proceedings of the 18th Annual Symposium on Security
and Privacy, Oakland, CA, May 1997.

15. The Cult of the Dead Cow (cDc). Peekabooty. http://www.vnunet.com/News/

1121286.

