
Decoy Routing: Toward Unblockable Internet Communication

Josh Karlin
jkarlin@bbn.com

Daniel Ellard
dellard@bbn.com

Alden W. Jackson
awjacks@bbn.com

Christine E. Jones
cej@bbn.com

Greg Lauer
glauer@bbn.com

David P. Mankins
dm@bbn.com

W. Timothy Strayer
strayer@bbn.com

Raytheon BBN Technologies

Abstract
We present decoy routing, a mechanism capable of cir-
cumventing common network filtering strategies. Unlike
other circumvention techniques, decoy routing does not
require a client to connect to a specific IP address (which
is easily blocked) in order to provide circumvention. We
show that if it is possible for a client to connect to any
unblocked host/service, then decoy routing could be used
to connect them to a blocked destination without coop-
eration from the host. This is accomplished by placing
the circumvention service in the network itself – where
a single device could proxy traffic between a significant
fraction of hosts – instead of at the edge.

1 Introduction

It is increasingly common for network service providers
to block, filter, redirect, intercept, or even modify traffic
between clients on their networks and popular and con-
troversial websites or other Internet-based services [6,
19, 21]. In response, resourceful users have devised
a number of proxy services to circumvent these filters,
but these services typically suffer from the common flaw
of having an easily-identifiable traffic signature, such as
having the proxy bound to a well-known IP address.

We use the term adversary to describe a network ser-
vice provider that wishes to deny access from clients
on its network to a given set of hosts or services in the
greater Internet, and we say that a host or service is
blacklisted if it is a member of this set.

In the absence of an adversary, a client can reach
any destination server unimpeded. However, if an ad-
versary blocks traffic between the client and the desti-
nation then the client must reach the destination using

Distribution Statement ”A” (Approved for Public Release, Distribution
Unlimited)

an indirect method, such as a proxy server placed out-
side of the filtered network. At a high level, this is the
mechanism used by popular services such as Tor [13],
Global Pass [4], and anonymizer.com [2]. Clients con-
nect to a server located outside of the filtered network,
and the server connects to the blacklisted destination on
the client’s behalf. Although these services use differ-
ent techniques (VPNs, SOCKS proxies, HTTP proxies,
content forwarders) we categorize them collectively as a
circumvention proxy or proxy.

The problem with the proxy approach to circumven-
tion is that the adversary can also blacklist the circum-
vention proxy, preventing communication between the
client and the proxy. Circumvention tools such as dark-
nets can try to hide the addresses of their proxies but this
makes the tool less generally accessible (if the proxies
are hard for an adversary to find, then they are also hard
for ordinary users to find) and the darknet might still be
infiltrated and enumerated by an active adversary. A cat
and mouse game is played between circumventors and
their adversaries, and this has pushed the circumventors
to hide their services on more diverse and dynamic IP
addresses, such as home computers that have low band-
width, availability, and reliability.

Taken to its logical extreme, an adversary can be
stymied if proxy services are so ubiquitous across the
IP address space that the adversary would be forced to
blacklist the majority of IP addresses, effectively discon-
necting its clients entirely from the Internet. Ubiquitous
proxy deployment seems infeasible because it would re-
quire every host to transit traffic for strangers, putting
them at risk to exploitation. It is possible, however, to
make any (and every) host on the Internet look and act
like a latent proxy server — from the adversary’s per-
spective — without that host running any proxy software.
This is the notion behind decoy routing, a network sys-
tem designed to make every destination IP address on the
Internet act like a proxy server.

1

1.1 Threat Model and Goal

Our goal is to provide a client within a filtered network
access to blacklisted sites located outside of the adver-
sary’s network at near-normal latency and throughput
while preserving the secrecy of the contents and true des-
tination of the client communication.

The specific threat addressed by this paper is a simple
IP firewall, capable of blocking all traffic to and from any
address in a blacklist. It is assumed that our method of
circumvention is publicly known and that the circumven-
tion tool implementation, specification, and algorithms
are freely available and open source. We also assume that
the adversary can normalize IP traffic, search for regular
expressions in traffic, and alter TCP/IP packet headers
(such as for a NAT). Finally, we assume that a client can
obtain the client software and a symmetric key of the type
described in this paper.

1.2 Overview of Decoy Routing

The fundamental insight of decoy routing is that, while
hosts can easily be filtered by IP address, it is difficult
to filter a well-placed router or other transit device in
the network. The current architecture of the Internet
has three key properties that we leverage: first, routers
are difficult to filter at the IP level because IP packets
do not contain router addresses; second, IP routing is
federated and therefore a network has little control over
the upstream paths that their packets take; and finally,
a well-placed router might lie on the path between a
client and many millions of destination addresses. Filter-
ing all paths that include a particular router is intensive
(requires traceroutes to many prefixes) and error-prone
(some routers filter traceroutes). Further, the router’s
paths might substantially affect the adversary’s reacha-
bility to large fractions of the Internet.

Since it is difficult to filter routers and a single router
can stand between a client and many destinations, a
router is an ideal place for a circumvention proxy ser-
vice. We propose that a router could double as (or pro-
vide access to) a proxy server. Such a modified router is
called a decoy router. The proxy to which it connects is
called a decoy proxy. In order for a client to connect to
the decoy proxy, it cannot simply address packets to the
router or the decoy proxy, since these these would easily
be filtered. Instead, the client connects to any destination
(called a decoy destination) that includes a decoy router
on the path. Once connected, the client covertly signals
over the TCP/IP flow that the decoy router should reroute
the flow to a decoy proxy. The decoy proxy then hijacks
the TCP connection and acts as a standard proxy server
for the client.

An overview is provided in Figure 1. In it, a client

Figure 1: Decoy Routing

that wishes to reach a blacklisted website (covert desti-
nation) addresses its packets to an innocuous decoy des-
tination, such as http://www.unm.edu. After signaling
to the decoy router that its packets should be proxied, the
client’s TCP flow is forwarded to (and hijacked by) the
decoy proxy. A tunnel is formed between the client and
decoy proxy, and the proxy talks to the covert destination
(such as http://www.youtube.com) on the client’s be-
half.

Decoy routing nullifies IP address filtering’s ability to
block communication to a destination because the IP ad-
dress in a decoy routed packet is essentially meaning-
less. The address could be any destination with a decoy
router on the path. Decoy routers can provide a large
number of decoy addresses (depending on placement),
essentially making circumvention proxies look ubiqui-
tously deployed from the adversary’s perspective.

The primary components of a decoy routing system
are the client software, decoy router, decoy proxy, and
covert signaling mechanism. The decoy router must
be able to maintain line-rate communication while still
searching for signals from clients. The decoy proxy must
be able to hijack a client’s TCP session in order to com-
municate with it. Finally, a covert signal must be devel-
oped to allow the client to communicate with the decoy
router and decoy proxy to initiate the proxy session.

2 Related Work

There has been sustained interest in this decade in both
the research and development of circumvention tools.
The simplest tools provide proxy services or tunnels
in unfiltered locations. Examples include Proxify [7],
Psiphon [12], Global Pass [4], SSH tunnels, Corporate
VPNs, Freegate [3], Ultrasurf [8], and Guardster [5].
Since the proxy and tunnel hosts are easily discovered
and blocked, some services cycle the hosts through a
range of IP addresses to avoid blacklists. The effective-
ness of this evasion technique depends upon the number
of available IP addresses and their distribution across IP
address space.

Researchers have also developed means of covertly
burying traffic inside of communication channels meant
for other types of communication (such as web servers,
images, and video files) via stegonagraphy or similar

2

methods. These are particularly useful when encrypted
traffic might be considered suspect or is banned. Some
examples of covert channels include TCP-over-DNS [1],
Collage [10], Infranet [14], and CovertFS [9]. Such
techniques are complementary to decoy routing, as they
could be used for covert signaling between the client and
the decoy router as is discussed in Section 5.

Both Coral [15] and Freenet [11] store data in peer-to-
peer networks and make it available to end users. Users
can find their data at multiple locations, some of which
might not be blocked (although Coral is accessed through
a domain that is easily blocked). Content distribution
networks are often optimized for specific applications
(such as web browsers), whereas decoy routing is in-
tended for any IP application.

Freenet was specifically designed for address block-
ing circumvention and offers a darknet feature in which
members of the network distribute their IP addresses to
one another privately. Darknets are harder to block since
the IP addresses are secret, but they are also harder to join
unless you know somebody willing to admit that they use
the network and willing to share data with you. The suc-
cess of a darknet depends on the addresses being hard for
the adversary to find but easy for the friends to share, and
this is a difficult combination.

One of the most popular anonymization tools,
Tor [13], is sometimes also used in an attempt to avoid
IP address blocking. Tor works by forwarding encrypted
packets between a randomly selected set of routers, mak-
ing it difficult for the destination to discover the source
of received packets. Tor nodes function like proxies—
and suffer from the same drawbacks. In an attempt to
thwart destination IP address blocking, Tor has created a
network of private routers (called bridges) that they try
to hide from the adversary by requiring users to send an
email to get a partial list of private routers. However, this
private network can be enumerated (and then blocked)
by the adversary. Our work could enhance Tor and other
anonymity services by providing access to their other-
wise blocked servers.

The most similar work to ours, Telex [22], which was
developed in parallel to this paper, also modifies the net-
work infrastructure to support circumvention in a method
similar to decoy routing. Telex provides a web-proxy
service to the clients and the sentinel is generated using
asymmetric cryptography.

3 Architecture

Figure 2 illustrates the basic operations of decoy routing:
the client software connects to a decoy destination with
a decoy router on the path, the client covertly signals to
the decoy router that the flow should be hijacked, the de-
coy proxy hijacks the flow, and the decoy proxy acts as a

Figure 2: Decoy Routing Timeline
1) The client connects to the decoy destination. 2) The
client sends a sentinel (covert signal) to suggest that the
flow should be hijacked. 3) The hijack occurs. 4) The
decoy proxy functions as a standard SOCKSv5 proxy.

standard SOCKS proxy.

3.1 Connecting to a Decoy Destination

The first step of decoy routing is that the client software
must connect to a destination via a path that contains a
decoy router. Assuming that some fraction of paths in-
clude a decoy router, the client software simply needs to
probe various destinations until it finds one.

In order to probe for a decoy router, the client software
first creates a normal TCP/IP connection. Once con-
nected, the client inserts a sentinel value (perhaps a well-
known string) into a covert channel. For instance, if the
client connects to the destination on an HTTP port, then
the sentinel should be placed covertly within an HTTP
message, such as in a cookie or query string. If the client
connects to a destination on an HTTPS port, then the sen-
tinel could be placed within the random number field in
the TLS client hello message. We use the latter method
in our prototype.

The decoy router will look for sentinels and forward
flows that contain them to a decoy proxy. Once the de-
coy proxy determines that the flow should be hijacked (as
described in Section 3.2) it will send a Hello message to
the client software. It is from this message that the client
software discovers that a decoy router is on the path. If
no such message is discovered, the connection is closed

3

and the client software continues its hunt.

3.2 Covertly Requesting Decoy Routing

There are many ways that the client software could
covertly signal to the decoy router that it would like its
flow to be hijacked. It could happen out-of-band, the sig-
nal could be a string generated by a symmetric key and
placed in a packet payload, it could be the ports used
for consecutive flows (port knocking [16]), or the signal
could be hidden within a series of payload lengths. The
key characteristics of the signal are that it must be possi-
ble for the decoy router to detect the request at line rate,
and that the request must be difficult for an adversary to
detect.

In this paper we describe a sentinel embedded within
the TLS handshake. We assume that each client shares
a secret key with the decoy proxy. This key is used to
generate a set of time-varying nonces (or sentinels). To
generate time-varying sentinels we apply an HMAC to
the concatenation of the key, the current hour, and a per-
hour sequence number. The sentinels may be used as part
of the client random number field in the TLS Client Hello
Messages sent by the client [20]. This field is in a fixed
position and TLS client hello messages can be quickly
identified by a router.

Once a decoy router detects a packet that contains a
sentinel at the correct offset it forwards it and the re-
maining packets in the flow to a decoy proxy. It is the
decoy proxy’s job to finish the covert handshake with the
client software and to hijack the TCP flow. First, the
decoy proxy will wait for the client software to finish
its TLS handshake with the decoy destination so that all
plaintext communication (such as certificate exchange)
occurs with the decoy and the adversary will see noth-
ing out the ordinary. When the first encrypted TLS data
record is detected, the decoy proxy hijacks the connec-
tion (as described in Section 3.3) and sends the client a
Hello message to continue the covert handshake.

The purpose of the Hello message is to inform the
client software that a decoy proxy has hijacked the flow.
Since the decoy proxy does not know the TLS session
key between the client and decoy destination, the decoy
proxy encrypts the Hello message with the same key that
the client used to create its sentinel. The resulting en-
crypted data should be shaped to look like the underlying
TLS channel. The message itself includes the sentinel
used by the client, and is signed by the decoy proxy’s pri-
vate key. The client software includes the decoy proxy’s
public key for verification. The client software includes
a modified TLS library that detects the change in keys,
converts the session to the new key, and responds with a
similar Hello message.

At this point the client and decoy proxy can communi-

cate using TLS over a TCP connection that looks to the
adversary to be a TLS session to the decoy destination.

3.3 Hijacking a TCP Flow

Once the decoy proxy has decided to hijack a flow, it first
forges a TCP RST packet to the decoy destination using
the sequence number of the packet that triggered the hi-
jack. This will cause the decoy destination to silently
close its connection.

In order to hijack a TCP/IP flow the decoy proxy
needs to know the proper TCP sequence number for the
session. We assume asymmetric routing and therefore
do not assume that return traffic is visible to the decoy
router. Therefore all flow information must be gleaned
from packets originated by the client. So long as there
are not any packets in flight from the decoy destination
to the client, the expected sequence number can be ex-
tracted from ACK values from packets from the client to
decoy destination. In protocols where the server awaits
a message from the client, such as the first HTTP GET
request in a flow, we can be reasonably sure that there are
no missed packets in flight.

A TCP hijack is harder for an adversary to detect if the
hijacker uses the same TCP options as the decoy destina-
tion. Some options can be ascertained by looking at the
current packet (such as TCP Timestamp) while other op-
tions (such as window scale and SACK) are determined
during the TCP handshake. The options can be conveyed
to the decoy proxy by the client during the covert signal-
ing by inserting them, in an encrypted form, alongside
the sentinel in the TLS client 28-byte random field. The
client can discover the options used by its own network
stack by watching the initial TCP handshake.

3.4 Providing Proxy Services

Once the flow is hijacked and the client and decoy proxy
can communicate over TLS with an established key, the
session can be used for any purpose. In our architec-
ture, the session is used to communicate with a standard
SOCKSv5 proxy. The client’s applications (such as Fire-
fox, Jabber, etc.) use SOCKS to connect to the client
software. The client software tunnels the SOCKS re-
quests to the decoy proxy, which in turn passes the stream
to an unmodified SOCKS server. In order to tunnel mul-
tiple SOCKS streams over a single TCP flow, we use a
simple protocol to multiplex multiple SOCKS streams
between the client and decoy proxy.

The client to decoy proxy tunnel could be used for pro-
tocols other than SOCKS. For instance, IP packets from
the client could be captured and sent to the decoy proxy
to mimic a VPN. In this architecture we have chosen

4

SOCKS because of its simplicity and common adoption
by applications.

4 Vulnerabilities

In comparison with simple firewall rules and IP black-
listing, decoy routing significantly raises the cost and ef-
fort required to block traffic, but decoy routing can be
defeated. In this section we address methods by which
clients using decoy routing may be detected by an adver-
sary and aspects of the architecture that offer an oppor-
tunity for attack. We also describe how the architecture
could be extended to mitigate the risk of such attacks.

4.1 Detection of Decoy Routing

If the adversary can detect that a client is using decoy
routing, then the adversary can deny future network ac-
cess to that client. The adversary may be able to detect
decoy routing via passive analysis or by careful manip-
ulation of the network to defeat the establishment of the
covert channel.

For instance, if the hijacked path has different laten-
cies, path lengths, or path MTU than the client to decoy
destination path, then analysis may reveal that the flow is
suspicious. The decoy router can delay packets and ad-
just the TTL and MTU of the packets it creates in order
to attenuate the risk of detection.

A more active adversary can replay or preplay sen-
tinels. If the adversary observes a TLS client hello, it
can replay the hello message to the same destination to
see whether the response is the expected response or ap-
pears to be from a decoy proxy. If the session fails in an
unexpected manner but the TCP connection is not closed
or reset, then the adversary may suspect that the client is
using decoy routing.

An approach to defeating a replay probe is to allow
each sentinel to be used only once, and poison sentinels
immediately after they are detected the first time. Poi-
soned sentinels can be defeated with a preplay attack
in which the adversary intercepts and delays each client
hello message for a moment while it sends a copy of the
hello message to the decoy destination. The client will
never be able to establish a connection to a decoy proxy,
although ordinary communication with decoy destina-
tions via TLS will succeed as if the decoy routers had
vanished. To make matters worse, the adversary could
detect the response from the decoy proxy and use this to
identify clients using decoy routing.

Note that this problem is specific to the TLS sentinel.
Future sentinels (for instance those that use port knock-
ing) may not be susceptible to preplay attacks.

4.2 Denial of Access to Decoy Routing
If the adversary discovers the location of a decoy router,
it can start a DoS attack on the router. The router must
be able to handle packets at line rate and not be the first
network component to fail in a DoS attack.

A slightly more sophisticated adversarial attack would
be to fragment all packets to a small size (particularly if
the first fragment of a packet does not contain the com-
plete TCP header). This would prevent the decoy router
from assigning packets to TCP flows for redirection. If
the decoy router had to perform packet reassembly in or-
der to reconstruct flows, the amount of state it would
need to maintain would grow enormously. (This prob-
lem is not unique to decoy routing and is also an issue
with NAT.)

An adversary could also thwart decoy routing by rout-
ing a flow’s packets over different paths, such that the
decoy router only observes some of the packets. How-
ever, round-robin forwarding is difficult for an adversary
to accomplish since BGP selects a single best path and
round-robin forwarding causes significant TCP perfor-
mance issues.

Finally, if the adversary compromises a decoy rout-
ing user’s machine, then it could discover the user’s key.
The compromised key could be used to create several de-
coy destinations and overwhelm the decoy proxy. This is
similar to a DoS attack on the decoy router, but focuses
on the decoy proxy instead, which might not be able to
handle as high a load as the decoy router. This attack
could be mitigated by rate limiting connections from a
single key, or even revoking keys from abusers.

5 Discussion

Implementation A proof-of-concept system is in ac-
tive development. The decoy router is developed with
Click [18] and the client’s TLS changes are implemented
in OpenSSL. The remainder of the system is written in
Python. All major components are functional and have
been shown to work on the DETER [17] testbed. In the
future we intend to add more covert channels, improve
the efficiency and scalability of the system, and address
any existing vulnerabilities.

Decoy Router Placement In order to intercept flows
intended for a decoy router, the router needs to be on the
path of a decoy destination. Identifying good locations
for decoy routers is challenging for several reasons. The
set of decoy routers must lie between the client and a tar-
get fraction of destinations. This fraction might be small
(although large is better), but without complete topology
information it is difficult to obtain accurate estimates of
coverage. Second, decoy routers identify and redirect

5

packets at line speed, which may place restrictions on the
link speeds of the redirection locations. Finally, location
of the decoy routers can impact end-to-end latency.

Passive Decoy Routers This paper described active
redirection, where packets of interest are extracted from
the network, edited, and re-inserted back into the net-
work so they head to the covert destination, not to the
decoy destination. We are also investigating methods for
passive redirection, where the traffic to the decoy desti-
nation is not removed from the network.

Covert Channel Bonding We are investigating algo-
rithms and techniques to mix multiple covert channels
together to support higher bandwidth client applications
that are prohibitive in a single covert channel. We antic-
ipate our solution will permit the covert channels to not
only have distinct decoy destinations and span multiple
decoy routers but also respect the constraints imposed by
the individual covert channels to ensure that the channel
characteristics remain realistic.

6 Conclusion

As adversaries develop more sophisticated techniques for
filtering, tampering with, and monitoring network traf-
fic, clients will require more sophisticated tools to ac-
cess the Internet in a secure and unhindered manner. Ex-
isting circumvention tools rely on proxies with fixed IP
addresses that are trivial to filter with a simple IP fire-
wall and blacklist. We have introduced an architecture
for decoy routing, a technique that nullifies IP firewalls
by breaking the relationship between the apparent IP and
true destination IP addresses of packets. We have shown
that blocking a decoy router could have significant un-
intended consequences, making it difficult to block de-
coy routers without disrupting ordinary network traffic.
We have developed a proof-of-concept prototype for this
mechanism that demonstrates that TCP hijacking by a
decoy proxy is practical and significantly raises the bar
for the sophistication needed by an adversary when com-
pared to contemporary techniques.

7 Acknowledgments

The authors would like to thank Professor Jennifer Rex-
ford of Princeton University and Professor Nick Feam-
ster of the Georgia Institute of Technology for their com-
ments, insights, and critiques of decoy routing.

This material is based upon work supported by the
Defense Advanced Research Projects Agency through
the U.S. Navy SPAWAR under Contract N66001-11-C-
4017. The views expressed are those of the author and

do not reflect the official policy or position of the De-
partment of Defense or the U.S. Government.

References
[1] Analogbit: Tcp-over-dns tunnel software howto. http://

analogbit.com/tcp-over-dns_howto.

[2] Anonymizer.com.

[3] Freegate. http://www.dit-inc.us/freegate.

[4] Global pass. http://gpass1.com/gpass/.

[5] Guardster. http://www.guardster.com.

[6] Opennet initiative (ONI). http://opennet.net/research/

profiles.

[7] Proxify web proxy. https://proxify.com.

[8] Ultrasurf. http://www.ultrareach.com.

[9] BALIGA, A., KILIAN, J., AND IFTODE, L. A web based covert
file system. Proceedings of the 11th USENIX workshop on Hot
topics in operating systems HOTOS (2007).

[10] BURNETT, S., FEAMSTER, N., AND VEMPALA, S. Chipping
away at censorship with user-generated content. USENIX Secu-
rity Symposium (2010).

[11] CLARKE, I. A distributed decentralised information storage and
retrieval system. Master’s thesis, University of Edingburgh, 1999.

[12] DEIBERT, R. Psiphon. http://psiphon.civisec.org/.

[13] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. 13th USENIX Security Sym-
posium (2004).

[14] FEAMSTER, N., BALAZINSKA, M., AND HARFST, G. Infranet:
Circumventing web censorship and surveillance. Proceedings of
the 11th USENIX Security Symposium (2002).

[15] FREEDMAN, M. J., FREUDENTHAL, E., AND MAZIRES, D. De-
mocratizing content publication with coral. Network Systems De-
sign and Implementation (2004).

[16] KRZYWINSKI, M. Port knocking: Network authentication across
closed ports. SysAdmin Magazine 12 (2003), 12–17.

[17] MIRKOVIC, J., BENZEL, T., FABER, T., BRADEN, R., WRO-
CLAWSKI, J., AND SCHWAB, S. The DETER project: Advanc-
ing the science of cyber security experimentation and test. In
2010 IEEE HST (2010), pp. 1 –7.

[18] MORRIS, R., KOHLER, E., JANNOTTI, J., AND KAASHOEK,
M. F. The click modular router. SIGOPS Oper. Syst. Rev. 33
(December 1999), 217–231.

[19] NEWS, B. Tehran blocks access to facebook. BBC Newshttp:
//news.bbc.co.uk/2/hi/8065578.stm, May 2009.

[20] SALOWEY, J., ZHOU, H., ERONEN, P., AND TSCHOFENIG,
H. Transport Layer Security (TLS) Session Resumption without
Server-Side State. RFC 4507 (Proposed Standard), May 2006.
Obsoleted by RFC 5077.

[21] Tor partially blocked in China. Blog post at https://blog.
torproject.org/blog/tor-partially-blocked-china.

[22] WUSTROW, E., WOLCHOK, S., GOLDBERG, I., AND HALDER-
MAN, J. A. Telex: Anticensorship in the network infrastructure.
To appear in the proceedings of the 20th USENIX Security Sym-
posium (2011).

6

