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Abstract. We describe a web browser fingerprinting technique based
on measuring the onscreen dimensions of font glyphs. Font rendering in
web browsers is affected by many factors—browser version, what fonts
are installed, and hinting and antialiasing settings, to name a few—
that are sources of fingerprintable variation in end-user systems. We
show that even the relatively crude tool of measuring glyph bounding
boxes can yield a strong fingerprint, and is a threat to users’ privacy.
Through a user experiment involving over 1,000 web browsers and an
exhaustive survey of the allocated space of Unicode, we find that font
metrics are more diverse than User-Agent strings, uniquely identifying
34% of participants, and putting others into smaller anonymity sets.
Fingerprinting is easy and takes only milliseconds. We show that of the
over 125,000 code points examined, it suffices to test only 43 in order to
account for all the variation seen in our experiment. Font metrics, being
orthogonal to many other fingerprinting techniques, can augment and
sharpen those other techniques.
We seek ways for privacy-oriented web browsers to reduce the effective-
ness of font metric–based fingerprinting, without unduly harming usabil-
ity. As part of the same user experiment of 1,000 web browsers, we find
that whitelisting a set of standard font files has the potential to more
than quadruple the size of anonymity sets on average, and reduce the
fraction of users with a unique font fingerprint below 10%. We discuss
other potential countermeasures.

1 Introduction

Web browser fingerprinting exploits measurable characteristics of browsers to
build an identifier that can be used to track the same browser over time. Finger-
printing works even when cookies are disabled, and can be hard for users to de-
fend themselves against. A fingerprint is composed of a variety of measurements
of the browser environment, typically acquired through client-side JavaScript.
Previous studies have identified many sources of fingerprintable variation, in-
cluding the User-Agent string, the list of system fonts, and the list of installed
browser plugins [8, 5].

In this work, we examine another facet of font-based device fingerprinting,
the measurement of individual glyphs. Figure 1 shows how the same character
in the same style may be rendered with different bounding boxes in different



Fig. 1. The Unicode code point U+00C6 LATIN CAPITAL LETTER AE rendered at
font-size: 1000% in various styles in Firefox 24 (top) and Chromium 35 (bottom).
Even when JavaScript is forbidden from reading the pixel data, it can tell the difference
between browsers by measuring the dimensions of rendered glyphs. Notice that Firefox
has chosen a sans-serif and Chromium a serif font for the CSS cursive and fantasy
families. The browsers chose different serif fonts from among those available, and even
the same font in the same style appears at different sizes.

browsers. The same effect can serve to distinguish between instances of even
the same browser on the same OS, when there are differences in configuration
that affect font rendering—and we find that such differences are surprisingly
common. By rendering glyphs at a large size, we magnify even small differences
so they become detectable. The test is invisible—the glyphs are drawn on the
background and never actually appear onscreen—and fast, taking less than a
second when the code points tested come from a carefully chosen small set.

At the most basic level, font metrics can tell when there is no installed font
with a glyph for a particular code point, by comparing its dimensions to those
of a placeholder “glyph not found” glyph. But even further, font metrics can
distinguish different fonts, different versions of the same font, different default
font sizes, and different rendering settings such as those that govern hinting and
antialiasing. Even the “glyph not found” glyph differs across configurations.

Font metric–based fingerprinting is weaker than some other known finger-
printing techniques. For example, it is probably strictly inferior to canvas finger-
printing [16], which gets not only bounding boxes but also pixel data. However,
it is relevant because it is as yet effective against Tor Browser, a browser whose
threat model includes tracking by fingerprinting [23, Section 4.6], and which al-
ready defends against easier, more powerful attacks. For instance, Tor Browser
was highlighted in a recent study [4] as being the only browser to resist canvas
fingerprinting.

We performed an experiment with more than 1,000 web users that tested the
effectiveness of font fingerprinting across more than 125,000 code points of Uni-



code. 34% of users were uniquely identified; the others were in various anonymity
sets of size up to 61. We found that the same fingerprinting power, with this user
population, can be achieved by testing only 43 code points. We tested a proposed
anti-fingerprinting defense of using standard fonts in the web browser, and found
it to be effective, more than quadrupling the size of anonymity sets on average.

2 Related work

Eckersley [8] investigated the potential of fingerprinting in the absence of usual
tracking technologies like cookies. The well-known Panopticlick experiment col-
lected hundreds of thousands of submissions and is still ongoing. Fingerprints
are derived from a variety of features: User-Agent string, HTTP request headers,
whether cookies are enabled, time zone, screen size, browser plugins and their
versions, whether certain long-term state storage (“evercookies”) are blocked,
and the list of system fonts. These limited features uniquely identified 84% of
participants. Fingerprints that had changed slightly between visits were found
to be nevertheless linkable to previous fingerprints.

Previous studies [8, 5] have considered fingerprinting using the list of installed
fonts; that is, a list of names like “Courier” and “Lucida.” An ordered list of
font names is available from the Java and Flash plugins. Nikiforakis et al. [19]
describe how to get an unordered list of font names from JavaScript when Java
and Flash are not available. For each of a long list of known font names, render
a reference string using that font, and—using the same APIs that we use in this
work to measure individual glyphs—compare its rendered dimensions against a
database of known fonts. The technique has been known since at least 2007 [20]
and was found to be in use by a large fingerprinting company.

Mowery and Shacham [16] found the HTML canvas element [18, Section 4.11.4]
to be a rich source of variation. They measured an entropy of 5.73 bits, with
116 unique fingerprints in a population of 294. Their technique is to ask the
browser to draw shapes and text to a pixel buffer, and then read back the re-
sulting bitmap. Variations in how browsers draw antialiased lines, for example,
are fingerprintable characteristics. They tested font rendering using both system
and web fonts, and found, as we do, that the appearance of nominally identical
fonts differs across systems. Like us, they recruited users for their experiment
from Mechanical Turk and had a similar sample size. Canvas fingerprinting is
more powerful than what we describe in this work; however our technique works
even when HTML canvas is absent or disabled.

Mowery et al. [15] fingerprinted JavaScript implementations using perfor-
mance benchmarks. A web browser’s JavaScript implementation is an integral
part of the browser, and optimization techniques such as just-in-time compila-
tion mean that timing characteristics of even the underlying physical processor
may be exposed. They were able to correctly identify a browser family 98% of the
time. They also show how the use of a privacy technology, in this case NoScript,
can paradoxically make a user more identifiable, by leaking individualized block-



ing preferences. Mulazzani et al. [17] used the success and failure of standard
JavaScript test suites to identify different JavaScript engines.

Acar et al. [5] in 2013 tested the prevalence of fingerprinting in the wild,
scanning the top million Alexa sites with a focus on font probing. Their system,
FPDetective, found 404 of the top million sites using JavaScript font probing,
and discovered some previously unknown commercial fingerprinting providers.
They also found fingerprinting scripts that disguised themselves, for example by
removing themselves from the DOM after execution.

A further study by Acar et al. [4] in 2014 measured the prevalence of canvas
fingerprinting, evercookies, and “cookie syncing” in the wild. They found canvas
fingerprinting in use by 5% of the top 100,000 Alexa sites, mostly because of
third-party advertisement code. They found instances of evercookies restoring
ordinary HTTP cookies and vice versa, and discovered a new evercookie vector
used by trackers. They quantified the effect of cookie syncing, the sharing of
identifying tokens across domain in circumvention of the same-origin policy.

Previous work has used the measurement of bounding boxes as a means of
detecting what fonts are installed, and in turn using the list of installed fonts
as a fingerprint feature. The technique we describe in this work is different: its
output is not a list of font names, but a list of individual glyph dimensions. It
does not require a list of candidate font names known in advance. While it may
be possible to infer some characteristics of the target system, such as the list of
installed fonts, from a font-metric fingerprint, that is not the main goal. The goal
is only to hash as much variation as possible into some kind of unique identifier.
Glyph dimensions have the potential to be more sensitive than font names (as
the “same” named font may in fact be different on different systems), but they
also may miss obscure fonts that are never selected by the browser unless asked
for by name. Of course, there is no reason for a tracker to limit itself to one kind
of fingerprinting. In this study we consider font metric fingerprinting in isolation,
with the understanding that it can be combined with other techniques for better
performance.

3 Methodology

We collected measurements through a web page with a JavaScript program that
inserts code points into the DOM and measures the dimensions of their corre-
sponding glyphs. The program renders in turn 125,776 Unicode code points over
the course of a few minutes. The list consists of every code point in every assigned
block of Unicode 7.0.0 [25], with the exception that only the first 256 code points
are included from the two Supplementary Private Use Area blocks (U+F0000–
U+FFFFF and U+100000–U+10FFFF), which would otherwise contain 65,536
code points each. The code points cover every writing system known to Unicode.

Each code point is drawn six times, once with no font specified (default),
then once in each of the five generic CSS families (sans-serif, serif, monospace,
cursive, fantasy) [14, Section 15.3.1]. Generic font family names are usually used
in a CSS rule to express a rough idea of how text should look, when no specific



matching named font is found. These generic CSS family names are mapped to
concrete fonts at the browser’s discretion, depending in part on user preferences
and what fonts are available. Fonts were rendered very large, with CSS style
font-size: 10000%, in order to better distinguish small differences in dimen-
sions. At this size, typical dimensions for the letter ‘A’ in the default style are
1155×1900 pixels. The size of each code point is measured indirectly, by placing
it in a box and measuring the size of the box. The box is emptied before refresh-
ing the browser UI, so the user does not actually see anything appear onscreen.
Thus, fingerprinting can occur without the user’s awareness.

We recruited users from Amazon Mechanical Turk and did not impose any re-
strictions on participation (e.g., geographic region, completion rate, etc.) in order
to yield a diverse sample. For each submission, we recorded only the browser’s
User-Agent string, the elapsed time, and the height and width in pixels of every
code point in every font style. Participants were paid $0.25 each. In order to
detect duplicate submissions by the same user, the web page set a cookie with
a randomly generated token and a lifetime of 30 days.

Following Eckersley [8], we use entropy as the measure of variation. For a
vector of categorical values S, the probability of observing a particular value v

is PS(v) = |x∈S:x=v|
|S| ; that is, the number of observations of that value divided

by the length of the vector. The entropy of S is the sum of the entropies of all
the distinct values it comprises:

H(S) = −
∑
v∈S

PS(v) log2 PS(v).

We will be considering the case where the entries of S are the observed dimen-
sions of a certain code point across all experiment submissions. If we think of
the data set as a matrix with one row for every user submission and one column
for every code point, an individual S is one of the columns.

In order to compute conditional entropy given a set of code points already
measured, we will partition the submissions (rows of the matrix) into equivalence
sets according to equality in the already-measured code points, so that two
submissions are in the same equivalence set if and only if all their corresponding
measured code points have the same dimensions. We consider a column of the
partitioned matrix not as a single vector, but a set S of vectors, one for each
partition. The entropy of S is the sum of the entropies of each of its constituent
vectors, each scaled by its length.

H(S) = −
∑
S∈S

|S|∑
T∈S |T |

H(S).

Such partitions may be further subdivided along additional code points, until all
partitions contain elements that are equal in every code point not already mea-
sured, at which point the remaining conditional entropy is zero and no further
distinctions can be made.



4 Results

We received 1,022 submissions. After removing 6 that had a duplicate cookie,
there remained 1,016. The maximum entropy possible, if every submission were
distinct, is therefore log2(1016) = 9.989 bits. Table 1 shows how the submissions
broke down with respect to operating system and web browser. Our user sample
was drawn from Mechanical Turk users and its composition is not representative
of that of the web as a whole.

Table 1. Operating systems and web browsers parsed from User-Agent strings.

523 51% Windows 7
245 24% Windows 8
80 8% other Windows (XP or Vista)
72 7% OS X 10.9
40 4% other OS X (10.5–10.8 or 10.10)
39 4% GNU/Linux other than Android
10 1% Android
7 1% iOS

504 50% Chrome 36
241 24% Firefox 31
155 15% Chrome 37
41 4% other Chrome (6–35 or 38–39)
31 3% other Firefox (9–30 or 32–34)
27 3% Safari (4–8)
17 2% Internet Explorer (9–11)

Considering 4-tuples (OS, OS version, browser, browser version), there were
94 distinct OS+browser combinations, having an entropy of 4.151 bits. There
were 48 (5%) unique combinations, and 28 (3%) were in a set of size 2. The
largest set of identical OS+browser combinations, Chrome 36 on Windows 7,
contained 281 elements.

The User-Agent string is more variable than OS+browser, as it may contain
additional information such as the browser’s minor release number. The User-
Agent is also useful as a trivial baseline of fingerprintability. Within the input set
of 1,016, there were 175 distinct User-Agent strings, having an entropy of 5.148
bits. There were 116 submissions (11%) with a unique User-Agent, and another
42 (4%) that were in a set of size 2. The most common User-Agent appeared 220
times, and was “Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/36.0.1985.143 Safari/537.36”; i.e., Chrome 36 on
64-bit Windows 7.

Now, on to the fingerprinting attack. There were 444 distinct complete font
metric measurements, having an entropy of 7.599 bits. There were 349 submis-
sions (34%) that were identified uniquely by font metrics, and another 84 (8%)
that were in a set of size 2. The largest anonymity set contained 61 submis-
sions, 50 of which also shared the most common User-Agent (the others were
slight variations: 32-bit Windows instead of 64-bit, or a different micro-release
of Chrome). The most common User-Agent appeared 220 times; we observed 46
different font fingerprints for it, 29 of them unique.

Two or more fingerprinting techniques may be combined in order to extract
more variation. The combination of font metrics and User-Agent, where two
fingerprints are considered equal only if their User-Agents are equal and all their
corresponding font metrics are equal, leads to 531 distinct submissions and an
entropy of 8.058 bits. 440 of those (43%) are identified uniquely, and another 76



are in a set of size 2. The largest anonymity set contained 51 elements, which
happened to be Chrome 36 on Windows 8.1.

Table 2. Code points with the most and least individual entropy.

rank

individual
entropy

(bits) code point name

#1 4.908178 U+20B9 INDIAN RUPEE SIGN
2 4.798824 U+20B8 TENGE SIGN
3 4.698577 U+FBEE ARABIC LIGATURE YEH WITH HAMZA ABOVE WITH WAW ISOLATED FORM

4 4.698577 U+FBF0 ARABIC LIGATURE YEH WITH HAMZA ABOVE WITH U ISOLATED FORM

5 4.698577 U+FBF2 ARABIC LIGATURE YEH WITH HAMZA ABOVE WITH OE ISOLATED FORM

6 4.698577 U+FBF4 ARABIC LIGATURE YEH WITH HAMZA ABOVE WITH YU ISOLATED FORM

7 4.657576 U+F002 Private Use Area
8 4.652798 U+F001 Private Use Area
9 4.646632 U+FD3D ARABIC LIGATURE ALEF WITH FATHATAN ISOLATED FORM

10 4.640043 U+FBF8 ARABIC LIGATURE YEH WITH HAMZA ABOVE WITH E INITIAL FORM

11 4.640043 U+FBFB ARABIC LIGATURE UIGHUR KIRGHIZ YEH WITH HAMZA ABOVE

WITH ALEF MAKSURA INITIAL FORM.
.
.

.

.

.
.
.
.

125,766 2.573742 U+202A LEFT-TO-RIGHT EMBEDDING
125,767 2.573742 U+202B RIGHT-TO-LEFT EMBEDDING
125,768 2.573742 U+202D LEFT-TO-RIGHT OVERRIDE
125,769 2.573742 U+202E RIGHT-TO-LEFT OVERRIDE
125,770 2.481283 U+202C POP DIRECTIONAL FORMATTING
125,771 2.462760 U+000C FORM FEED (FF)
125,772 2.462760 U+000D CARRIAGE RETURN (CR)
125,773 0.156341 U+00AD SOFT HYPHEN
125,774 0.000000 U+0009 CHARACTER TABULATION
125,775 0.000000 U+000A LINE FEED (LF)
125,776 0.000000 U+0020 SPACE

Table 2 shows the code points with the greatest and least individual entropy
across all submissions. The top of the list includes many code points from the
Currency Symbols, Private Use Area, Arabic, and Georgian blocks of Unicode.
The Private Use Area block is one in which font designers are free to do what
they like; the meanings of the code points is left unspecified. The bottom of the
list has mostly whitespace and control characters. Only three code points were
identical in every submission, always having a size of 0×0: U+0009 CHARAC-
TER TABULATION, U+000A LINE FEED, and U+0020 SPACE. All three
are considered “inter-element whitespace” in HTML [18, Section 3.2.4] and do
not count as text when they are the only thing appearing in an element. There
are two other inter-element whitespace characters, U+000C FORM FEED and
U+000D CARRIAGE RETURN; all submissions had them with zero width (ex-
cept for one oddball Chrome 36 with a width of 1), and some browsers give
them zero height while others give them the line height. The only code point
with less entropy than a whitespace character was was U+00AD SOFT HY-
PHEN, with 0.156 bits, which apparently renders at 0×0 in all browsers but
Internet Explorer, where it has nonzero height.

The full suite of 125,776 code points took a mean time to test of 570 seconds
with a standard deviation of 394. The shortest test took 70 seconds and the
longest 50 minutes. Figure 2 shows the distribution of elapsed times. Part of
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Fig. 2. Time taken to measure all code points in all styles.

the variance is definitely attributable to differing CPU speeds, and disk latency
as seldom-used font files are dredged off of disk. The test likely took longer for
users who moved the tab it was running in to the background. The spike at
around 500 seconds is probably explained by the throttling that browsers apply
to timers running in background tabs [24, 27]: the program tests 256 code points
in a batch, and if the browser throttles to one batch per second, it takes about
125776/256 = 491.3125 seconds to test all batches.

Though our data collection experiment took many minutes, fingerprinting
requires only milliseconds. We found a subset of 43 code points that suffices
to account for all the variation found in the complete set. The reduced subset
is shown in Table 3 and a sample fingerprint using it is in Appendix A. We
constructed the subset using a greedy algorithm that first selected the code point
having the highest individual entropy, then the one with the highest conditional
entropy given that the first code point had already been measured, and so on
until only uniform, zero-entropy subsets remained.

It is important to remember that entropy measurement is limited by sample
size. For example, we measured 5.148 bits of entropy for the User-Agent from our
population of 1,016 browsers, while the Panopticlick experiment [8] measured
10.0 bits from a population of about 470,000. We have measured 7.599 bits
of entropy in font metric measurements, out of a theoretical maximum 9.989.
Before running this experiment, we had done a preliminary test of 496 browsers
(under slightly different conditions: Unicode 6.3.0 and font-size: 2000%) and
measured 7.080 bits of entropy out of a theoretical maximum of 8.954. We expect
the entropy to continue to grow, though from the limited sample size it is not
possible to say whether or where variability will hit a plateau. Figures 4 and 5
in Section 6 give a rough idea of how entropy may be expected to increase with
sample size.

5 Sources of variation

We have seen that the dimensions of individual glyphs can vary widely, and that
some code points are more variable than others. Figure 3 compares the variation



Table 3. Code points with the greatest conditional information gain. These 43 code
points suffice to capture all the variation of the full set of 125,776. The conditional
entropy on each line measures the variation remaining conditioned on the code points
on preceding lines already having been measured. Note that the selected code points
do not simply appear in order of increasing rank; at each step the algorithm chooses
one, the measurement of which gives the most additional information. Slanted type
indicates a Unicode block name when a code point is not individually named. There is
nothing magic about the set shown here; many others would do just as well. A sample
fingerprint using this code point set appears in Appendix A.

rank

individual
entropy

(bits)

conditional
entropy

(bits) code point name

#1 4.908178 4.908178 U+20B9 INDIAN RUPEE SIGN
190 4.223916 0.843608 U+2581 LOWER ONE EIGHTH BLOCK
18 4.607439 0.496079 U+20BA TURKISH LIRA SIGN

933 4.008738 0.264101 U+A73D LATIN SMALL LETTER AY
6,715 3.794592 0.217025 U+FFFD REPLACEMENT CHARACTER

2 4.798824 0.173474 U+20B8 TENGE SIGN
194 4.215221 0.120687 U+05C6 HEBREW PUNCTUATION NUN HAFUKHA
676 4.063433 0.075592 U+1E9E LATIN CAPITAL LETTER SHARP S

5,876 3.892304 0.067049 U+097F DEVANAGARI LETTER BBA
367 4.137402 0.060762 U+F003 Private Use Area

100,605 3.440790 0.045069 U+1CDA VEDIC TONE DOUBLE SVARITA
90,538 3.517391 0.035899 U+17DD KHMER SIGN ATTHACAN
6,029 3.879878 0.028690 U+23AE INTEGRAL EXTENSION
7,176 3.763447 0.028359 U+0D02 MALAYALAM SIGN ANUSVARA

62,371 3.549727 0.025836 U+0B82 TAMIL SIGN ANUSVARA
55,549 3.603737 0.022298 U+115A HANGUL CHOSEONG KIYEOK-TIKEUT

101,598 3.429199 0.020307 U+2425 SYMBOL FOR DELETE FORM TWO
683 4.063107 0.015840 U+302E HANGUL SINGLE DOT TONE MARK

55,755 3.598234 0.015405 U+A830 NORTH INDIC FRACTION ONE QUARTER
5,872 3.894021 0.014138 U+2B06 UPWARDS BLACK ARROW

122,695 3.894021 0.012554 U+21E4 LEFTWARDS ARROW TO BAR
297 4.163269 0.011433 U+20BD RUBLE SIGN
806 4.028184 0.010647 U+2C7B LATIN LETTER SMALL CAPITAL TURNED E

7,967 3.702500 0.010586 U+20B0 GERMAN PENNY SIGN
3 4.698577 0.010389 U+FBEE ARABIC LIGATURE YEH WITH HAMZA ABOVE

WITH WAW ISOLATED FORM

55,358 3.616671 0.007269 U+F810 Private Use Area
56,251 3.583220 0.006550 U+FFFF Specials

102,938 3.382354 0.005807 U+007F DELETE
33 4.593589 0.005638 U+10A0 GEORGIAN CAPITAL LETTER AN

73,091 3.523493 0.005521 U+1D790 MATHEMATICAL SANS-SERIF BOLD ITALIC CAPITAL ALPHA

96,023 3.486238 0.003839 U+0700 SYRIAC END OF PARAGRAPH
99,164 3.449583 0.003839 U+1950 TAI LE LETTER KA
55,116 3.618169 0.003553 U+3095 HIRAGANA LETTER SMALL KA
54,880 3.620506 0.003194 U+532D CJK Unified Ideographs

125,759 2.831178 0.002712 U+061C ARABIC LETTER MARK
869 4.020008 0.002712 U+20E3 COMBINING ENCLOSING KEYCAP

6,702 3.796600 0.002712 U+FFF9 INTERLINEAR ANNOTATION ANCHOR
7,849 3.708330 0.001969 U+0218 LATIN CAPITAL LETTER S WITH COMMA BELOW
872 4.018562 0.001969 U+058F ARMENIAN DRAM SIGN
962 4.004011 0.001969 U+08E4 ARABIC CURLY FATHA

99,577 3.445643 0.001969 U+09B3 Bengali
55,774 3.596681 0.001969 U+1C50 OL CHIKI DIGIT ZERO

102,439 3.404409 0.001969 U+2619 REVERSED ROTATED FLORAL HEART BULLET

7.599160 bits total entropy



observed in two selected code points. There is variation even within the same
browser on the same operating system. In this section we explore the causes of
these phenomena.

Text rendering is a subtle and complex part of a web browser. Even in the
Latin alphabet, layout is more than simply stacking boxes together: consid-
erations such as ligatures, kerning, and combining characters come into play.
Some other writing systems are even more complex, causing browsers to rely
on OS-provided libraries for text layout. These libraries, including Pango on
GNU/Linux, Graphics Device Interface (GDI) or DirectWrite on Windows, and
Core Text on Mac OS X, are independent code bases and do not behave identi-
cally. Browsers additionally impose their own customizations atop the base text
rendering.

The fonts that are installed by default are different on different operating
systems. This fact, combined with the differences in layout engines, contribute
to a strong per-OS fingerprinting effect. To disguise this effect completely would
be difficult, and in Section 6 we assume that OS and browser are inherently
fingerprintable, and only seek to reduce further fingerprintability.

Even systems having the “same” named fonts installed may be fingerprintable
because they have different revisions of the same font. For example, both Debian
7.6 and Ubuntu 14.04 include the DejaVu fonts, but Debian has version 2.33
of the font and Ubuntu has version 2.34. We found that there are detectable
differences in some code points rendered using DejaVu, including some which
are listed in the DejaVu changelog [1] as having been added or modified in
version 2.34.

Different font rendering settings can distinguish end-user systems. We tracked
down one-pixel differences in the width of 134 code points, on two systems that
were configured very similarly (Tor Browser 4.0-alpha-1 on Debian “jessie”, with
the same font files and libraries), to different font hinting settings.

Six of the 43 points selected by our distinguishing algorithm and shown in
Table 3 are currency symbols. Here they are shown along with their unconditional
entropies and ranks:

rank

individual
entropy

(bits) code point name

#1 4.908178 U+20B9 INDIAN RUPEE SIGN
2 4.798824 U+20B8 TENGE SIGN

18 4.607439 U+20BA TURKISH LIRA SIGN
297 4.163269 U+20BD RUBLE SIGN
872 4.018562 U+058F ARMENIAN DRAM SIGN

7,967 3.702500 U+20B0 GERMAN PENNY SIGN

The code points corresponding to the rupee and tenge signs are the two most
entropic overall, and other currency symbols form a hotspot of high entropy. Five
of those listed (all but U+20B0) are in the top 1% overall. It may be that relative
newness of the glyphs which these code points represent contributes to their
variability. The sign for the Kazakhstani tenge was approved by the National
Bank of Kazakhstan in 2007 and added to Unicode 5.2 in 2009 [26]. The Indian
rupee sign was presented by the Government of India and added to Unicode 6.0
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Fig. 3. Frequencies of particular measured dimensions for two selected code points
in the default style. Measurements of U+0041 (the letter ‘A’) had 54 distinct values,
38 of them unique, with an entropy of 2.575 bits. U+20B9 (the currency symbol ‘|’)
took on 87 distinct values, 50 of them unique, with an entropy of 4.288 bits. Note the
several occurrences of dimensions that differ by one pixel, for example 1155×1840 and
1156×1840, and a “long tail” of infrequently seen dimensions.



in 2010. The Armenian dram sign was added to Unicode 6.1 in 2012; the Turkish
lira sign to Unicode 6.2 in 2012; and the ruble sign to Unicode 7.0 in June, 2014.
All these glyphs were newly created symbols, the results of various public design
competitions. For comparison, a much older currency symbol, U+20AC EURO
SIGN, introduced in Unicode 2.1.2 in 1998, is in the bottom 4% of variability,
at rank #123,190 with 3.301 bits.

The Private Use Area block, U+E000–U+F8FF, has high variability. Font
designers are free to give their own meaning to code points in this block, so what
glyphs are shown depends heavily on what fonts are available.

6 Defenses against fingerprinting

Fingerprinting is made more difficult, in general, by reducing differences across
systems; or by making those differences harder to measure.

A simple idea to eliminate variation due to font file availability is to ship a
set of standard fonts with the web browser, and use only those (plus download-
able web fonts), at the exclusion of any other fonts that may be installed on
the system. This approach has been suggested by Mowery and Schacham [16,
Section 5] and on the bug trackers of Mozilla [22] and Tor [21].

We tested this idea: during our data-gathering experiment, in addition to
the six generic styles previously mentioned, we tested a style that consisted only
of standardized @font-face web fonts downloaded from our server. The style
included Linux Libertine [13] as an example of an ordinary proportional font, as
well as a version of GNU Unifont [6] specially modified to have a glyph for every
code point tested, in order to prevent any fallback to system fonts.

The effect on fingerprintability is summarized in Table 4, and in Figures 4
and 5. In our experiment, the defense saved about 2.6 bits, reducing entropy to
near the “baseline entropy” of operating system plus browser.

Table 4. Entropy of different variables across the 1,016 submissions. “Standard fonts”
uses the simulated defense discussed in Section 6. “OS+browser” is the 4-tuple (OS,
OS version, browser, browser version) extracted from the User-Agent string, without
any other User-Agent information. Lower numbers are better in all columns except
“largest set.”

Variable entropy # distinct # unique largest set

System fonts and User-Agent 8.058 bits 531 440 51
System fonts 7.599 bits 444 349 61
Standard fonts and User-Agent 6.128 bits 270 197 181
User-Agent 5.148 bits 175 116 220
Standard fonts 4.957 bits 150 99 203
OS+browser 4.151 bits 94 48 281

Shipping standard fonts is a promising approach, but also a difficult one. It
takes cultural and linguistic understanding to select a set of fonts that will ade-
quately cover the most common writing systems. Font files are large—those cov-
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ering east Asian scripts, for example, can be several megabytes uncompressed—
adding to the size of downloads. Including fonts with the browser requires the
browser developer to assume ongoing maintenance and expertise costs previously
held by the operating system developer.

The attack as we have designed it relies on client-side execution of JavaScript.
Simply disabling JavaScript is unlikely to be an effective defense, however. Hei-
derich et al. [11] show how to use CSS to measure the size of DOM elements, for
example by shrinking a container through animation and causing its contents to
reflow.

Tor Browser already imposes a limit on the number of fonts that can be
used to render a document, in order to defend against font enumeration attacks.
Unfortunately this defense is ineffective against the attack we have described,
because the attack uses only generic font names.

Randomizing the size of onscreen glyphs, or just randomizing the sizes re-
ported to JavaScript, would frustrate fingerprinting. One would need to take
care not to allow the randomization to be simply averaged away, and keep in
mind that a browser’s randomizing its dimensions is itself a detectable feature.
FireGloves [2] was a proof-of-concept fingerprint-resistant browser extension for
Firefox that randomized the reported size of DOM objects, among other things.
FPBlock [12] proposes to track data that depends on HTML element elements,
and prevent its exfiltration through means such as XMLHttpRequest.

Using a standardized operating system such as Tails [3] is an effective way
to blend in with other users of the same operating system.

7 Future work

We hope to collaborate with the maintainers of Tor Browser to develop and
deploy a patch along the lines of the standard-font defense described in Sec-
tion 6. The Tor Browser maintainers have indicated a willingness to work with
us and a ticket tracks development progress [9]. Tor Browser is a good target for
deployment of a defense, because it already defends against other, more direct
and powerful attacks that are still effective in other browsers, even in private
browsing mode.

Canvas fingerprinting could be strengthened using the information gain–
based selection technique we have used to refine the set of code points tested.
Rather than testing only the 26 letters of the English alphabet, canvas finger-
printing could test carefully selected code points from Unicode.

Our technique could perhaps be strengthened by testing more than one code
point at a time, using combinations designed to reveal differences in the han-
dling of ligatures, kerning, combining characters, right-to-left text, and other
font features. Font technologies such as OpenType [10] support a large number
of features that are being made available to CSS [7].



8 Conclusion

We have presented and evaluated a new web fingerprinting attack based on
measuring the onscreen size of font glyphs. We conducted a user experiment to
test nearly the entire repertoire of Unicode in various CSS font styles, and then
developed a narrow set of code points that can quickly and effectively fingerprint
web users. We simulated a standard-font defense against fingerprinting. Font
metric–based fingerprinting can supplement other techniques in order to increase
their effectiveness.

9 Source code

Source code for the web experiment and analysis programs is available in a Git
repository at https://repo.eecs.berkeley.edu/git-anon/users/fifield/fontfp.git.
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A Sample fingerprint

This is a sample font metric fingerprint using the fast code point testing set of
Table 3. The system represented is Tor Browser (Firefox 24.8.0) in Tails 1.1.1 [3].
The fingerprint can be hashed into a single short identifier rather than being
stored in the long form shown here.

default sans-serif serif monospace cursive fantasy
U+20B9 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+2581 769×1200 769×1200 769×1200 602×1200 769×1200 769×1200
U+20BA 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+A73D 824×1200 818×1200 824×1200 818×1200 818×1200 818×1200
U+FFFD 1025×1200 1025×1200 1025×1200 602×1200 1025×1200 1025×1200
U+20B8 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+05C6 307×1200 441×1200 307×1200 441×1200 441×1200 441×1200
U+1E9E 829×1200 769×1200 829×1200 769×1200 769×1200 769×1200
U+097F 524×1598 524×1598 524×1598 524×1598 524×1598 524×1598
U+F003 1000×1226 977×1200 1000×1226 1000×1219 977×1200 977×1200
U+1CDA 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+17DD 0×2002 0×2002 0×2002 0×1856 0×2002 0×2002
U+23AE 521×1200 521×1200 521×1200 602×1200 521×1200 521×1200
U+0D02 886×1472 886×1472 886×1472 886×1472 886×1472 886×1472
U+0B82 763×2000 763×2000 763×2000 763×2000 763×2000 763×2000
U+115A 1000×1226 1000×1219 1000×1226 1000×1219 1000×1219 1000×1219
U+2425 500×1200 500×1200 500×1200 500×1200 500×1200 500×1200
U+302E 0×1226 0×1219 0×1226 0×1219 0×1219 0×1219
U+A830 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+2B06 838×1200 838×1200 838×1200 838×1200 838×1200 838×1200
U+21E4 838×1200 838×1200 838×1200 602×1200 838×1200 838×1200
U+20BD 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+2C7B 491×1200 491×1200 491×1200 491×1200 491×1200 491×1200
U+20B0 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+FBEE 500×1200 500×1200 500×1200 500×1200 500×1200 500×1200
U+F810 16×1200 16×1200 16×1200 1000×1230 16×1200 16×1200
U+FFFF 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+007F 600×1200 600×1200 600×1200 602×1200 600×1200 600×1200
U+10A0 723×1200 840×1200 723×1200 840×1200 840×1200 840×1200
U+1D790 774×1200 774×1200 774×1200 774×1200 774×1200 774×1200
U+0700 1000×1200 1000×1200 1000×1200 1000×1200 1000×1200 1000×1200
U+1950 500×1200 500×1200 500×1200 500×1200 500×1200 500×1200
U+3095 1000×1200 1000×1200 1000×1200 1000×1200 1000×1200 1000×1200
U+532D 16×1200 16×1200 16×1200 1000×1230 16×1200 16×1200
U+061C 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+20E3 0×1200 0×1200 0×1200 0×1200 0×1200 0×1200
U+FFF9 0×1200 0×1200 0×1200 602×1200 0×1200 0×1200
U+0218 685×1200 635×1200 685×1200 602×1200 635×1200 635×1200
U+058F 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+08E4 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+09B3 636×1200 636×1200 636×1200 602×1200 636×1200 636×1200
U+1C50 500×1200 500×1200 500×1200 500×1200 500×1200 500×1200
U+2619 896×1200 896×1200 896×1200 602×1200 896×1200 896×1200



B Mean anonymity set size from entropy

This appendix contains a proof of the claim in Figure 5, that an entropy mea-
surement implies a mean anonymity set size. Refer to Section 3 for notation.

Claim. Let S be a vector of categorical values with N elements and k distinct
values v1, . . . , vk. For i ∈ 1, . . . , k, let ci signify the number of times vi ap-
pears in S: PS(vi) = ci/N . Then the quantity N/2H(S), shown in Figure 5, is(∏k

i=1 c
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i

) 1
N

; that is, the geometric mean of the vector that results from replac-

ing each element of S with the number of times that element appears (a vector
where each ci appears ci times).
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