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Abstract

Since 1995, much work has been done creating proto-

cols for private information retrieval (PIR). Many variants

of the basic PIR model have been proposed, including such

modifications as computational vs. information-theoretic

privacy protection, correctness in the face of servers that

fail to respond or that respond incorrectly, and protection

of sensitive data against the database servers themselves.

In this paper, we improve on the robustness of PIR in a

number of ways. First, we present a Byzantine-robust PIR

protocol which provides information-theoretic privacy pro-

tection against coalitions of up to all but one of the respond-

ing servers, improving the previous result by a factor of 3.

In addition, our protocol allows for more of the responding

servers to return incorrect information while still enabling

the user to compute the correct result.

We then extend our protocol so that queries have

information-theoretic protection if a limited number of

servers collude, as before, but still retain computational

protection if they all collude. We also extend the protocol

to provide information-theoretic protection to the contents

of the database against collusions of limited numbers of the

database servers, at no additional communication cost or

increase in the number of servers. All of our protocols re-

trieve a block of data with communication cost only O(ℓ)
times the size of the block, where ℓ is the number of servers.

Finally, we discuss our implementation of these proto-

cols, and measure their performance in order to determine

their practicality.

1. Introduction

Private information retrieval (PIR) [4] is the task of

fetching an item from a database server without the server

learning which item you are interested in. In the context

of PIR, an “item” is often thought of as a single bit out of

an n-bit database, but it could also be a “block” of size b
bits. In the latter case, the n-bit database is considered to be

composed of n/b blocks, each of size b bits. A number of

applications have been proposed for PIR, including patent

and pharmaceutical databases [1], online census informa-

tion [17], and real-time stock quotes [17]. The Pynchon

Gate [11] shows how to use PIR for an arguably more real-

istic purpose: retrieving pseudonymously addressed email;

it argues that PIR is a more suitable primitive for this appli-

cation than previous proposals.

A trivial solution to the PIR problem is simply to ask

the server for the whole database and look up the desired

bit or block yourself. To make things more interesting (not

to mention practical), we analyze the communication cost

of the protocol—the total number of bits transmitted—and

insist that it be sublinear; that is, less than n.

There are two main types of PIR: information-theoretic

and computational. In information-theoretic PIR, the server

is unable to determine any information about your query

even with unbounded computing power. In computational

PIR (CPIR) [3, 8], the privacy of the query need only

be guaranteed against servers restricted to polynomial-time

computations. Note that in the information-theoretic case

the unbounded power is only to be used to try to compro-

mise your privacy; in either case we still insist that you and

the servers use only polynomial-time computations in order

to perform the protocol.

It is an unsurprising fact that information-theoretic sub-

linear PIR is impossible with a single server. However, it is

possible when there are ℓ servers, each with a copy of the

database—assuming that the servers do not collude in order

to determine your query. A t-private ℓ-server PIR is a PIR

system in which the privacy of the query is information-

theoretically protected, even if up to t of the ℓ servers col-

lude. (Of course, it must be the case that t < ℓ.)

Beimel and Stahl [2] investigate the case where servers

can fail to respond. In this event, it is important that the



client still be able to retrieve her answer. If only k of the ℓ
servers need to respond, and no coalition of up to t servers

can learn any information about the query, they call such a

system t-private k-out-of-ℓ PIR. In addition, they examine

systems where, of the k servers that replied (out of ℓ total),

v of those k are Byzantine; that is, they can return incorrect

answers, possibly chosen maliciously or possibly computed

in error (because, for example, the server may have an out-

of-date copy of the database). However, even with these in-

correct answers, the client should still be able to reconstruct

the correct database item, and as a side effect, determine

which of the servers gave incorrect answers. They term this

t-private v-Byzantine-robust k-out-of-ℓ PIR, and show

that such systems exist for v ≤ t < k
3 . Yang et al. [17] pro-

pose a PIR protocol for which v ≤ t < k
2 , but the client’s

reconstruction of the correct data block in that protocol does

not run in polynomial time.

Gertner, Goldwasser, and Malkin [5] consider that keep-

ing ℓ replicated copies of the database may itself be a secu-

rity or a privacy risk. They examine PIR protocols where

no coalition of up to τ servers can determine the con-

tents of the database (information-theoretically). They call

this τ -independent PIR. They show that they can add τ -

independence to any PIR protocol at the expense of increas-

ing the number of servers and the communication cost.

In this paper, we improve the robustness of PIR in a num-

ber of ways. First, we allow more servers to collude with-

out compromising privacy, while also allowing more servers

to be Byzantine. In particular, we construct a t-private v-

Byzantine-robustk-out-of-ℓ PIR protocol for any 0 < t < k
and v < k−⌊

√
kt⌋. We show this is always a strict improve-

ment over the previous result, except when (t, k) = (1, 4),
where it is the same.

Second, we extend this first protocol to handle the case

in which more than t servers collude. In existing t-private

PIR systems, a coalition of more than t servers can eas-

ily reconstruct the query. We produce a PIR system which

has hybrid privacy protection: if up to t servers collude,

the query is protected information-theoretically, as before;

however, if more than t servers collude, the query is still

protected computationally. This means that coalitions of up

to t servers with unbounded computational power, or of up

to all ℓ servers with polynomially bounded computational

power, will be unable to determine the client’s query.

Finally, we give a second extension that can add τ -

independence to our protocol, for 0 ≤ τ < k−t−v(2− v
k
),

with no increase in the number of servers or in communica-

tion cost.

Each variant of our protocol has communication cost

only O(ℓ) times the size of the data block being retrieved.

At the end of this paper, we briefly discuss our imple-

mentation of this protocol, and give some performance mea-

surements.

2. Preliminaries

2.1. Notation

We will denote by Zm the ring of integers modulo m,

and by Z
∗
m the multiplicative group of invertible integers

modulo m. For primes p, we will denote by Fp the finite

field of integers modulo p.

We will denote by δij the Kronecker delta function; that

is: δij =

{

1 i = j
0 i 6= j

.

Let ǫ be the empty string, and s||t be the concatenation

of strings s and t.

2.2. Shamir secret sharing

Sharing of finite field elements. Our technique is based

on Shamir secret sharing [14], which we will briefly review.

Given a finite field F, and a secret σ ∈ F, we can construct

t-private ℓ-way shares of the secret in the following way:

1. Choose ℓ distinct non-zero elements α1, . . . , αℓ of F.

They can be chosen from any distribution; they need

not be uniformly distributed. It is even acceptable to

simply use α1 = 1, α2 = 2, etc. when {1, 2, . . . , ℓ} ⊆
F\{0}. We call the αi indices.

2. Select t elements σ1, . . . , σt of F uniformly at random.

3. Construct the polynomial f(x) = σ + σ1x + σ2x
2 +

· · ·+ σtx
t.

4. The ℓ shares are f(α1), . . . , f(αℓ).

Given any t + 1 of the shares, one can recover the poly-

nomial f by Lagrange interpolation and thus determine

σ = f(0). However, given only t or fewer shares, no infor-

mation at all about σ is revealed. Because of this, dividing

a secret into t-private ℓ-way shares in this way is also called

(t+ 1)-of-ℓ Shamir secret sharing.

Sharing of ring elements. Common choices for F, above,

include GF (2d) and Fp. But with minor care, it turns out

that the above technique works in some non-fields as well.

The proof of the technique from [14] only requires that we

are in a finite commutative ring, thatαi is invertible for each

1 ≤ i ≤ ℓ and that αi − αj is invertible for each 1 ≤ i <
j ≤ ℓ.

In particular, we will wish to share elements of rings

Zpq of integers modulo products of two distinct primes p
and q. Note that p and q do not need to be a secret. In

this scenario, shares are constructed and the secret is re-

constructed in exactly the same way as before. The only

caveat is in the selection of the αi. Whereas in the case of

a finite field, we only needed that the αi be non-zero and



distinct, in the modulo pq case, we need that the αi be non-

zero and distinct modulo each of p and q separately. An

easy way to ensure this is to choose the αi from the set

{1, 2, . . . ,min(p, q)− 1}.

Sharing of vectors. Let ~v be a vector [v1, . . . , vr] of

length r, whose entries are elements of either a finite field or

a ring Zpq , as above. We can make t-private ℓ-way shares

of ~v by simply independently sharing each of the entries.

That is, if xj1, . . . , xjℓ are t-private ℓ-way shares of vj (for

1 ≤ j ≤ r), then [x11, . . . , xr1], . . . , [x1ℓ, . . . , xrℓ] are t-
private ℓ-way shares of ~v.

2.3. The Paillier cryptosystem

The Paillier public-key cryptosystem [10] is another tool

we will use. The cryptosystem is as follows:

Key Generation: Select random primes p and q of some

desired length, and setm = pq and λ = lcm(p−1, q−
1). Define the function L(u) = (u − 1)/m. Choose

a random g ∈ Z
∗
m2 and ensure that µ = (L(gλ mod

m2))−1 mod m exists. The public encryption key is

then (m, g) and the private decryption key is (λ, µ).

Encryption: To encrypt a plaintext P ∈ Zm, select a

random ρ ∈ Z
∗
m, and compute the ciphertext to be

C = E(P ) = gP · ρm mod m2. Note that, as usual, E
is a randomized function.

Decryption: To decrypt a ciphertext C, compute D(C) =
L(Cλ mod m2) · µ mod m.

Note that it is of course the case that D(E(P )) = P for

all P ∈ Zm.

The security of the Paillier cryptosystem is based on the

Decisional Composite Residuosity Assumption (DCRA).

That is, for a fixed public key m, this system is semanti-

cally secure if and only if an adversary cannot determine

whether or not a given random element of Z
∗
m2 has an mth

root.

The Paillier cryptosystem has one additional property

that is vital for our purposes. It is additive homomor-

phic; that is, multiplying two encryptions together (mod-

ulo m2) gives an encryption of the sum of the original mes-

sages (modulom). Formally,D(E(P1) ·E(P2) mod m2) =
P1 + P2 mod m.

3. Improving Byzantine robustness

We motivate our study of Byzantine robustness by look-

ing at the Pynchon Gate [11]. The Pynchon Gate is a system

that uses private information retrieval to enable the delivery

of email to pseudonymous recipients. Greatly simplified,

the system works like this:

• Email arrives at the mail server, des-

tined for a pseudonymous user, say

<wiseone@pynchon.example>.

• The mail server encrypts the message using a key

known by the owner of the pseudonym, and puts the

encrypted message in the PIR database (distributing it

to ℓ database servers). Note that the server does not

know who the owner of the pseudonym is.

• At some point, Joe (the owner of the pseudonym) does

a PIR query on the database to retrieve the mail for

the pseudonym <wiseone@pynchon.example>.

The privacy guarantees of the PIR technique assure

that, unless all ℓ database servers collude, they will be

unable to link the client of the query, Joe, to the value

of the query, <wiseone@pynchon.example>.

• Joe decrypts and reads the resulting message.

The Pynchon Gate uses a PIR protocol from Chor et

al. [4], which is shown in Figure 1. It is straightforward

to see that this is an (ℓ − 1)-private ℓ-server PIR with

information-theoretic protection.1 Its communication cost

is ℓ(r + b) = ℓ(n/b+ b). Choosing b to be
√
n gives a cost

of 2ℓ
√
n.

However, as reported by Sassaman and Preneel [12],

this protocol has a weakness in the presence of Byzan-

tine servers: Joe will be unable to reconstruct the message.

Worse, although the Pynchon Gate guarantees Joe will be

able to tell that some server was Byzantine, he will be un-

able to tell which server it was. Therefore, it is important

to produce PIR protocols that not only can allow the client

to reconstruct the correct answer, but will also let the client

know which servers were Byzantine.

To accomplish this goal, we note that steps P2 and P3 of

the Pynchon Gate PIR protocol in Figure 1 form (ℓ − 1)-
private ℓ-way shares of the secret eβ (though not with

Shamir’s method). We replace these steps with a more gen-

eral t-private ℓ-way Shamir secret sharing of eβ . Note that

bitstrings of length r are equivalent to vectors of length r
over F2. We now consider eβ not as a vector over F2, but

rather as a vector of length r over some larger structure S.

We still have that the βth entry of eβ is 1, and the other en-

tries are 0, but now these entries are elements of S, and not

just F2. S might be a field (such as GF (2d) for some d, or

Fp for some prime p) or a ring Zpq for some distinct primes

p and q. Let I be a set of Shamir indices in S; that is, if S

is a field, I can just be the non-zero elements of S; if S is

Zpq , I can be the set {1, 2, . . . ,min(p, q)−1}, as in section

1The authors of the Pynchon Gate [11] mistakenly claim that, as an

optimization, the client may send ℓ−1 of the servers a key for a stream ci-

pher instead of a randomly generated bit string of length r. In reality, doing

so reduces the protection provided from information-theoretic to computa-

tional.



Parameters:

ℓ: number of servers

n: size of the database (in bits)

b: size of each block (in bits)

Calculate:

r: number of blocks = n/b

Client (querying for block number β):

P1. Let eβ be the bit string of length r that is all 0s, except for position β, which is 1.

P2. Generate ℓ− 1 random bit strings ρ1, . . . , ρℓ−1, each of length r.
P3. Compute ρℓ = ρ1 ⊕ · · · ⊕ ρℓ−1 ⊕ eβ .

P4. Send ρi to server number i, for 1 ≤ i ≤ ℓ.

Each server:

S1. Receive ρi = ρi1 · · · ρir, a bitstring of length r.
S2. Let Bj be the jth b-bit block of the database for 1 ≤ j ≤ r.
S3. Compute Ri to be the XOR of all the Bj for which ρij = 1.

S4. Return Ri to the client.

Client:

C1. Receive R1, . . . , Rℓ.

C2. Compute B = R1 ⊕ · · · ⊕Rℓ.

Figure 1. The PIR protocol from Chor et al. [4] used by the Pynchon Gate [11].

2.2. The only restriction on S is that I have at least ℓ ele-

ments, though we will see later that it sometimes benefits us

to choose substantially larger I. We take ℓ random elements

of I as the indices in the Shamir secret sharing, and use

them to produce the ρi. An important property of Shamir

indices is that our usual intuitions about polynomials over

fields, such as distinct degree t polynomials agreeing on at

most t points, continue to hold in a ring setting provided we

restrict our attention to indices selected from I.

Similarly to eβ , in the Pynchon Gate protocol we can

consider the ρi to be vectors of length r over F2, and the

Ri and Bj to be vectors of length b over F2. In this case,

we see that the computation of Ri in step S3 is the same as

computing Ric =
∑

ρijBjc over F2 for 1 ≤ c ≤ b. When

we move to a larger structure S, the servers perform this

same computation, but over S.

The secret recovery is more complicated than that of

the Pynchon Gate, not only since recovering a secret from

Shamir shares is more complicated than recovering from a

simple (ℓ−1)-private ℓ-way XOR scheme, but also since we

will need to handle Byzantine servers. The recovery scheme

will use the following function Γ: Given a structure S, a list

of ℓ indices [α1, . . . , αℓ] in S, a list of ℓ values [R1, . . . , Rℓ]
in S∪{⊥}, and a polynomialφ over S, let Γ(φ) be the subset

of {1, . . . , ℓ} such that φ(αi) = Ri for i ∈ Γ(φ). Note that

we keep S and the lists αi and Ri implicit in the notation

for convenience.

The resulting PIR protocol is shown in Figure 2. It uses

two subroutines, EASYRECOVER and HARDRECOVER,

which are shown in Figure 3. An important fact about

these subroutines is that EASYRECOVER is just a less com-

putationally expensive method to get the same answer as

HARDRECOVER, but it only works some of the time:

Fact 1. If EASYRECOVER returns a non-empty set on a

given input, then HARDRECOVER will return the same set

on that same input.

Proof. HARDRECOVER finds all polynomials φ of degree

at most t for which |Γ(φ)| ≥ h, where h = k − v is

the desired minimum number of honest (non-Byzantine)

servers. EASYRECOVER is a less expensive procedure to

perform the same calculation, in the event that there is ex-

actly one such polynomial. EASYRECOVER selects t+1 of

the servers at random, and optimistically assumes that all of

those servers returned the correct answer. It calculates the

φ uniquely determined by those servers’ answers, and sees

how many other servers gave answers consistent with that

polynomial. The key is that if fewer than h− t servers dis-

agreed, then there can be no other polynomial φ′ for which

|Γ(φ′)| ≥ h: φ′ would have to agree with φ on more than t
points of I, and so φ′ = φ.



Parameters:

ℓ: number of servers

t: the desired privacy level; that is, the number of servers that can collude without learning

anything about the query

n: size of the database (in bits)

b: size of each block (in bits)

w: size of each word within a block (in bits)

S: either a field or a ring Zpq such that |S| ≥ 2w (so that each word can be represented by an element of S)

I: a set of Shamir indices from S such that |I| ≥ ℓ
Calculate:

r: number of blocks = n/b
s: number of words per block = b/w

Client (querying for block number β):

P1. Choose ℓ random distinct indices α1, . . . , αℓ from I.

P2. Choose r random polynomials f1, . . . , fr of degree t. The coefficients of each

polynomial should be random elements of S, except for the constant terms.

The constant term of fj should be δjβ .

P3. Compute ρi = [f1(αi), . . . , fr(αi)] for 1 ≤ i ≤ ℓ.
P4. Send ρi to server number i, for 1 ≤ i ≤ ℓ.

Each (honest) server:

S1. Receive ρi = [ρi1, . . . , ρir], a vector of r elements of S.

S2. Let Wjc be the cth w-bit word of the jth b-bit block of the database, interpreted as a member of S.

S3. Compute Ric =
∑

1≤j≤r

ρijWjc for 1 ≤ c ≤ s.

S4. Return [Ri1, . . . , Ris] to the client.

Client:

C1. Receive [R11, . . . , R1s], . . . , [Rℓ1, . . . , Rℓs] from the ℓ servers.

If server j does not respond at all, set Rjc =⊥ for each 1 ≤ c ≤ s.
Let γ1, . . . , γk be the numbers of the k servers which did respond.

Let G = {γ1, . . . , γk} and H = {(G, ǫ)}.
C2. If k ≤ t, abort with the error “not enough servers replied”.

C3. Select h (the minimum number of honest servers) from the range
√
kt < h ≤ k.

C4. For c from 1 to s:
C5. Set H ′ ← EASYRECOVER(S, w, t, h,H, [R1c, . . . , Rℓc], [α1, . . . , αℓ])
C6. If H ′ is the empty set, set H ′ ← HARDRECOVER(S, w, t, h,H, [R1c, . . . , Rℓc], [α1, . . . , αℓ])
C7. If H ′ is the empty set, abort with the error “not enough honest servers replied”.

C8. Set H ← H ′.
C9. The resulting H will be a non-empty set of pairs (G,B). One of the Bs will be the correct block;

see section 3.4 for ways to ensure there is only one such B.

Figure 2. A t-private v-Byzantine-robust k-out-of-ℓ information-theoretic PIR scheme for 0 < t < k and

v < k − ⌊
√
kt⌋.



Inputs:

S: the structure used for Shamir secret sharing

w: the number of bits per word

t: the desired privacy level of the PIR protocol

h: the minimum number of honest servers that need to respond (h > t)
H : a nonempty set of pairs (G, σ) where G is a set of at least h server numbers,

and σ is the portion of the requested block recovered so far, assuming that

the servers in G were the honest ones. Each σ will have the same length.

No two of the G will have more than t elements in common.

[R1, . . . , Rℓ]: t-private ℓ-way purported shares of a w-bit word that had been encoded as a member

of S. It must not be the case that Rj =⊥ for any j in any of the G in H .

[α1, . . . , αℓ]: the indices used for the secret sharing

Output:

Either: (1) a set H ′ of the same form as H , above, but with each σ being w bits longer

than those in the input, or (2) the empty set

EASYRECOVER(S, w, t, h,H, [R1, . . . , Rℓ], [α1, . . . , αℓ]):
E1. Set H ′ ← {}.
E2. For each (G, σ) ∈ H :

/* Optimistically hope the rest of the servers are honest */

E3. Select a random subset I ⊆ G of size t+ 1.

E4. Use Lagrange interpolation to find the unique polynomial φ over S of degree t
for which φ(αj) = Rj for each j ∈ I .

E5. Let W be the w-bit representation of φ(0), or⊥ if there is no such representation.

E6. If |G ∩ Γ(φ)| ≥ h and |G\Γ(φ)| < h− t and W 6=⊥ then add (G ∩ Γ(φ), σ||W ) to H ′.
E7. Otherwise, immediately return the empty set.

E8. Return H ′.

HARDRECOVER(S, w, t, h,H, [R1, . . . , Rℓ], [α1, . . . , αℓ]):
H1. Set H ′ ← {}.
H2. Use the algorithm of [7] to recover (in polynomial time) the set {φi} of polynomials over

S of degree≤ t for which φi(αj) = Rj for at least h values of j ∈ {1, . . . , ℓ}.
H3. For each such φi:

H4. Let Wi be the w-bit representation of φi(0), or ⊥ if there is no such representation.

H5. If Wi 6=⊥, then for any (G, σ) ∈ H such that |Γ(φi) ∩G| ≥ h,

add (Γ(φi) ∩G, σ||Wi) to H ′.
H6. Return H ′.

Figure 3. The EASYRECOVER and HARDRECOVER subroutines.



Note that in the presence of Byzantine servers, EASYRE-

COVER may not always find the unique polynomial, even if

there is one, but in no case will it output a non-empty set

when more possibilities exist.

3.1. Privacy of the protocol

It is easy to see that no coalition of up to t servers can

learn any information about β (the requested block num-

ber): between them, they have at most t of the t-private

ℓ-way shares of the vector eβ (as in section 2.2). By the

properties of Shamir secret sharing, they learn no informa-

tion about eβ , and therefore about β.

It is important to note that this result holds even if some

servers are Byzantine, since all of the information flowing

from the client to the servers happens before the servers per-

form any actions.

3.2. Correctness of the protocol without
Byzantine servers

In this section, we show that this protocol returns the

correct blockB from the database when no server responds

incorrectly (but some may not respond at all), so long as

enough servers do respond.

Theorem 1. If k of the ℓ servers respond, there are no

Byzantine servers, and k > t, then the algorithm in Fig-

ure 2 will return a set H containing the single pair (G,B),
where G is the set of the k server numbers that responded,

and B is the correct block Bβ from the database.

Proof sketch. (See Appendix A for the complete proof.)

The important observation is that if ℓ vectors ρ1, . . . , ρℓ

are t-private ℓ-way secret shares of a vector ~v of length r,
and ~w is any vector of length r, then the ℓ dot products

ρ1 · ~w, . . . , ρℓ · ~w are t-private ℓ-way secret shares of the

scalar ~v · ~w.

In this protocol, each server has its share ρi of ~v = eβ .

Also, for each c from 1 to s (where s is the number of words

per block), each server constructs the vector ~wc, which is

the vector of length r (the number of blocks) whose jth el-

ement is the cth word of the jth block of the database. Then

each server’s returned value Ric = ρi · ~wc will be its share

of eβ · ~wc, which is just the cth word of the βth block of

the database. Since the client receives more than t of these

results, it can uniquely reconstruct each of the words of the

βth block of the database, and concatenating them repro-

duces the desired block.

3.3. Correctness in the presence of Byzan-
tine servers

We will now look at the effect of Byzantine servers on

the correctness of this protocol.

Theorem 2. If k of the ℓ servers respond at all, k > t, and

at least h >
√
kt servers respond honestly, then the algo-

rithm in Figure 2 will return a setH , one of whose elements

is the pair (Gh, Bβ), where Gh is the set of the server num-

bers that responded honestly, and Bβ is the correct block

from the database.

Proof sketch. (See Appendix A for the complete proof.) As

above, the h honest servers return their shares of the swords

of the βth block of the database. However, k − h additional

servers return arbitrary values. Depending on the values of

h, k and t, there may no longer be a unique block deter-

mined by h of the k received shares, but when h >
√
kt

we can use the algorithm of [7] to find a list of all possi-

ble blocks in polynomial time. In the next section, we will

see a number of ways to recover the correct block from this

list.

3.4. List-decoding

The algorithm of Figure 2 is an example of a list-

decoding algorithm; that is, under some circumstances, it

may output a list of more than one data block, and we must

provide some way for the client to determine which is the

correct block. On the one hand, the potential to list-decode

is one source of the improvements in the privacy and robust-

ness parameters of the protocol of this section over that of

previous work such as Beimel and Stahl [2]. On the other

hand, we need to be able to recover the correct database

block.

The source of the list-decoding is that, in the presence of

many Byzantine servers, there may be more than one poly-

nomial φ such that |Γ(φ)| ≥ h. (Recall that Γ(φ) is the set

of server numbers which returned replies consistent with the

polynomial φ.) There are a number of ways to handle this

and recover the unique correct result.

The simplest way to handle list-decoding is simply to

choose your parameters such that there cannot be more than

one such φ.

Fact 2. If h > k+t
2 , then there is exactly one polynomial φ

of degree at most t for which |Γ(φ)| ≥ h.

Proof. Suppose the correct polynomial is φ0, so that

|Γ(φ0)| ≥ h, since all h honest servers will respond cor-

rectly. Now suppose it is the case that |Γ(φ)| ≥ h for some

φ. It is always the case that |Γ(φ0) ∩ Γ(φ)| = |Γ(φ0)| +
|Γ(φ)| − |Γ(φ0) ∪ Γ(φ)|. But since |Γ(φ0) ∪ Γ(φ)| ≤ k (as

only k servers responded), we have that |Γ(φ0) ∩ Γ(φ)| ≥
h+ h− k > (k + t)− k = t. So φ0 and φ agree on more

than t points of I, and are therefore equal.

Therefore, if h > k+t
2 , we will never have to handle

more than one possible polynomial. However, we may like



to be able to use lower values of h. The following fact shows

how to handle values of h > k/2.

Fact 3. If the Byzantine servers are unable to see the com-

munication between the client and the honest servers (which

should be the case, as it is important for privacy), and

h > k/2, then by choosing the index set I to be sufficiently

large, we can make the probability that the algorithm of

Figure 2 outputs more than one block arbitrarily small.

Proof sketch. (See Appendix A for the complete proof.)

Suppose the algorithm of Figure 2 outputs more than one

block. Then it must be the case that the Byzantine servers

were able to provide responses such that there is an incor-

rect polynomial φ of degree t which agrees with at least

h of the k total responses. Since there are at most k − h
Byzantine servers, and k − h < k/2 < h, we must have

that φ(αi) = φ0(αi), where φ0 is the correct polynomial,

for at least one of the honest servers’ αi.

Now the key observation is that the Byzantine servers

do not know the indices associated with the honest servers.

Remember that φ can agree with φ0 in at most t places.

Therefore, if I, the set of possible indices, is very large,

then the probability that one of those places happens to be

an index associated with one of the honest servers will be

very small.

Note that if t ≥ k
4 , then we always have h >

√
kt ≥ k/2.

Also recall that the size of the index set I can be chosen to

be |S| − 1 (if S is a field) or min(p, q)− 1 (if S is Zpq).

Finally, in the event that t < k
4 and we want to allow for

k/2 or more Byzantine servers, we can just use the usual

techniques (such as those of [9]) to add redundancy to the

words of the database, so that the list decoding can be con-

verted to unique decoding. Note that this will slightly in-

crease the size of the database. This redundancy could be in

the form of digital signatures from the database creator, for

example. In a situation where there is for some reason no

such independent creator, allowing a majority of responding

servers to be Byzantine may not make sense; in that case, it

is not clear what it means for a block to be “correct” when

more than half of the servers are storing a different block.

3.5. Comparison to previous results

Privacy and robustness. The authors of [2] show that t-
private v-Byzantine-robust k-out-of-ℓ PIR protocols exist

for v ≤ t < k
3 . We have demonstrated such a protocol for

0 < t < k and v < k − ⌊
√
kt⌋. Our protocol can therefore

withstand at least three times as many servers colluding to

determine the client’s query, and when the privacy level t is

the same (for some 0 < t < k
3 ), our protocol tolerates up to

k−⌊
√
kt⌋− 1 Byzantine servers, while that of [2] tolerates

up to t. We now show that in these comparable cases, our

result is always at least as good, and almost always strictly

better:

Theorem 3. For integers k, t such that 0 < t < k
3 , we have

k − ⌊
√
kt⌋ − 1 ≥ t, with equality if and only if (t, k) =

(1, 4).

Proof. We equivalently prove that
k−⌊

√
kt⌋−1−t

t
≥ 0, with

equality if and only if (t, k) = (1, 4).
First note that

k − ⌊
√
kt⌋ − 1− t
t

≥ k −
√
kt− 1− t
t

=
k

t
−
√

k

t
− 1

t
− 1

=

√

k

t

(

√

k

t
− 1

)

− 1

t
− 1

with equality if and only if kt is a perfect square. Now

k ≥ 3t+ 1, so k
t
≥ 3 + 1

t
, and

√

k

t

(

√

k

t
− 1

)

− 1

t
− 1

≥
√

3 +
1

t

(

√

3 +
1

t
− 1

)

− 1

t
− 1

=

(

3 +
1

t

)

−
√

3 +
1

t
− 1

t
− 1

= 2−
√

3 +
1

t

with equality if and only if k = 3t + 1. Finally, we have

that 2 −
√

3 + 1
t
≥ 0, with equality if and only if t = 1,

and the result is proven.

Note that (t, k) = (1, 4) is the minimal configuration of

the system in [2].

Communication cost. This protocol sends r = n/b el-

ements of S to each of ℓ servers, and receives s = b/w
elements of S from each of k servers in reply. If it takes z
bits to encode an arbitrary element of S (so z = ⌈lg(|S|)⌉),
then the total communication cost is nℓz/b+ kbz/w. Since

k ≤ ℓ, this is bounded by ℓz(n/b + b/w). By choosing

b =
√
nw, we get r = s =

√

n/w and the total com-

munication cost to privately retrieve a block of
√
nw bits

is bounded by 2ℓz
√

n/w. Remember that we needed to

choose S such that |S| ≥ 2w; if we make it not much big-

ger, we can have z = w+1, or even z = w if S is GF (2w).
Then our cost to retrieve

√
nw bits is O(ℓ

√
nw)



Note that this is far from the optimal communication cost

of retrieving a single bit, even in the context of Byzantine-

robust PIR protocols; for example, the protocol of [2] has

cost O( k
3t
n

1
⌊(k−1)/3t⌋ ℓ log ℓ) to retrieve one bit. However, it

is clearly within a small factor of optimal if indeed we are

interested in the entire
√
nw-bit block.

4. Robustness against colluding servers

In this section, we consider the problem of more than t
(even up to all ℓ) servers colluding to try to determine the

client’s query.

As mentioned earlier, if all ℓ servers collude, it is impos-

sible to make a protocol with communication cost less than

n which also information-theoretically protects the query.

Therefore, we do the best possible thing: information-

theoretically protect the query if up to t servers collude, but

still computationally protect the query even if up to all ℓ
servers collude. We call a PIR protocol with this property

t-private ℓ-computationally-private.

We do this with a simple modification to the protocol

of Figure 2: instead of sending t-private ℓ-way shares of

eβ to the servers, send encryptions of those shares, under

an additive homomorphic cryptosystem, such as the Paillier

cryptosystem [10] (see section 2.3). The servers then use

the homomorphic property to compute the encryptions of

their results, which they send back to the client. The client

decrypts the replies and proceeds as before.

In detail, the changes to the protocol of Figure 2 are:

• To start, select large random distinct primes p and q.

Set m = pq, choose S to be the ring Zm, and let

I = {1, 2, . . . ,min(p, q) − 1}. Compute the Paillier

encryption and decryption keys as in section 2.3.

• In step P3, use Paillier encryption to compute E(ρi) =
[E(f1(αi)), . . . , E(fr(αi))].

• In step P4, send E(ρi) to server i, for 1 ≤ i ≤ ℓ.

• In step S1, E(ρi) = [E(ρi1), . . . , E(ρir)] will be a vec-

tor of r elements of Zm2 .

• In step S3, compute E(Ric) =
∏

1≤j≤r

E(ρij)
Wjc as el-

ements of Zm2 for 1 ≤ c ≤ s.

• In step S4, return [E(Ri1), . . . , E(Ris)] to the client.

• In step C1, use Paillier decryption to compute Ric =
D(E(Ric)), and then proceed as before.

This modified protocol still allows the client to recover

the desired block Bβ , even when only k of the ℓ servers re-

spond, and v < k − ⌊
√
kt⌋ of those k are Byzantine. This

fact follows immediately from the equivalent result for the

original protocol in Figure 2: once the client receives and

decrypts the servers’ replies, he has the same information

as he would have had, had none of the encryption or de-

cryption happened.

The information-theoretic protection of the client’s

query against coalitions of up to t servers is also immediate:

if a coalition of t servers, knowing t of the ρi, cannot learn

any information about β, then certainly if those servers in-

stead know E(ρi), that does not give them more information

about β. Formally, given any algorithm A that can recover

information about β given t of the E(ρi), one can easily

construct an algorithm A′ that recovers that same informa-

tion about β given t of the ρi, by first encrypting the ρi, and

passing the results to A. Since there is no such A′, there is

also no such A.

Now we turn our attention to the case in which up to all

ℓ of the servers collude. The privacy consideration is only

interesting if there is more than one block in the database,

so we assume r ≥ 2.

Theorem 4. Given a fixedm, if there is a probabilistic poly-

nomial time algorithm A which can distinguish Paillier en-

cryptions of t-private ℓ-way Shamir secret shares of the vec-

tor e1 from Paillier encryptions of t-private ℓ-way Shamir

secret shares of the vector e2 with some probability ψ, then

there is a probabilistic polynomial time algorithmA′ which

can distinguish Paillier encryptions of the number 0 from

Paillier encryptions of the number 1 with the same proba-

bility ψ.

Proof. Suppose the given algorithm A takes as input Pail-

lier encryptions of t-private ℓ-way secret shares of eβ for

some β ∈ {1, 2}, and, to be generous, the ℓ indices used for

the Shamir secret sharing, andA outputs β′ ∈ {1, 2}. Then

by assumption, Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 2] = ψ.

The desired algorithmA′ is as follows:

Input:

A ciphertext C = E(ζ), for some ζ ∈ {0, 1}.
Output:

A guess ζ′ at the value of ζ.

Algorithm:

1. Choose ℓ random distinct indices α1, . . . , αℓ from

Zm. Verify that gcd(αi,m) = 1 for each i and that

gcd(αi − αj ,m) = 1 for each i, j.

2. Choose r random polynomials f1, . . . , fr of degree t.
The coefficients of each polynomial should be random

elements of Zm, except for the constant terms. The

constant term of each fj should be 0.

3. Compute E(ρi) = [E(f1(αi)) · C, E(f2(αi)) ·
E(1)/C, E(f3(αi)), . . . , E(fr(αi))] for 1 ≤ i ≤ ℓ.

4. Output ζ′ =
(2−A([E(ρ1), . . . , E(ρℓ)], [α1, . . . , αℓ])).



To see why this works, notice that [fj(α1), . . . , fj(αℓ)]
are t-private ℓ-way secret shares of the value 0, for each

1 ≤ j ≤ r. Therefore [f1(α1) + ζ, . . . , f1(αℓ) + ζ] are t-
private ℓ-way secret shares of the value ζ, and [f2(α1)+1−
ζ, . . . , f2(αℓ) + 1 − ζ] are t-private ℓ-way secret shares of

the value 1−ζ. But by the homomorphic property of Paillier

encryption, E(f1(αi))·C is an encryption of f1(αi)+ζ, and

E(f2(αi)) · E(1)/C is an encryption of f2(αi) + 1 − ζ, so

[E(ρ1), . . . , E(ρℓ)] are t-private ℓ-way shares of e2 if ζ = 0,

and of e1 if ζ = 1. Therefore Pr[ζ′ = 1|ζ = 1] − Pr[ζ′ =
1|ζ = 0] = Pr[β′ = 1|β = 1]− Pr[β′ = 1|β = 2] = ψ, and

the result is proven.

Remembering from section 2.3 that the the Paillier cryp-

tosystem is semantically secure if and only if the Decisional

Composite Residuosity Assumption (DCRA) holds (for the

value of m used in the cryptosystem), we get the following:

Corollary. The protocol of this section maintains the pri-

vacy of the query against coalitions of up to all ℓ servers,

provided the Decisional Composite Residuosity Assumption

holds for those servers, for the value of m used in the pro-

tocol.

That is, so long as the servers do not have sufficient com-

putational power to break the DCRA, they will be unable to

distinguish queries for block 1 from queries for block 2. By

symmetry (there is nothing special about blocks 1 and 2),

the servers will be unable to distinguish any one query from

another.

4.1. Communication cost

The only change to the communication cost is that el-

ements of Zm2 are being sent between the client and the

servers, instead of elements of S = Zm. This causes all

communication to approximately double in size, increasing

the communication cost by the constant factor of 2; the cost

is still O(ℓ
√
nw) to retrieve

√
nw bits.

4.2. Notes on the choices of parameters

It should be noted that in both the original scheme given

in Figure 2, and this modification, the choice of almost all

the parameters, including t, b, w, S, I, the αi, and h, is

done by the client. Furthermore, each client using the same

database can choose his own values for the parameters inde-

pendently of any other clients’ choices. (In that case, how-

ever, b, w, and S need to be communicated to the server

during the protocol, marginally increasing the communica-

tion cost.)

S should be chosen as small as needed to achieve the de-

sired security properties, since the communication cost of

the protocol depends on the size of S. Note, however, that

although using a larger S will result in a higher communi-

cation cost, the client will also retrieve a correspondingly

larger database block.

For example, in the protocol of this section, the DCRA

needs to hold over S = Zm, so m needs to be chosen to be

at least 1024 bits long (since the DCRA is clearly at most

as hard as factoring m).

On the other hand, if the protocol is not required to be ℓ-
computationally-private, much smaller structures S will do.

Minimally, we must have |S| ≥ ℓ+1, and this value suffices

if h > k+t
2 , as in Fact 2, or if we are using redundancy

to avoid list decoding. If we are using Fact 3 to avoid list

decoding, then we will probably want to choose |S| to be

around 2128.

Once we have selected S, the best choices for w and b
are then ⌊lg(|S|)⌋ and

√
nw, respectively.

5. Protecting the data from the servers

In this section, we give a small enhancement to the pro-

tocols of the previous sections that allows the contents of

the database itself to be hidden from coalitions of up to τ
servers, for 0 ≤ τ < k − t − v(2 − v

k
). We achieve

τ -independence, as defined in [5]: no coalition of up to

τ servers has any information about the content of the

database (in the information-theoretic sense). Unlike the

result in [5], however, we do not achieve τ -independence at

the expense of an increased number of servers or at the ex-

pense of communication cost: the number of servers and

communication cost of the τ -independent version of our

scheme are identical to those of the regular version.

The major change we make to our protocol in order to

achieve τ -independence is that, in this scheme, the choices

of S, I, and the indices αi need to be made in advance of

storing data in the database. This condition imposes the

following restrictions on the use of the scheme:

• If it is intended that the user storing the information

in the database is different from the client retrieving

the data, or if there is more than one such client, they

cannot rely on the secrecy of the αi to get the bene-

fit of Fact 3. They need to use redundancy techniques

instead, as mentioned in section 3.4, or reduce the al-

lowed number of Byzantine servers to at most k−t−τ
2 .

• If it is intended that there is more than one client re-

trieving data, this scheme cannot be used at the same

time as the scheme from section 4: in the latter scheme,

S was chosen to be Zpq for secret values p and q. Mul-

tiple clients would not use the same S, and so with this

variant, could not use the same database at all.

At system setup time, S and the αi are chosen, and com-

municated to all of the users of the database (either users



storing data, or users retrieving data). S must be communi-

cated to the servers as well, but the αi need not be.

As before, the database is divided into r = n/b b-bit

blocks, and each block is divided into s = b/w w-bit words.

But instead of the server i storing the swordsWj1, . . . ,Wjs

of block number j directly, it stores each block as a se-

quence of s elements ω
(i)
j1 , . . . , ω

(i)
js of S.

The computation of these ω
(i)
jc uses Shamir secret shar-

ing. In particular, a user that wants to store database block j
divides it into s words Wj1, . . . ,Wjs, and does the follow-

ing for each 1 ≤ c ≤ s:

• Choose a random polynomial gjc of degree τ . The co-

efficients of gjc should be random elements of S, ex-

cept for the constant term, which should be Wjc (en-

coded as a member of S).

• Send gjc(αi) to server i to store as its ω
(i)
jc , for each

1 ≤ i ≤ ℓ.

That is, the values of ω
(i)
jc for 1 ≤ i ≤ ℓ are just τ -private

ℓ-way Shamir secret shares of Wjc.

The modifications to the protocol of Figure 2 are now

straightforward:

• Remove step S2, and use ω
(i)
jc instead of Wjc in step

S3.

• In step C2, check that k ≤ t+ τ instead of k ≤ t.

• In step C3, choose h from the range
√

k(t+ τ) < h ≤
k instead of

√
kt < h ≤ k.

• In steps C5 and C6, pass t+ τ instead of t.

We note that our choice of 0 ≤ τ < k− t− v(2− v
k
) en-

sures that the same values of h, v, t, k, and ℓ we used in the

original protocol will continue to work in the τ -independent

version. In particular, choosing τ from this range guaran-

tees that k ≤ t+ τ and
√

k(t+ τ) < h ≤ k.

We also note that if we set τ = 0, we get exactly the same

protocol as before, since 0-private ℓ-way shares of Wjc are

just ℓ copies of Wjc itself.

Why does this work? Step S3 computes Ric to be
∑

1≤j≤r

ρijω
(i)
jc =

∑

1≤j≤r

fj(αi)gjc(αi) = Fc(αi), where Fc

is the polynomialFc =
∑

1≤j≤r

fjgjc of degree at most t+ τ .

Note, however, that it is not necessarily the case that theRic

are (t+ τ)-private ℓ-way shares of Fc(0) = Wβc, since the

distribution of the Fc is not uniform. In particular, it may be

possible to learn some information about Wβc given t + τ
of the Fc(αi). However, it is still the case that any t+ τ +1
of the Fc(αi) uniquely determines Fc, and that is the only

fact we use in our reconstruction of Wβc.

Therefore, we have constructed a t-private v-Byzantine-

robust τ -independent k-out-of-ℓ PIR protocol for 0 < t ≤
t + τ < k, and v < k − ⌊

√

k(t+ τ)⌋. This protocol has

communication cost O(ℓ
√
nw) to retrieve

√
nw bits of the

database. If there is to be only one client retrieving data, we

can use both the extensions of this section and of section 4 at

the same time, and add ℓ-computationally-private to the list

of properties, at a cost of a factor of 2 in the communication.

6. Implementation details

We implemented the protocols in this paper in C++, us-

ing Victor Shoup’s NTL library [15], except for one part of

step H2 of the HARDRECOVER subroutine, which is cur-

rently performed by the computer algebra system MuPAD

[13]. Our implemenation is available as the Percy++ project

on SourceForge [6].

We measured the computational performance of these

protocols on a Lenovo T60p laptop computer with a

2.16 GHz dual-core Intel CPU running Ubuntu Linux in or-

der to determine their practicality.

We first measured the performance of the proto-

col of Figure 2; that is, the protocol without the ℓ-
computationally-private and τ -independent properties. We

used a range of values of n, t, ℓ, and w, and we set k = ℓ in

all cases.

Figure 4 shows some representative results. In

these cases, the were no Byzantine servers, so the

HARDRECOVER subroutine was never executed. Fig-

ure 4(a) shows the client’s processing time, as a function

of the database size, for various values of w. In this plot,

we set (t, k) = (12, 20). The plot suggests a square-root

dependence on the database size, which agrees with an ex-

amination of the algorithm. We confirm this by squaring

the measurements; the results are shown in Figure 4(b),

which indeed produces linear graphs. Figure 4(c) shows

the servers’ processing time, and again as expected, this is

linear in the database size. Finally, Figure 4(d) shows that

for fixed k, the client’s running time depends linearly on the

privacy level t. As a numeric example, for w = 128, the

client processing takes 44
√
n microseconds, and the server

processing takes 9.6n nanoseconds.

When we introduce Byzantine servers, the

HARDRECOVER subroutine gets executed. As expected,

this is noticeably more expensive than the EASYRECOVER

subroutine. For (t, k) = (5, 10), for example, it adds a

couple of seconds to the client’s processing time. For

(t, k) = (10, 20), it adds several minutes. However, this is

not onerous, since it is likely that the mere ability of the

client to detect which servers are returning incorrect results

will deter the servers from doing so. Therefore, we expect

to use the HARDRECOVER subroutine only rarely.

Adding τ -independence (the modification to the protocol
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Figure 4. Performance measurements for the protocol of Figure 2.

from Section 5) is, as expected, quite cheap. In Figure 5

we plot timings of the t-private τ -independent version of

the protocol. In each graph, we fix w = 128, k = 20,

and n = 225, and vary t and τ such that 0 < t < t +
τ < k. In Figure 5(a) we see that the server’s processing

time is independent of both t and τ . We divide the client’s

processing time into two parts: Figure 5(b) shows the time

it takes the client to prepare its query (the steps labelled

“P” in Figure 2), and Figure 5(c) shows the time it takes the

client to reconstruct the data block (the steps labelled “C”

in Figure 2). The graphs clearly show that the preparation

time is linearly dependent on t, but independent of τ , and

the reconstruction time is linearly dependent on t + τ , as

would be expected from the algorithm. The careful reader

will note that the sum of the times in Figures 5(b) and 5(c)

is slightly less than the corresponding times in Figure 4(d);

this is because the αi are fixed in the τ -independent version,

and are in fact chosen to be the very simple αi = i.

On the other hand, adding ℓ-computational privacy (the

modification from Section 4) is quite expensive. The server

needs to perform one modular exponentiation for each w-

bit word in the database. The plots have the same shape as

those of Figure 4, but the scale is different: for w = 1024,

k = 5, and t = 4, we find the client’s processing time is

15
√
n milliseconds, and the server’s processing time is 30n

microseconds. For values of n in the hundreds of millions

of bits or more, these times are substantial.

7. Conclusion

We have improved the robustness of protocols for private

information retrieval in a number of ways. Compared to the

previous scheme in [2], our basic protocol allows for more

servers to collude without compromising the user’s privacy.

Moreover, maintaining the same privacy level as in [2], we

enable the reconstruction of the correct data block when

more servers return faulty responses. We extended this pro-

tocol to add hybrid privacy protection; that is, information-

theoretic protection if up to t servers collude (for some

t < k ≤ ℓ), but still computational protection if up to all

ℓ collude. Finally, we presented another extension which

added τ -independence to the protocol while increasing nei-

ther the number of servers, nor the communication cost.

We implemented and measured these protocols and

found the performance to agree well with theory. With the

exception of the hybrid privacy protection, our implementa-

tion gives practical speeds for moderately sized databases.
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A Detailed proofs

Proof of Theorem 1. In step P2, the client defines r polyno-

mials f1, . . . , fr of degree t. Define the s polynomials Fc

to be Fc =
∑

1≤j≤r

fjWjc for 1 ≤ c ≤ s, where the Wjc are

the words in the database as defined as in step S2. Note that

these polynomialsFc are also of degree (at most) t, and also

that Fc(0) =
∑

1≤j≤r

fj(0)Wjc =
∑

1≤j≤r

δjβWjc = Wβc.

Suppose server i is one of the servers that responds. In

step S1, it receives [f1(αi), . . . , fr(αi)] from the client. In

step S3, it computesRic =
∑

1≤j≤r

fj(αi)Wjc = Fc(αi) for

1 ≤ c ≤ s, and returns these values to the client in step S4.

The client initializes H to be {(G, ǫ)} in step C1, where

G is the set of server numbers that responded. We claim

that after x iterations of the loop at C4, H will be the set

{(G,B(xw)
β )}, where B

(xw)
β is a string consisting of the

first xw bits of the database block Bβ . We proceed by

induction: we have already shown that this is the case for

x = 0. Suppose it is true for x = c− 1 for some 1 ≤ c ≤ s.
Now consider iteration c. In step C5, the client calls

EASYRECOVER(S, w, t, h,H, [R1c, . . . , Rℓc], [α1, . . . , αℓ])
where Rjc = Fc(αj) for each j ∈ G.

By the induction hypothesis, there is exactly one ele-

ment of H , so the loop at E2 will execute only once. In

step E4, the client will necessarily find φ = Fc, since

φ(αj) = Rjc = Fc(αj) for each j ∈ G, and so for each

j ∈ I ⊆ G. Since these two polynomials φ and Fc of de-

gree at most t agree on at least t + 1 points of I, they must

be equal. Therefore the W in step E5 will just be the w-bit

representation of Fc(0) = Wβc, which is the cth w-bit word

of block β of the database.

Then in step E6, Γ(φ) ∩ G will equal G, so H ′ will be

set to {(G, σ||W )}. By the induction hypothesis, σ is the

first (c− 1)w bits of Bβ , so σ||W is the first cw bits of Bβ ,

and the proof of the claim is complete.

Therefore, after all s = b/w iterations of the loop at C4,

H will equal {(G,Bβ)}, as required.

Proof of Theorem 2. As above, we will prove that after x
iterations of the loop at C4, H will be a set containing the

element (G
(x)
h , B

(xw)
β ) where G

(x)
h is the set of server num-

bers that both replied at all, and also replied honestly in the

first xwords of its reply, andB
(xw)
β is defined as before. For

x = 0, this is trivially true. Suppose it is true for x = c− 1
for some 1 ≤ c ≤ s. Now consider iteration c. We can

assume the client calls HARDRECOVER in step C6, since

as we noted earlier, EASYRECOVER produces the same an-

swer as HARDRECOVER when it produces an answer at all.

HARDRECOVER will produce a set of polynomials in

step H2, one of which will necessarily be Fc (as defined

above). This set may have polynomially (in k) many el-

ements, but we will see in section 3.4 that the probability

that this set contains elements other than the desired one

can be made arbitrarily small, ensuring that the entire pro-

tocol runs in (probabilistic) polynomial time. When the

loop at H3 encounters the element Fc, Wi will be set to

Fc(0) = Wβc (as defined above). By the induction hypothe-

sis, step H5 will find the element (G
(c−1)
h , B

((c−1)w)
β ) ∈ H .

But also Γ(Fc) ⊇ Gh, so Γ(Fc) ∩ G(c−1)
h ⊇ Gh, so

|Γ(Fc) ∩ G(c−1)
h | ≥ h. Then step H5 will add (Γ(Fc) ∩

G
(c−1)
h , B

((c−1)w)
β ||Wβc) = (G

(c)
h , B

(cw)
β ) to H ′, and the

proof is complete.

Proof of Fact 3. We start with the following Lemma:

Lemma. There is a polynomial PS(k), depending only on

whether S is a ring or a field, such that the size of the set

of candidate polynomials {φi} output in step H2 is at most

PS(k).

Proof of Lemma. For fields S, the algorithm of [7] works

by constructing a bivariate polynomial Q(x, y) over S

with the property that for any (univariate) polynomial

φ such that |Γ(φ)| ≥ h, it is the case that (y −
φ(x)) is a factor of Q. This polynomial Q has degree
⌊

1
t

(

h− 1 + h

⌊

kt+
√

(kt)2+4(h2−kt)

2(h2−kt)

⌋)⌋

in y, so the num-

ber of such factors is at most that value. (The denominator

of this value is what produces the restriction that h >
√
kt.)

With some simple algebra, it is easy to see that if 1 ≤ t < k
and
√
kt < h ≤ k, that value is bounded by 2k2.

For rings S = Zpq , we proceed modulo p and q sepa-

rately, and combine the results using the Chinese Remain-

der Theorem, matching factors using Γ(φ). This can poten-

tially increase the bound on the number of possible results

to (2k2)2.

Note that neither of these bounds is tight.

Each of the at most s calls to HARDRECOVER will pro-

duce a set of at most PS(k) polynomials in step H2. Each

of these polynomials φ will have |Γ(φ)| ≥ h. But since

h, the number of honest servers, is more than half the total

number of servers that replied, at least some of the elements

of Γ(φ) must be server numbers of honest servers. For each

φ, there must be at least one such element, and for each φ
other than the correct one, there must be at most t (other-

wise, φ would agree with the correct polynomial in more

than t places, and so it would indeed be the correct polyno-

mial). The key observation, similar to that in [16], is that if

the Byzantine servers cannot know the values of αj for hon-

est server numbers j, then they only have a small chance of

producing incorrect polynomials that agree with the correct

polynomial at one of the honest αj .



Let Z be the set {αj : server j is not honest}, and Y be

the set {αj : server j is honest}. We want to bound the

probability that, of the ≤ sPS(k) polynomials returned in

step H2, and of the≤ t points of I\Z at which each of these

polynomials agree with the correct polynomials, the result-

ing ≤ stPS(k) points have non-trivial intersection with the

set Y . But |I\Z| = |I| − (ℓ − h), and |Y | = h, so that

probability is at most
hstPS(k)
|I|−ℓ+h

, as required.


