
Parallel Mixing

Philippe Golle
Palo Alto Research Center
Palo Alto, CA 94304, USA

pgolle@parc.com

Ari Juels
RSA Laboratories

Bedford, MA 01730, USA

ajuels@rsasecurity.com

ABSTRACT
Efforts to design faster synchronous mix networks have fo-
cused on reducing the computational cost of mixing per
server. We propose a different approach: our re-encryption
mixnet allows servers to mix inputs in parallel. The result is
a dramatic reduction in overall mixing time for moderate-to-
large numbers of servers. As measured in the model we de-
scribe, for n inputs and M servers our parallel re-encryption
mixnet produces output in time at most 2n – and only
around n assuming a majority of honest servers. In con-
trast, a traditional, sequential, synchronous re-encryption
mixnet requires time Mn.

Parallel re-encryption mixnets offer security guarantees
comparable to those of synchronous mixnets, and in many
cases only a slightly weaker guarantee of privacy. Our pro-
posed construction is applicable to many recently proposed
re-encryption mixnets, such as those of Furukawa and Sako,
Neff, Jakobsson et al., and Golle and Boneh. In practice,
parallel mixnets promise a potentially substantial time sav-
ing in applications such as anonymous electronic elections.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption

General Terms
Security

Keywords
Anonymity, Privacy, Mixnet, Permutation, Parallel execu-
tion

1. INTRODUCTION
A mix network or mixnet is a fundamental cryptographic

tool for privacy enforcement invented by Chaum [4]. Mixnets
can help achieve a broad range of privacy applications. Among

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04,October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

the most commonly considered are anonymous message de-
livery systems (such as Mixminion [5]) and privacy-preserving
electronic elections, as described recently in, e.g., [8, 16].

There is now an extensive literature on mixnet designs [4,
6, 9, 12, 11, 14, 13, 15, 19, 20, 21]. While there are many
varieties of mixnets, the core operation of a mixnet is always
essentially the same. A mixnet takes as input a set of n ci-
phertexts, re-encrypts (or decrypts) these ciphertexts, and
outputs the n new ciphertexts (or plaintexts) in a randomly
permuted order. In this paper, we consider exclusively re-
encryption mixnets, i.e. mix networks that re-encrypt input
ciphertexts and output new ciphertexts in a randomly per-
muted order.

Re-encryption mixing is typically followed by a decryp-
tion step, in which the final ciphertext outputs of the re-
encryption mixnet are decrypted by a quorum of entities
that share the decryption key. Our parallelization technique
applies only to the mixing and re-encryption operations (by
far the most computationally expensive), not to the final de-
cryption step (ElGamal threshold decryption, in any case,
lends itself naturally to parallelization). In what follows, we
thus leave aside the final decryption step, and focus on the
re-encryption and mixing operation.

We describe next the re-encryption operation in more de-
tail. The ciphertext inputs and outputs of a re-encryption
mix network have the same underlying plaintexts. Where
they differ is in the ordering of these plaintexts. With re-
spect to plaintexts, the outputs of a mixnet are the result of a
random, secret permutation applied to the corresponding in-
puts. The re-encryption operation hides the correspondence
between inputs and outputs (i.e. the secret permutation)
from outside observers, and underlies the privacy properties
of a mixnet.

To help ensure the secrecy of this permutation, the opera-
tions of a mixnet are distributed across multiple computing
platforms, often generically referred to as servers. A well
designed mixnet preserves secrecy even in the face of active
adversarial compromise of a number of servers. Mixnets can
be divided into two categories depending on how inputs are
assigned to servers. In synchronous mixnets (also known
as mix cascades), each server mixes in turn a full batch of
n ciphertexts, then passes the batch on to the next server.
Asynchronous mixnets let servers exchange and mix inputs
freely, without preserving the structure of a batch.

At any given time in a conventional synchronous mixnet,
all servers but one are idle. Most of the computational
resources of such mixnets may in consequence be viewed
as wasted (A partial exception to this is the synchronous

mixnet of [1, 2], which permits some operational overlap.)
Given M servers, the total running time of a synchronous
mix network is Ω(Mn), as each server must in turn per-
form Ω(n) work to process n input elements. Asynchronous
mixnets are more efficient, since they permit a more efficient
distribution of inputs among servers, but they offer weaker
guarantees of privacy [7] and in particular suffer from traffic
analysis attacks [22, 25].

In this paper, we show how synchronous re-encryption
mixnets may be parallelized so as to harness the compu-
tational power of all servers efficiently. A naive approach
would be to divide the set of n inputs into λ batches each of
size n/λ, and feed these smaller batches to the synchronous
mixnet one after the other, keeping the pipeline of mix
servers full. The obvious drawback of this approach is that
it offers much weaker privacy, since every input is mixed
only with n/λ others instead of being mixed among the full
set of n inputs.

In contrast, we propose a parallelization technique that
keeps nearly intact the strong privacy guarantees of syn-
chronous mixnets. The result is a striking drop in the full
operating time of a synchronous re-encryption mixnet from
Mn to 2n, or even to n when a majority of servers are hon-
est. In practice, our proposal accelerates total mixing time
by roughly a factor of M/2 or better. In cases where M > 2
and where communications latency is small, this can have a
substantial practical impact.

In both sequential mixnets and our proposed parallel mix
network, each server implements one or more local mixing
operations on sets of input ciphertexts. In other words, a
server applies its own secret, random permutation. (The
global permutation applied by the mixnet represents the
composition of permutations applied by individual servers.)
We refer to a server’s local permutation operation as a mixop.

Any robust mixnet includes a cryptographic mechanism
enabling servers to prove that their mixops have been per-
formed correctly, i.e., that the set of plaintexts correspond-
ing to inputs is identical to that of the outputs. The litera-
ture offers many tools to accomplish this goal [1, 9, 12, 11,
19]. Our parallel constructions in this paper are agnostic
to the choice of these proof techniques. In other words, we
offer a way to restructure any existing re-encryption mixnet
architecture so as to parallelize it. We do not propose any
change to the underlying cryptographic technology. Rather,
we show how to enable servers to perform many mixops on
small ciphertext sets, rather than monolithic mixops on a
full set of n ciphertexts. Given this focus, it is convenient
to make a few ideal modelling assumptions:

1. Ideal correctness: We assume that server misbehav-
ior is always detected, i.e., we assume perfect public
verifiability. In other words, we abstract away the un-
derlying cryptographic features of mixop proofs, and
instead assume an ideal proof mechanism. We do not
assume that a server can be detected if it fails to apply
a truly random permutation in performing its mixops.
We only assume full verifiability of the fact that a
server has executed some valid permutation.

2. No communication latency: We assume that data
may be transmitted instantaneously between any two
servers. This assumption allows us to ignore the time
required for communication and focus on the time re-
quired for computation. In practice, computation time

is likely to dwarf communication time in many situa-
tions, such as when input sizes are fairly large. Where
communication time is non-negligible, it can simply be
added to our estimates of computation time.

3. Bulletin board: As is common in the mixnet litera-
ture, we assume use of a bulletin board. This is a piece
of publicly accessible memory with universal read ac-
cess and appendive write access. In the case where a
bulletin board is maintained by servers participating
in a mixnet, it may be achieved using Byzantine agree-
ment as described in [18], for which a recent, practical
construction is proposed in [3]. We consider an ad-
versarial model in which the adversary may control a
majority of servers. In this case, we must assume that
the bulletin board is reliably maintained by an exter-
nal entity.

4. Linear mixop costs: We assume that proof and re-
encryption operations for mixops are linear in the num-
ber of input elements. This holds for many mixnets, as
we explain below. We treat the full processing of a sin-
gle element as an atomic computational operation; we
refer to a single such operation as a step. We further-
more assume uniform computing time across servers,
so that a step may also be defined as the interval of
time required to process a single element.

5. Ideal randomness source: We assume that a pub-
licly verifiable, ideal source of randomness is available
for our mixnet. (This is required in particular for step
1 of our construction.) In practice, this may be em-
bodied through a distributed protocol among servers,
but for simplicity, we abstract this process away.

As a result of these assumptions, our construction is essen-
tially combinatorial in nature. We may define a mixnet en-
tirely as a schedule of mixops among servers, without treat-
ment of any of the supporting cryptographic apparatus. Our
basic measure of efficiency is the total interval of time (i.e.
the total number of steps) required to run the mixnet when
servers behave correctly.

Organization. We survey related work in the rest of this
section. We define our model in section 2, and propose a
parallel mixnet protocol in section 3. We prove security
results in section 4, followed by some optimality results in
section 5. We conclude in section 6.

1.1 Related Work
Parallelization is a natural optimization to pursue in a dis-

tributed system. It is indeed somewhat surprising that mix
networks have not benefitted from such an approach. Both
switching networks [24] and parallel sorting algorithms [17]
accomplish much the same goal as a parallel mixnet, but in
a non-adversarial setting. Achieving a truly random, secret
permutation in an adversarial setting is rather more chal-
lenging.

In their mixnet constructions, Abe [1] and Jakobsson and
Juels [14] have turned to a class of switching networks known
as permutation networks. (A permutation network is a
switching network that can realize any permutation of its
inputs). Both of these proposals, however, have employed
permutation networks in an essentially serial manner (al-
though Abe does exploit a small degree of parallelization).

Our proposed construction in this paper may be viewed as
a parallelized permutation algorithm specially adapted for
the adversarial setting of a mixnet. Like other parallelized
algorithms, ours involves the careful distribution and coor-
dination of small tasks across multiple servers. In our con-
struction, the small tasks in question are mixops on small
input batches.

Our construction is applicable to any re-encryption mixnet
whose costs are linear in the number of input elements.
Among recent, efficient constructions, this criterion is ful-
filled by the mixnets of Furukawa and Sako [9], Neff [19],
Jakobsson et al. [15], and Golle and Boneh [10].

2. MODEL
Let n be the number of input ciphertexts to a mixnet,

and let M be the number of mix servers. We structure our
mixnet construction in terms of a sequence of synchronous
rounds. A round is a period during which servers execute
mixops without communicating. At the end of a round,
servers may exchange batches of ciphertexts. We let R de-
note the number of rounds in a given mix network construc-
tion.

Upon input and at the beginning of each round of mixing,
the mixnet globally operates on an ordered sequence of n
ciphertexts. We think of this sequence as occupying a vector
of n slots. Initially, each of the n input ciphertexts is placed
in one of the n slots (let the ith ciphertext occupy the ith

slot). The operation of a mixnet is defined by a schedule
assigning each mix server to a subset of slots in a given
round. The role of a server is to permute the ciphertexts
among the slots it is assigned. These ciphertexts are at the
same time re-encrypted to hide the permutation that the
server has applied to elements in its slots.

Throughout the paper, we reserve the letter k for indexing
mixing rounds (k ∈ {1, . . . , R}), the letter j for indexing
mix servers (j ∈ {1, . . . , M}), the letter i for indexing input
ciphertexts (i ∈ {1, . . . , n}) and the letter s for indexing slots
(s ∈ {1, . . . , n}). Note that ciphertexts and slots should not
be confused. At the beginning, the ith ciphertext occupies
the slot s = i. But whereas slots are fixed, ciphertexts move
between slots in every round as they get permuted by the
servers.

Given our ideal assumption about the correctness of mix-
ing, i.e. our assumption that cheating servers are always
caught, the notion of a path for an input element through
the mixnet is well defined for a particular mixnet invoca-
tion. The path of an element is the ordered list of slots
s1, . . . , sR+1 occupied by that element in the course of mix-
ing. The element occupies slot s1 before the first round of
mixing, s2 in-between the first and second rounds of mixing,
and finally sR+1 after the Rth round of mixing. (When two
input plaintexts are identical, a path is defined in terms of
the permutations selected by servers.)

The structure of a parallel mixnet is entirely defined by the
assignment of slots to mix servers in each round. We define
Sk(j) ⊆ {1, . . . , n} to be the set of slots assigned in round k
to server j. A slot may never be assigned to more than one
server in the same round, so that Sk(j0) ∩ Sk(j1) = ∅ for
all rounds k and all servers j0 6= j1. Note however that the
sets Sk(1), . . . , Sk(M) need not necessarily form a partition
of {1, . . . , n} since some slots may not be assigned to any
server in round k.

Definition 2.1. (Parallel mixnet) The set S = {Sk(j)}
for 1 ≤ j ≤ M and 1 ≤ k ≤ R completely defines the struc-
ture of the parallel mixnet.

In a parallel mixnet defined in this way, the computational
cost for server j is

∑R
k=1 |Sk(j)| steps. The total mixing time

for the mix network is
∑R

k=1 maxj |Sk(j)| steps.

Example: A traditional, sequential mixnet may be defined
as follows. The number of rounds is equal to the number
of servers and therefore R = M . For 1 ≤ j, k ≤ M , we let
Sk(j) = {1, . . . , n} for j = k and Sk(j) = ∅ otherwise. In
other words, server j is assigned all n slots in round k =
j and mixes all n ciphertexts found in these slots. The
computational cost for a single server is O(n), while the
total mixing time is O(nM).

Definition 2.2. (Mixnet isomorphism) Let the sets
S = {Sk(j)} and T = {Tk(j)} for j = 1, . . . , M and k =
1, . . . , R define two R-round parallel mixnets on n elements.
We say that S and T are isomorphic if there exists a per-
mutation π of the n slots such that Sk(j) = π(Tk(j)) for all
j = 1, . . . , M and k = 1, . . . , R.

A mixnet isomorphism amounts to a renaming of slots.
Consider for example a 2-round mixnet on 3 inputs. Let
S1(1) = {1, 2} and S1(2) = {3} and S2(1) = {1}, S2(2) =
{2, 3}. In other words, server 1 is assigned slots 1 and 2 in
the first round, and slot 1 only in the second round. Server
2 is assigned slot 3 in the first round, and slots 2 and 3
in the second round. Similarly, we define T1(1) = {1, 2}
and T1(2) = {3} and T2(1) = {2}, T2(2) = {1, 3}. The
permutation π(1) = 2, π(2) = 1 and π(3) = 3 defines an
isomorphism between the parallel mixnets S and T . Observe
that we define mixnet isomorphisms in terms of a renaming
of slots, not a renaming of servers (in the example above, no
renaming of servers maps S to T).

2.1 Anonymity
We define next the properties of parallel mixnets with

respect to anonymity. To do so, we must first define our
adversarial model. In our model:

– The adversary may passively control up to M − 1 mix
servers. Given our ideal correctness assumption, we do
not need to consider active adversarial attacks. Moreover,
because we assume full public verifiability, we are able to
consider an adversary capable of compromising all but one
server. (Without public verifiability, we could only consider
an adversary capable of corrupting a minority set of servers;
an adversary controlling a majority would be able to “out-
vote” and thus override the input of honest servers.) Let
A(M) denote the set of mix servers controlled by the ad-
versary. Mix servers controlled by the adversary continue
to follow the mixing protocol correctly, but the adversary
learns all the permutations applied by these servers. If the
adversary controls no server, we say that it is an external ad-
versary. An external adversary is limited to observing the
inputs and outputs produced by all the mix servers.

– The adversary may learn a number of input/output rela-
tions. More precisely, prior to the invocation of the mixing
process the adversary can designate a set of up to n− 2 in-
put elements. The adversary learns, for each such element,

which slot the element starts from and which slot the el-
ement lands into after the mixing is complete. Note that
these slots are well-defined: they are the starting point and
end point of the path of the element. Let A(I) denote the
subset of slots initially occupied by elements controlled by
the adversary, and let A(O) denote the subset of slots in
which these elements land after mixing is complete. We
assume that there are at least two elements for which the
adversary is unable to learn the initial and final slot, since
that is the minimum requirement for a meaningful definition
of privacy.

This assumption captures the important fact that an ad-
versary may control players providing inputs and receiving
outputs from the mixnet. For example, in a mixnet used for
anonymous e-mail transmission, the adversary might con-
trol players sending and receiving a portion of the e-mail
messages passing through the mixnet.

To define anonymity formally, we consider the probability
PA(k, s0, s1) that the ciphertext occupying slot s1 at the end
of round k is the image (through successive permutations)
of the input ciphertext that occupied slot s0 before mixing
began, in the view of the adversary. In other words, the
probability PA(k, s0, s1) is the probability that the path of
the element that started in slot s0 goes through slot s1 after
k rounds of mixing, in the view of the adversary.

Definition 2.3. We define the anonymity at slot s af-
ter round k with respect to adversary A as Anonk(s) =(
maxs0 PA(k, s0, s)

)−1

. We define the anonymity of the

mixnet for round k with respect to adversary A as Anonk =
mins Anonk(s).

The value Anonk gives a lower bound on the size of the
smallest input set into which an adversary may trace a given
element in the mixnet. For example, if Anon3 = 2, then the
adversary may be viewed as capable of tracing some element
in round 3 back, roughly speaking, to a set consisting of two
input elements. If Anonk = n, then the adversary has no
information about the correspondence between inputs and
elements in mixing round k, while Anonk = 1 indicates exact
knowledge in round k about which input corresponds to a
particular output. (The value log(Anonk) is a lower bound
on the definition of anonymity given in [23].)

Our definition of anonymity needs to be adjusted a little
bit for the last round. This is because we assume that the
adversary learns some input/output correspondences; thus,
in particular, AnonR(s) = 1 for any s ∈ A(O). We therefore
define AnonR = mins 6∈A(O) AnonR(s).

Clearly an input element enjoys no anonymity prior to
mixing. This is stated formally in the following proposition:

Proposition 2.1. We have PA(0, s, s′) = 1 if s = s′ and
PA(0, s, s′) = 0 otherwise.

The next proposition states that when an honest server
takes a collection of input elements, mixes them, and then
outputs them, it obscures the input/output relations on that
group perfectly in the view of the adversary.

Proposition 2.2. Assume that mix server j is not con-
trolled by A. In round k, mix server j processes Sk(j). For
all slot s1 ∈ Sk(j), we have

PA(k + 1, s0, s1) =
1

|Sk(j)|
∑

s∈Sk(j)

PA(k, s0, s).

If, by contrast, a set of elements is mixed by a server
controlled byA, then the mixing operation does not decrease
the ability of the adversary to trace any of these elements.
Formally:

Proposition 2.3. Assume that mix server j is controlled
by A. In round k, mix server j mixes the ciphertexts that
occupy the slots in Sk(j). For all s1 ∈ Sk(j), we have PA(k+
1, s0, f(s1)) = PA(k, s0, s1), where f(s1) is the slot in which
lands the ciphertext that occupied slot s1 before mix server j
mixed Sk(j).

3. PARALLEL MIXNET PROTOCOL
Recall that M ≥ 2 denotes the number of mix servers and

n denotes the number of inputs. To simplify the presentation
of our parallel mixnet protocol, we assume that M2 |n. It is
clear that this assumption can be relaxed without difficulty
by adding dummy input elements to the mixnet.

Our proposed construction starts initially with an equal
partitioning of slots among servers. We call a round in which
slots are evenly partitioned among servers an equi-round.

Definition 3.1. (Equi-round) Assume that M divides
n. We say that mixing round k is an equi-round if |Sk(j)| =
n/M for all j = 1, . . . , M .

Our construction involves two basic operations. We refer
to the first as a rotation. A rotation simply means that the
subset of slots assigned to server j in round k is assigned
to server j + 1 in round k + 1. In other words, each server
passes its assigned slots to the next one in round-robin fash-
ion. More formally:

Rotation: Mixing round k+1 is a rotation of mixing round
k if Sk+1(j) = Sk((j − 1) mod M) for all j = 1, . . . , M .

The second basic operation in our construction is a dis-
tribution. In a distribution, the slots of every server are
assigned uniformly across all servers in the next round.

Distribution: Assume that M2|n and that mixing round
k is an equi-round. We say that mixing round k + 1 is a
distribution of mixing round k if |Sk+1(j)∩Sk(j′)| = n/M2

for all j, j′ ∈ {1, . . . , M}. Observe that this implies that
round k + 1 is also an equi-round.

Recall that in our model, an adversary A may control
a number of mix servers and learn an arbitrary number of
input/output relationships (up to n − 2). Let M ′ < M be
the number of mix servers controlled by A (if M ′ = 0, we
have an external adversary). Figure 1 gives our proposed
parallel mixnet protocol.

Note first that the definition of Figure 1 does not specify
a unique parallel mixnet protocol in terms of the subsets
of slots Sk(j) given to server j in round k. Rather, there
is a family of mixnet protocols that satisfy that definition.
We will show however that all the mixnets that satisfy our
definition are equal up to isomorphism.

To simplify our discussion, we introduce first some new
notation. Let S = {Sk(j)} be a parallel mixnet defined
by the four steps of Figure 1. For j = 1, . . . , M , we let
BS(j) = S1(j) and CS(j) = SM′+2(j). When no confusion
is possible, we omit the subscript S and write simply B(j)
for BS(j) and C(j) for CS(j).

Parallel mixnet construction

1. The first round of mixing is an equi-round. Slots
are assigned to servers according to our ideal
source of randomness (i.e. in practice randomness
selected jointly by all the servers).

2. The next M ′ rounds of mixing are each a rotation
of the previous round.

3. Round M ′ + 2 is a distribution of round M ′ + 1.

4. The next M ′ rounds of mixing are each a rotation
of the previous round.

Figure 1: Our proposed parallel mixnet

Figure 2: A parallel mixnet with 3 servers (M = 3)
and M ′ = 1. The set S1(1) of slots originally assigned
to Server 1 is colored solid blue, the set S1(2) is
diagonally striped red and S1(3) is vertically striped
green.

Intuition:
In step 1 of our parallel mixnet protocol, the slots are

divided at random into “buckets” B(1), . . . , B(M) that are
initially assigned to servers 1 through M . Since we assume
an ideal source of randomness, the adversary has no control
over the initial division of slots into buckets. Every server
mixes the bucket is has been assigned.

In step 2, consisting of M ′ rounds, the servers pass their
buckets of slots on to one another in round-robin fashion.
The key observation is that by the end of step 2, every bucket
will be processed by at least one honest server, since the total
number of rounds of mixing in steps 1 and 2 is M ′+1 > M ′.
As a consequence, therefore, of Proposition 2.2, the elements
found in the slots of any given bucket after the end of step
2 will be completely mixed in the view of the adversary.
This means that a given element is effectively traceable to
an input set of size at least n/M . (In particular we have
Anonk ≥ n/M after this step.)

To achieve mixing among buckets, we invoke a distribu-
tion operation in step 3. The original buckets are broken
up and the slots are re-distributed into a new set of buckets
C(1), . . . , C(M). After this step, every bucket C(i) will con-
tain an equal number of slots from each of the original set
of buckets {B(i)} created in step 1. This does not increase

the level of anonymity for particular elements, but lays the
groundwork for mixing to be completed in the next step.

In step 4, the new set of buckets {C(i)} is passed in round-
robin fashion exactly as in step 2. Again, each bucket will be
processed by at least one honest server, since the total num-
ber of rounds of mixing in steps 3 and 4 is M ′ + 1 > M ′.
Thanks to the distribution operation in step 3, the result
will be a complete mixing of elements. In particular, since
each bucket C(i) includes an equal number of slots from
each original bucket in {B(j)}, the adversary cannot trace
a given output element to its original bucket B(j). Since
each original bucket B(j) was mixed by at least one honest
server, the adversary cannot trace a given output to a corre-
sponding input with probability better than a random guess.

Implementation:
Let us illustrate with an example the choice of values for

the various parameters of our scheme. The following discus-
sion should also help clarify how our parallel re-encryption
mixnet protocol compares with a sequential synchronous re-
encryption mixnet in terms of performance.

Suppose that we want to mix the ballots cast in an elec-
tion. The number of ballots (or inputs), n, is given to us.
Both sequential mixnets and our parallel mixnet guarantee
the privacy of ballots provided that the following condition
holds: “Among the M mix servers involved in the mixing,
at most M ′ are corrupt”.

The choice of values for M and M ′ depends on a num-
ber of factors, such as the importance of the election, the
reputation of servers based on past behavior, etc. All these
factors are unrelated to the mixing protocol. Indeed, our
confidence in the honesty of a server most likely does not
depend on the type of protocol that the server is asked to
run. The choice of the parameters M and M ′ is thus un-
affected by whether we mix the ballots with a sequential
mixnet or a parallel mixnet. For example, we may choose to
use M = 10 servers and assume that no more than M ′ = 6
of those will collude together.

After choosing values for M and M ′, we may mix the
ballots with a sequential synchronous mixnet, at a cost of
Mn steps. We may also mix the ballots with a parallel
mixnet protocol at a cost of at most 2n steps (the exact cost
depends on the values M and M ′ and is given in figure 3).
Our parallel mixnet is thus at least M/2 times more efficient
than a sequential synchronous mixnet, yet it achieves very
nearly the same privacy properties (see discussion below).

4. SECURITY PROOFS
We now prove that our mixnet offers optimal anonymity in

the case where the adversary does not learn any input/output
relations, i.e., when |A(I)| = 0. We also show that even
when the adversary does learn input/output relations, the
mixnet still achieves near optimal anonymity given a large
enough input set. To begin with, we show that our proposed
construction is uniquely defined.

Proposition 4.1. The sequence of operations specified in
Figure 1 defines a unique parallel mixnet up to isomorphism.

Proof. Let {Sk(j)} and {Tk(j)} be two sequential mixnets
that satisfy the properties above. Let σj0,j1 = BS(j0) ∩
CS(j1) and let τj0,j1 = BT (j0) ∩ CT (j1). The sets {σ} and
{τ} are both partitions of {1, . . . , n}. Furthermore, since
round M ′ + 2 is a distribution of round M ′ + 1 we have

parallel sequential
mixnet mixnet

Total mixing time 2n(M ′ + 1)/M nM
Comp. cost per server 2n(M ′ + 1)/M n
Mixing rounds 2(M ′ + 1) M
Anonymity n− |A(I)| n− |A(I)|

Figure 3: Properties of parallel and sequential
mixnets, for n inputs and M mix servers (of which
up to M ′ may be under adversarial control)

|σj0,j1 | = |τj0,j1 | = n/M2 for all j0, j1. Therefore there ex-
ists a permutation π on n elements which maps σj0,j1 to
τj0,j1 for all j0, j1. It is easy to see that π defines an isomor-
phism between {Sk(j)} and {Tk(j)}. ¤

Figure 3 summarizes the properties of our parallel mixnet
protocol. The total mixing time and computational cost
per server (expressed in number of steps) are simple to com-
pute. The number of mixing rounds is the number of times
that a message is exchanged between mix servers. We now
prove the properties of our parallel mixnet with respect to
anonymity.

Recall that A learns the set of slots A(I) that contain the
input elements controlled by the adversary before the mixing
begins, and the set of slots A(O) that contain the same
elements after mixing is complete. For j = 1, . . . , M , let
α(j) = |A(I)∩B(j)| be the number of slots that are in input
bucket B(j) and contain initially an input element controlled
by the adversary. Similarly, let γ(j) = |A(O) ∩ C(j)|. We
also define δ(j0, j1) to be the number of slots that belong
to input bucket B(j0) and to output bucket C(j1) and that
contained an element controlled by the adversary at the end
of step 2 of the parallel mixing protocol.

Theorem 4.2. Let s0 ∈ B(j0) and s1 ∈ C(j1). We have

PA(R, s0, s1) =
n/M2 − δ(j0, j1)(

n/M − α(j0)
)(

n/M − γ(j1)
)

Proof. Let p1 be the probability, in the view of A, that
the input element that originally occupied slot s0 was moved
to one of the slots that land in output bucket C(j1) during
the distribution step. Let p2 be the probability, in the view
of A, that an element that lands in bucket C(j1) after the
distribution step ends up exactly in slot s1 after the mixing
is complete. By definition, we have PA(R, s0, s1) = p1p2.
Let us now compute p1 and p2.

The first M ′ rounds of mixing ensure that every input
bucket is mixed at least once by an honest server. Thus
at the time of the distribution, the content of every input
bucket is uniformly distributed in the view of A across all
n/M inputs, i.e, the adversary knows what is in the bucket,
but not the ordering. In the distribution step, we trans-
fer elements from input buckets to output buckets. Each
output bucket contains an equal mixture of elements from
each input bucket. Let us consider input bucket B(j0). The
adversary A knows to which output bucket α(j0) elements
of B(j0) were assigned. The remaining n/M −α(j0) are as-
signed uniformly at random in the view of A. Since A knows
that δ(j0, j1) elements from B(j0) were assigned to C(j1),
we have p1 = (n/M2 − δ(j0, j1))/(n/M − α(j0)).

The M ′ rounds of mixing that follow the distribution en-
sure that every output bucket is mixed at least once by an
honest server. Thus all elements that are not in a slot that
belongs to A(O) are uniformly distributed in the view of A
and it follows immediately that p2 = 1/(n/M − γ(j1)). ¤

Assuming that the adversary learns no input/output re-
lation, we obtain optimal anonymity

Corollary 4.3. If A(I) = ∅, then our parallel mixnet
has anonymity n with respect to A.

Proof. If A(I) = ∅, we have α(j0) = γ(j1) = δ(j0, j1) =
0 for all j0, j1. By Theorem 4.2, it follows that PA(R, i, i′) =
1/n for all i, i′ and thus the mixnet has anonymity n. ¤

We have shown that when the adversary learns no in-
put/output relations, the mixnet offers optimal anonymity.
What happens when the adversary does learn such relations,
however? In this case, we can still achieve near optimal
anonymity when the elements controlled by the adversary
are uniformly distributed across buckets (or nearly so). We
show this in the following corollary.

Corollary 4.4. If the variables α(j0), γ(j1) and δ(j0, j1)
are equal to their mean values for all j0, j1, our parallel
mixnet has anonymity n− |A(I)|.

Proof. We have E(α(j0)) = E(γ(j1)) = |A(I)|/M and
E(δ(j0, j1)) = |A(I)|/M2. By Theorem 4.2, it follows that
PA(R, i, i′) = 1/(n − |A(I)|) for all i, i′ and therefore the
mixnet has anonymity n− |A(I)|. ¤

Statistically approximating ideal anonymity.
Thanks to our assumption of ideal randomness, the elements
controlled by the adversary are statistically likely to be dis-
tributed in a roughly even fashion across buckets. In partic-
ular, the random variables α(j0) and γ(j1) can be approx-
imated for all j0, j1 by a Poisson distribution with mean
|A(I)|/M and standard deviation

√
|A(I)|/M . The ran-

dom variable δ(j0, j1) can be approximated by a Poisson
distribution with mean |A(I)|/M2 and standard deviation√
|A(I)|/M2. The Chernoff bound shows that for a Pois-

son distribution V with mean E(V) and standard deviation

σ, Pr[|V − E(V)| > σε] ≤ 2e−ε2/4. It follows that with
high probability the variables α, γ and δ are “close” to their
means and therefore Corollary 4.4 is almost always a good
approximation of the anonymity afforded by the mixnet.

5. PROOF OF OPTIMALITY
In this section, we now briefly prove that our construc-

tion achieves optimal efficiency. Our measure of efficiency is
the total time required for the mixnet to complete the mix-
ing and re-encryption operations (we do not consider the
time required for the final, separate, decryption step that
comes at the end). Other measures of efficiency, such as
the amount of computation per server are possible, but we
do not aim to optimize these. Our construction is optimal
in this sense to within a factor of two, as we show in the
following proposition.

Proposition 5.1. let A denote an adversary that con-
trols M ′ < M mix servers. A parallel mixnet with anonymity
AnonR > 1 with respect to A must have total mixing time at
least n(M ′ + 1)/M steps.

Proof. For every slot s ∈ {1, . . . , n}, we define f(s) =
|{j ∈ {1, . . . , M} | ∃k s.t. s ∈ Sk(j) }|. If there exists
s such that f(s) ≤ M ′ then by Proposition 2.3, we know
that there must exist s′ such that PA(R, s, s′) = 1 and
therefore the anonymity of the mixnet with respect to A
is AnonR = 1 contrary to our assumption. This proves that
f(s) ≥ M ′ + 1 for all s. Let Comp(j) denote the total
number of steps that server j must execute. We have just
proved that

∑M
j=1 Comp(j) ≥ n(M ′ + 1). Since the total

mixing time is greater than (1/M)
∑M

j=1 Comp(j), it follows

that the total mixing time is at least n(M ′ + 1)/M . ¤

In the special case where the adversary controls a maximal
number of servers, we can show exact optimality.

Proposition 5.2. let A be an adversary that controls M ′ =
M−1 mix servers. A parallel mixnet with anonymity AnonR =
n with respect to A must have total mixing time at least 2n.
Therefore our parallel mixnet protocol achieves optimal total
mixing time when M ′ = M − 1.

Proof. Let U = {j ∈ {1, . . . , M} | ∃k s.t. |Sk(j)| = n}
be the set of servers that are given all n slots in at least one
round of mixing. If server j is given all n slots in round k
(i.e. |Sk(j)| = n), then all other servers must be idle in that
round (Sk(j′) = ∅ for all j′ 6= j). The mixing time for the
servers in U is thus n|U |.

Now let us consider a server j such that j 6∈ U . We claim
that the computational cost Comp(j) =

∑R
k=1 |Sk(j)| ≥ 2n.

The proof is by contradiction. Assume that Comp(j) < 2n.
Since there are n slots, there exists a slot s which is processed
by server j in only one round k0 (and recall that in that
round |Sk0(j)| < n since j 6∈ U). Now if A controls all
servers but j, we have AnonR(s) < n. Therefore the mixing
time for servers not in U is at least 2n(M − |U |)/(M − |U |).

Altogether, the total mixing time is at least n|U |+2n(M−
|U |)/(M − |U |). The total mixing time is minimized when
U = ∅ and in that case it is exactly 2n. ¤

6. CONCLUSION
We have shown that re-encryption mix networks are not

just highly distributed cryptographic constructions, but also
highly parallelizable ones. Through distribution of small
mix batches among servers and careful scheduling, we show
how to reduce overall mixing time from O(nM) to O(n).

Our proposal engenders an important practical problem.
While we expect that communications latency will be dwarfed
by cryptographic processing time in many applications, e.g.,
elections, this premise requires empirical validation. For this
reason, we would particularly like to see our construction im-
plemented. Our proposal also engenders a theoretical prob-
lem. We are able to prove the optimality of our construction,
in general, only within a factor of two. Whether a better
proof or a better construction will lead to exact optimality
is an open question.

7. REFERENCES
[1] M. Abe. Mix-networks on permutation networks. In

ASIACRYPT ’99, pages 258–273.

[2] M. Abe and F. Hoshino. Remarks on mix-network
based on permutation networks. In PKC ’01, pages
317–324.

[3] C. Cachin, K. Kursawe, and V. Shoup. Random
oracles in Constantinople: practical asynchronous
Byzantine agreement using cryptography (extended
abstract). In PODC ’00, pages 123–132.

[4] D. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Communications
of the ACM, 24(2):84–88, 1981.

[5] G. Danezis, R. Dingledine, and N. Mathewson.
Mixminion: Design of a type III anonymous remailer
protocol. In IEEE Symposium on Security and
Privacy ’03, pages 2–15.

[6] Y. Desmedt and K. Kurosawa. How to break a
practical mix and design a new one. In EUROCRYPT
’00, pages 557–572.

[7] R. Dingledine, V. Shmatikov, and P. Syverson.
Synchronous batching: From cascades to free routes.
In Privacy Enhancing Technologies ’04. To appear.

[8] J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and
K. Sako. An implementation of a universally verifiable
electronic voting scheme based on shuffling. In
Financial Cryptography ’02, pages 16–30.

[9] J. Furukawa and K. Sako. An efficient scheme for
proving a shuffle. In CRYPTO ’01, pages 368–387.

[10] P. Golle and D. Boneh. Almost entirely correct mixing
with applications to voting. In ACM CCS ’02, pages
68–77.

[11] M. Jakobsson. Flash mixing. In PODC ’99, pages
83–89.

[12] M. Jakobsson. A practical mix. In EUROCRYPT ’98,
pages 448–461.

[13] M. Jakobsson and A. Juels. An optimally robust
hybrid mix network. In PODC ’01, pages 284–292.

[14] M. Jakobsson and A. Juels. Millimix: Mixing in small
batches, 1999. DIMACS Technical Report 99-33.

[15] M. Jakobsson, A. Juels, and R. Rivest. Making mix
nets robust for electronic voting by randomized partial
checking. In USENIX’02, pages 339–353.

[16] A. Kiayias and M. Yung. The vector-ballot e-voting
approach. In Financial Cryptography ’04, pages 72–89.

[17] D. Knuth. The Art of Computer Programming, Vol 3:
Sorting and Searching. Addison-Wesley, 1998.

[18] N. Lynch. Distributed Algorithms. Morgan Kaufmann,
1995.

[19] A. Neff. A verifiable secret shuffle and its application
to e-voting. In ACM CCS ’01, pages 116–125.

[20] W. Ogata, K. Kurosawa, K. Sako, and K. Takatani.
Fault tolerant anonymous channel. In ICICS ’97,
pages 440–444.

[21] M. Ohkubo and M. Abe. A length-invariant hybrid
mix. In ASIACRYPT ’00, pages 178–191.

[22] C. Rackoff and D. R. Simon. Cryptographic defense
against traffic analysis. In ACM Symposium on
Theory of Computing, pages 672–681, 1993.

[23] A. Serjantov and G. Danezis. Towards an information
theoretic metric for anonymity. In Privacy Enhancing
Technologies ’02, pages 41–53.

[24] A. Waksman. A permutation network. JACM,
15(1):159–163, 1968.

[25] M. Wright, M. Adler, B. N. Levine, and C. Shields.
An analysis of the degradation of anonymous
protocols. In NDSS ’02, pages 39–50.

