
1

Utilizing Node’s Selfishness for Providing Complete Anonymity in
Peer-to-Peer Based Grids

Rohit Gupta, Souvik Ray, Arun K. Somani and Zhao Zhang
Department of Electrical and Computer Engineering

Iowa State University
Ames, IA 50011

E-mail:
�
rohit, rsouvik, arun, zzhang � @iastate.edu

Abstract

In this paper, a novel protocol for providing both client and server anonymity in peer-to-peer (P2P) based grids is presented.
The protocol assumes individual nodes or users to be utility maximizing agents, and relies on an auction mechanism for trading
of resources among them. The resources here can refer to data files, storage capacity, or computation power (i.e., CPU cycles) etc.
The protocol is inherently anonymous, light-weight, and incentive-compatible. Incentive compatibility implies that the protocol
takes into account the selfishness of users; as would be seen the utilities of users are maximized by truthfully following the
protocol steps. Moreover, if the protocol is truthfully followed by the users, anonymity to both the clients and servers of all the
transactions are guaranteed. Furthermore, unlike other schemes, the proposed protocol does not rely on any trusted centralized
entity or require specialized encryptions to be performed by the users. Thus, the protocol incurs very low overhead on the system
and is light-weight. In brief, the proposed protocol provides efficient and natural means to provide anonymity in P2P based grids,
and is easily deployable in a large un-trusted Internet-scale setting.

Index Terms

Anonymity, peer-to-peer, selfishness, incentives

I. INTRODUCTION

Peer-to-peer (P2P) networks [18], [8], [9], [24] are flexible distributed systems that allow nodes (also called peers) to act

as both clients and servers and provide services to each other. P2P is a powerful emerging networking paradigm that permits

sharing of virtually unlimited data and computational resources in a completely distributed, fault-tolerant, scalable, and flexible

manner.

Much of the focus on grid computing [10] to date has assumed the existence of static grid sites, which have out-of-band

trust relationship among themselves. However, there is also a growing body of research that allows small workgroups and

laboratories to develop a less formal and organized grid environment. Such an ad-hoc computing environment eliminates the

need for grid infrastructure administration and instead offer a more peer-to-peer type grid environment to users (for more

details on ad-hoc grid computing see [10]). In the near future, with the tremendous growth and development in P2P and grid

computing it is possible to have a confluence of the two technologies, whereby large grids are created and organized in a P2P

fashion. It is these P2P based grids that are the focus of this paper.

The goal of this work is to provide complete anonymity to the users of a P2P system, i.e., if a user initiates a request,

say for data download or remote task execution, it should remain anonymous; likewise a user serving the request should

not be traceable. For instance, in a commercial application, enterprises may be accessing resources residing at third-party

computing facilities, e.g. delegating a computation-intensive job or acquiring a large amount of data. Since the third party

could have significant findings about an enterprise activity if the enterprise identity is disclosed, anonymous communication

in such scenarios is as important as other security issues.

2

Anonymity refers to the state that an entity is not identified in the communications with others. As discussed in [2],

anonymous communication may have one or more of the following properties: sender anonymity, receiver anonymity, and

unlinkability. Sender anonymity means that when a message is observed, the sender cannot be identified; receiver anonymity

means that the receiver cannot be identified. Unlinkability means that the relationship between the sender and the receiver in the

communication cannot be identified, even if sender anonymity or receiver anonymity cannot be guaranteed. Some anonymity

mechanism may provide anonymity against one type of threat but not against another type. For example, using a proxy between

senders and receivers may provide sender anonymity against the receiver and vice versa, but may not provide any anonymity

against an eavesdropper who can observe all messages from and to the proxy.

In this paper, a novel protocol for providing both client and server anonymity (and hence also unlinkability) in P2P networks is

presented.1 The protocol assumes individual nodes or users to be utility maximizing agents, and relies on an auction mechanism

for trading of resources among them. The resources here can refer to data files, storage capacity, or computation power (i.e.,

CPU cycles) etc. The protocol is inherently anonymous, light-weight, and incentive-compatible. Incentive compatibility implies

that the protocol takes into account the selfishness of users .2 The authors in [1] also propose the idea of using economic

incentives for building decentralized anonymity infrastructure and motivating users to participate in such a system. Moreover, if

the protocol is truthfully followed by the users, anonymity to both the clients and servers of all the transactions are guaranteed.

Furthermore, unlike other schemes, the proposed protocol does not rely on any trusted centralized entity or require specialized

encryptions to be performed by the users. Thus, the protocol incurs very low overhead on the system and is light-weight.

The authors believe that the proposed scheme is easily deployable in a large untrusted Internet-scale setting. To the best of

the author’s knowledge this is the first work that uses an incentive strategy to address the problem of both client and server

anonymity in a single unified protocol.

The paper is structured as follows. Section VI is on related work. Section II describes the system model. Section III gives a

detailed description of the proposed protocol. The anonymity provided by the protocol is studied in Section IV. The overhead

incurred by the protocol is summarized in Section V, and finally the paper conludes in Section VII.

II. SYSTEM MODEL

A P2P network substrate that is used for network connectivity and resource lookups has been assumed. It must be noted that

in a P2P based system there are no well-defined servers, and nodes act as both servers and clients at different times. Nodes

organize themselves into a logical Chord ring and follow the Chord lookup protocol for resource discovery. A brief description

of Chord has been provided in appendix 1. It is also assumed that a node’s Chord identity (or simply Chord ID) is derived by

applying an appropriate hash function to its IP address, and thus remains fixed for the node.

Message communication is reliable, i.e., a message sent is received by the intended receiver in bounded time without any

distortion. Unless otherwise specified, all message communication is assumed to provide message non-repudiation. The protocol

relies on message non-repudiation to ensure that nodes do not go back on their commitment as suggested by the content of the

1Here clients and servers are nodes in a P2P system. A node initiating a request for a service (or resource) is referred to as the client, and a node that
serves the request is referred to as the server (for that particular request).

2Please see [19] for a discussion on developing protocols considering the profit-maximizing strategies of individual nodes. In fact, the protocol proposed
here is in line with the idea of using mechanism design for solving distributed computing problems as described in [19]

3

messages sent by them. There exist a mechanism to punish nodes if it can be proven that they do not fulfill their commitments.3

Nodes are autonomous rational agents in a game-theoretic sense. By autonomous it is meant that nodes are completely free

to choose their actions. The profit from a transaction is equal to the difference between the reward that a node earns and the

cost that it incurs by participating in the transaction. The goal of rational agents is to maximize their utilities (or profits) during

each network transaction. Nodes participate in a transaction if there is potential for making a profit.

The reward can be anything that is deemed to have value, the possession of which adds to a node’s utility. For simplicity,

it is assumed that rewards are electronically processed and a secure payment mechanism among peers is in place. One such

secure distributed peer-to-peer payment mechanism, called Karma [28] is described in appendix 2. The cost in the form of

bandwidth, memory etc., that a node x incurs by participating in a transaction is referred to as its marginal cost ����� . The

term “marginal” reflects the fact that this cost value is for a given transaction and represents the additional work that a node

has to do for participating in the transaction. The cost incurred by a node increases in proportion to the amount of traffic it is

currently handling, and any request offering less than its current marginal cost is not fulfilled.

A transaction is an event wherein some peer requests a service from other peers in the network. The definition of a service

can include anything from sharing data and compute power to routing messages etc. For example, for music file sharing, the

lookup process initiated by a peer to download some music file corresponds to a transaction. The lookup process includes

both searching for and obtaining the file. Similarly, for compute power sharing, a transaction corresponds to searching for an

appropriate computing node and then sending it a task for execution. In the remainder of the paper, the term service is used

to refer to data file sharing, however, the proposed protocol is general enough to be applicable for other services also.

In each transaction resources are traded using an auction protocol; Vickrey auction [29], [19] is used in which the highest

bidder wins the auction, but the price that it pays is equal to the second highest bid. Vickrey auction has several desirable

properties, such as existence of truth revelation as a dominant strategy, efficiency, low cost etc.

Some nodes in the network can be malicious, whose goal is to compromise the identity of the nodes that request and/or

provide a service. Malicious nodes do not aim to maximize their profits (and in fact are prepared to incur loss), and can work in

collusion, so as to identify who originated a request and who served it. An internal and static adversary model [12] is assumed,

where a) the adversary can observe lookup requests at compromised nodes but cannot observe the links (internal) and b) the

adversary chooses the resources to compromise before the protocol starts (static). Assumption (a) is generally true because

the links under consideration are not actual physical links that can be monitored. There might be thousands of different ISPs

spread over many countries and link monitoring may require observing potentially hundreds (or even thousands) of different

possible physical links between every pair of end users, and hence is not considered in the system model.

For a request initiated by a client, say C, for resource R, a network can be modelled as comprising of three types of entities

- the client itself, the intermediate nodes (which forward the lookup message), and the server(s) capable of serving the request.

It is assumed that a request for resource R can be met by � servers, denoted by �
	������	�������������	�� . (Here R denotes a name

or ID that identifies the resource).

3In an enterprise computing environment there might be a central authority one can report to in order to identify and punish the cheating node. For
large-scale open systems one can use distributed reputation management mechanisms to ensure that cheating nodes are correctly identified and isolated from
receiving services.

4

A. Proposed Approach

There are two essential building blocks that are exploited in the proposed approach to simultaneously provide both client

and server anonymity.

1) A peer-to-peer overlay topology and its associated routing mechanism that utilize intermediate nodes for routing a request

(or response) from a client to server (or server to client).

2) An incentive scheme that makes it an optimal strategy for the intermediate nodes to keep information about their

neighboring hops secret.

The basic approach is illustrated using an example given in Figure 1, where a request from client C to server S is routed

through 10 different intermediate nodes. In this figure, assuming that the above mentioned two building blocks work correctly,

none of the nodes from 2 to 9 can know anything about the client or server. Moreover, node 1 upon receiving a request from

C, cannot conclude if C is the actual client or just another intermediate node that itself received the request from someone

else. (Note that since nodes exist in a virtual overlay topology, where each logical link might translate to several physical links,

link sniffing by node 1 to determine whether C originated the request is also very difficult). Furthermore, an indirection layer

introduced between nodes 10 and S creates an anonymous communication channel, which shields the identity of S from node

10. The functionality of the indirection layer is achieved in a completely distributed manner without relying on any trusted or

centralized entity.

The design of the indirection layer and that of an appropriate incentive scheme are explained in the subsequent sections.

III. DETAILS OF THE ANONYMOUS LOOKUP PROTOCOL

The anonymous lookup protocol consist of two phases, as depicted in Figure 2. The first phase is the server registration

phase and the second phase is the client lookup phase. The server registration phase occurs before the client lookup phase.

The steps involved in each of these phases is described below. However, before that it is helpful to provide some definitions.

Definition 1: Terminal nodes: Terminal nodes are the Chord successors of the hash values of a resource name. A lookup

message from a client is first routed to a terminal node, which then forwards it to the server. It is assumed that there are t

terminal nodes for each resource. For resource R, its terminal nodes are denoted by �
	������ �"!$#%������&('�) (for simplicity, it is

assumed that t is a power of 2). If resource * hashes to Chord ID *,+ , then the t terminal nodes are the Chord successors of

the following Chord IDs.

- *,+/.10�2'43 - ��56#�787:9<;>= - 0 2 7?@���A�B!$#%������?('�) (1)

Uniformly locating the terminal nodes around the Chord ring, as given by Equation 1, ensure that the lookup paths to

different terminal nodes are as node disjoint as possible.

The routing of a message from a client to a terminal node may go through other intermediate nodes. This list of intermediate

nodes along with the terminal node is referred to as a request chain. For now, request chains to different terminal nodes of a

resource are assumed to be node disjoint, as shown in Figure 2.

Definition 2: Content index node: Content index nodes are the Chord successors of the hash values of the contents of a

resource. (In practice, to reduce the cost of computing the hash function, one can use a digest of the contents instead). For

5

resource R, its content index node is denoted by �,+ 	 . The routing of a message from a server � 	�C , where DE�F!$#$������&8�G) to a

content index node may go through other intermediate nodes. This list of intermediate nodes along with the server is referred

to as a service chain. For simplicity, service chains are also assumed to be node disjoint, as shown in Figure 2.

A. Server Registration Phase

Each of the servers, � 	 �H�� 	 �>��������� 	�� , calculate the hash value of the contents of R, i.e., hash(Content(R)). For example,

if R is the name of a file then the input to the hash function is the file itself. The servers then use the Chord lookup protocol

to send a registration message ��I&JLK�M:N�OQPSRTM:K to the content index node �,+�	 . Intermediate nodes also store the IP address of the

node, referred to as the precedent node, from which the message was received.

Each registration message ��I&JLK�MSN?OQPSRTM:K contains the following information - hash(Content(R)), resource name or ID (*),

marginal cost (��� RTU(RTV�W).
hash(Content(R)) is used to route the registration message to �,+ 	 , the Chord successor of this value.

The name R is used by the intermediate nodes and also �,+�	 to know about the resource for which registration is being

done.��� RTU(RTV�W contains ��	 C ’s marginal cost ���YX�Z C of providing the resource. An intermediate node on receiving the registration

message updates ����RTU(RTV�W by adding its own marginal cost to the received value.�,+ 	 receive l such registration messages, and thus knows that resource R can be obtained through any of the nodes that

sent the registration message. These nodes comprise the set of precedent nodes of �,+ 	 , and are represented by []_^:Z .�,+&	 then uses the resource name R and Equation 1 to locate the corresponding terminal nodes �]	��`�a�,�b!$#$������?('�) . The

terminal nodes are informed by �,+ 	 that resource R can be accessed through it.

The nodes in [\�^ Z do not include the ����RTU(RTV�W value in the registration message they send to �,+�	 . Once a request for

resource R is received by �,+�	 from the terminal nodes, �,+�	 holds a second price sealed-bid auction (also called the Vickrey

auction) with all its precedent nodes as the bidders. �,+�	 obtains the resource from the precedent node that offers to provide

the resource at the lowest cost. The service chain containing the lowest cost bidder is called the winning service chain WSC.

It must be noted that ��� RTU(RTV�W represents the minimum price that must be paid by �,+�	 in order to obtain the resource from

the corresponding service chain.

B. Client Lookup Phase

The client C before initiating the lookup process estimates its utility (c \) of the resource R to calculate the maximum price

that it can offer for the resource. C then sends a separate lookup message towards all the terminal nodes of resource R, such

that at most one message is sent out for all the terminal nodes that require going through the same next hop neighbor - the

terminal node selected is one which is closest to that neighbor. As a result, the number of terminal nodes that are contacted

during a client lookup phase may be less than the total number of terminal nodes for a resource, and therefore, the number of

request chains formed, denoted by k, are typically less than t. Thus, dfeg' .
Together the parallel lookup messages towards different terminal nodes constitute a single lookup process initiated by client

C for resource R. Each lookup message ��I�J$WhU�U8i?j�k contains the following information - address of one of the k terminal nodes

(� 	 �), resource ID (*), maximum price offered ([]\), marginal cost (��� RTU(RTV�W), request ID *,lHmH�:= k�jHn`WoOQp).

6

*,lHmH�:= k�j>n`WoOqp identifies the lookup process such that �,+ 	 on receiving the resource requests know that they pertain to the

same lookup process. Thus, the same value of *,lHmH�S=$k�j>n`WoOQp is included in all the lookup messages.��� RTU(RTV�W contains C’s marginal cost ��� \ . An intermediate node upon receiving the lookup message updates ���YRTU(RTV�W by

adding its own marginal cost to the received value.

An intermediate node on receiving a lookup message routes it to the next hop neighbor, and this process continues till the

message reaches the desired terminal node, which in turn contacts �,+�	 to obtain the resource. �,+�	 receive k such requests

and from the *,lHmH�:=�k�jHn`WoOQp values knows that all the requests pertain to the same lookup process. �,+H	 then holds a second

price sealed-bid auction (also called the Vickrey auction) with all the terminal nodes as the bidders. �,+>	 provides the resource

to the terminal node that offers the highest price. The request chain containing the highest bidder, i.e., the winning terminal

node, is called the winning request chain WRC.

1) Using Vickrey Auction for Resource Trading: As explained above, �,+�	 holds two separate Vickrey auctions - one with

the terminal nodes as the bidders, and the other with the nodes in [_^ Z as the bidders.

In Vickrey auction, the highest bidder wins the auction, but the price that it has to pay is equal to the second highest bid.

Vickrey auction in its most basic form is designed to be used by altruistic auctioneers, which are concerned with overall system

efficiency or social good as opposed to self-gains. Self-interested auctioneer is one of the main reasons why Vickrey auction

did not find widespread popularity in human societies [27].

Since, �,+&	 (the auctioneer) behaves selfishly and tries to maximize its profit, the auction process involving the terminal

nodes (precedent set nodes) needs to ensure the following.r Selecting the highest (lowest) bidder is the best strategy for �,+�	 .r The price paid by the highest (lowest) bidder is indeed equal to the second highest (lowest) bid, i.e., �,+>	 should reveal

true second highest (lowest) bid to the highest (lowest) bidder.r Collusion among �,+ 	 and the bidders should not be possible.

In view of the above requirements, a two-phase Vickrey auction protocol is used, which is briefly explained below. The

detailed analysis of the two-phase Vickrey auction protocol for its robustness and effectiveness can be found in [23].

2) Secure Vickrey Auction to Determine the Winning Terminal Node: The auction process involving the nodes in [\�^:Z is

carried out using exactly the same procedure, except for the fact that the winner now is the one with the lowest bid, i.e., cost

value.

The highest and second highest bids are denoted by �6s and �ut , respectively. The price offered by a terminal node to�,+&	 is equal to [\ 5"��� RTUGRTV�W . (On the other hand, the bid offered by a node in [_^ Z is simply ��� RTU(RTV�W). The amount of

profit made by the WRC is equal to
- � s 5v� t 7 . This profit is shared fairly among the nodes of the WRC (and the client) in

proportion to their marginal costs, i.e., nodes with higher marginal costs get a higher proportion of the total profit, and vice

versa.�,+&	 employs a two-phase Vickrey auction to select the highest bidder and determine the price at which the resource is

provided. In the first phase, the bidders send encrypted copies (w -yx>zL{ =$|Fl�}@OG~��?O`7) of their bids in message ��I�JLn�OQ� to �,+&	 .

Here w -TxHzL{ =L|�l�} O ~�� O 7 is the encryption of bid value � O of terminal node � 	 � using a randomly chosen secret key
x>zL{ =L|�l�} O .

7

Each message ��I�J n�OQ� also includes the *,lHmH�:= k�j>n`WoOqp value received by the terminal nodes, so that �,+ 	 can determine that

the bids pertain to the same lookup process. The received encrypted bids are sent by �,+>	 back to all the bidders in message��I&J$n�OQ���aK�M`k&Wo� . Since after receiving ��I�JLn`OQ���aK�M`k&Wo� , the bidders have encrypted copies of all the bids (total d such bids), �,+�	
is unable to (undetectedly) alter existing or add fake bids.

In the next and last phase of the auction, each bidder after receiving the message ��I�J n�Oq����K�M�k?Wh� , sends its secret key in

message ��I�J$i&M:� to �,+&	 . The received key values are now sent by �,+�	 back to all the bidders in message ��I�JLi�M:�H�aK�M`k&Wo� . At

the end of this phase, �,+�	 and all the bidders are able to open the encrypted bids and find out about the highest and second

highest bids.�,+ 	 then sends a message ��I�J p:M:K8R to the winning terminal node certifying that it has won the auction. The received

certificate is forwarded along the reverse lookup path until it reaches C. C then finds out that the resource has been looked up

and is available at a price within its initial offer of [\ . ��I&J$p:MGK(R contains the following information - highest bid �6s , second

highest bid �"t , total marginal cost ��� RTU(RTV�W . (��� RTU(RTV�W is received by �,+�	 in ��I�J$n�OQ�). The corresponding ��I�JLp:M:K8R message

in the auction involving the nodes in [\�^ Z include only the information about the lowest and second lowest bid.

The information in messages ��I�J p:M:K(R and ��I&J WhU8U�i?j�k (��I�J K�MSN?OQPSRTM:K) allow the intermediate nodes, including the winning

terminal node, to calculate their reward for being part of the WRC (WSC). The knowledge of the auction results also enables

C to determine the price that it finally has to pay for * . The calculation of the exact payoffs received by nodes are discussed

in the next section.

At the end of the two auctions, the resource is obtained via the lowest cost precedent node (from the server on the WSC),

and provided to the terminal node on the WRC. The terminal node sends the resource to the client along the reverse lookup

path. (Since the nodes on WSC and WRC have to both receive and send the contents of resource R, it is assumed that the��I&J%K�MSN?OQPSRTM:K and ��I�J�WqU8U�i?j�k messages also include the size information of resource R. This enables the intermediate nodes to

calculate their marginal cost values for participating in the lookup transaction. Note that the client can only estimate the size

of resource R).

The following subsection summarizes the exact sequence of steps followed in the proposed anonymous lookup protocol. For

an easy reference, the various messages used during the server registration and client lookup phases, along with the information

they contain, are also summarized in Table I and Table II, respectively.

C. Anonymous Lookup Protocol Steps

Server Registration Phase
1) Server(s) with resource R register themselves by sending a registration message ���(���(�`���o�S�Q�S� to the content index node, which is the Chord successor

of hash(Content(R))
- Intermediate nodes update the value of ��� �q�(�q�?� before forwarding the registration message
- Registration messages reach �]��� , which is the content index node for resource R. It must be noted that the registration messages received by�]�(� do not include in them the ��� �q�(�q�?� values�]� � now knows that resource R can be obtained through its precedent nodes, which are represented by ����� Z

2) �]� � uses the resource name R to locate the corresponding terminal nodes � � ���%���,���? (¡8¡G¡G `¢`£
3) The terminal nodes are informed that resource R can be accessed through �]� �

Client Lookup Phase

4) Client initiates the lookup process by sending a lookup message ���G� � �G�8¤�¥�¦ towards � � �S�%�§�,���? 8¡(¡G¡(�¨�£
- Intermediate nodes update the value of ��� �q�(�q�?� before forwarding the lookup message
- Lookup messages reach the terminal nodes

8

Vickrey Auction (involving the terminal nodes)

Phase I

5) Terminal nodes on receiving ���G� � �G��¤8¥?¦ send ���(�?© �«ª to �]� �
6) �]� � waits for k ���G�?© �«ª messages (i.e., bids) or till some maximum time ¬

- Bids are identified as belonging to the same lookup process by using the value �®�¯ �Q° ¦�¥ © �±�«²
7) Server sends message ���(�?© �«ª�³@�G�T¦?�±´ to the terminal nodes

After the above step the bidders have encrypted copies of all the bids

Phase II

8) Terminal nodes send their secret key to �]� � in message ���(� ¤��S´
9) �]� � replies with a message ���G� ¤���´�³µ�G�T¦��±´ distributing the secret keys among the bidders

At the end of the above Vickrey auction, �]� � knows the maximum price that it can offer for resource R. It then solicits bids from its precedent nodes.
It must be noted that these bids correspond to the minimum price at which the precedent nodes can provide the resource.

Vickrey Auction (involving the nodes in ¶ �§� Z)

Phase I

10) Nodes in � ��� Z send ���(� © �oª to �]�8�
11) �]� � waits for l ���G� © �«ª messages (i.e., bids) or till some maximum time ¬

- Bids are identified as belonging to the same lookup process by using the resource name R
12) �]� � sends message ���(� © �oª&³µ�G�T¦��±´ to the bidders

- After the above step the bidders have encrypted copies of all the bids

Phase II

13) Bidders send their secret key to �]�8� in message ���(� ¤��S´
14) �]�(� replies with a message ���G� ¤���´�³µ�G�T¦��±´ distributing the secret keys among the bidders

15) �]� � sends message ���(� ²S���(� to the precedent node with the lowest bid value. The receiving node in turn propagates the message along the service
chain until the message reaches the server
By using the contents of messages ���G�&�(�`���o�S�Q�S� and ���G� ²S�S�G� , nodes along the WSC know the payoff they have to make to their precedent nodes

16) The server, which is part of the WSC, supplies the requested resource. The resource is again propagated along the WSC until it reaches �]� �
17) �]�(� then sends message ���(� ²��S�G� and resource R to �@�§· Z$¸ . This message, along with the resource, is sent to C using the reverse lookup path
18) C after keeping its profit share gives the remainder of its initial offer to the next hop node along the WRC. The next hop node then keeps its payoff

amount and sends the remaining to its next hop, and so on. This process is repeated until �]�?� receives a payoff of �º¹ from �L�§· Z$¸
19) �]�(� gives a payoff of �<»¹ to the winning precedent node, i.e., the one with the lowest cost of providing the resource. (It is assumed that �¼¹§½¾�¿»¹AÀ������� Z , thereby giving a net profit to �]� �). Each node along the WSC after keeping its payoff amount sends the remaining to its precedent node.

This process is repeated till the server that is part of the WSC receives its payoff

D. Distributing Reward to Nodes in WRC and WSC

For any node in WRC, say x, its payoff [z } � is calculated as follows.

[z }%�ÂÁÃ�����¾. - ��� ���� RTUGRTV?W 3 - � s 5u� t 787 (2)

The profit share of C, i.e., the portion of its initial offer that it saves or gets to keep, is similarly calculated as given below.

[x ;�Äa�S' \ Á - ��� \��� RTU(RTV�W 3 - �Ås 5v�ut�7(7 (3)

Likewise, let �ÇÆs and �ÇÆt be the lowest and second lowest bid, respectively, in the auction involving the nodes in [È\�^:Z .

Then for any node in WSC, say x, its payoff [z } � is calculated as follows.

[z } � ÁÉ��� � . - ��� �� Æs 3 - � Æt 5v� Æs 7(7 (4)

The payoff received by �,+ 	 is equal to, [z } \�^ Z�ÁÊ�utË5v� Æt (5)

The example depicted in Figure 3 illustrates the payoffs received by different nodes in WRC and WSC. Both WRC and

WSC are darkened in the figure. Numbers inside the nodes represent their marginal cost values. The payoffs to the nodes

9

on WRC and WSC are also indicated in the figure. For example, payoff to node 1, which is part of WRC, is 13.33 (=10 +

(10/30)*(70-60)), and the payoff to node 1’, which is part of WSC is 6.1. C’s profit share is 3.33 (= (10/30)*(70-60)). Thus, C

effectively has to pay only 86.67(=100-10-3.33) for a resource whose utility to it (after deducting the marginal cost) is in fact

90. Therefore, the use of Vickrey auction ensures that everyone, including the client, server, terminal nodes, and intermediate

nodes constituting the WRC and WSC benefit, i.e., earn more than their marginal costs of participating in the lookup process.

This potential of earning higher profits motivate nodes to share their resources and forward messages for others.

IV. ANONYMITY ANALYSIS

In the anonymous lookup protocol the nodes are assumed to be selfish, and in order to maximize their payoffs they have

incentive not to reveal information about their precedent nodes (which send the lookup or registration messages) to their next

hop neighbors. This is because otherwise the precedent and next hop nodes can directly negotiate among themselves and

by-pass the nodes in-between, and consequently there will be less nodes with whom the profit will have to be shared. The

incentive-based strategy of lookups in Chord allows us to exploit this inherent property of information hiding, and anonymity

is thus naturally provided by the proposed protocol. Also, note that at no point in the operation of the protocol, the identities

of the client or server(s) are revealed - none of the messages contain this information. Even the next hop neighbors of C (�Ì	��)
do not know that the request was originated (served) at C (�_	��). As can be seen the functionality of the indirection layer (as

described in Section II-A) is implemented by nodes between the terminal nodes and server nodes. The nodes constituting the

indirection layer are configured during the server registration phase.

Unlike in the traditional Chord protocol (or any other DHT based system), where the successor nodes of keys (referred to

as the terminal nodes in the proposed protocol) either directly store the key value or the address of a node containing the

key value, the terminal nodes are required to store the address of the content index node. This is important as the protocol

tries to provide both client and server anonymity, and otherwise server identity is always known to the terminal nodes. One

might argue that a single request- and service-chain might also be used (by using a single terminal node and registering the

server(s) directly at that node) to provide both anonymity and resource trading. However, in such a scenario both the client and

server(s) would have to speculate about the other’s offer and also how much the intermediate nodes would charge for routing.

Moreover, the intermediate nodes, in order to maximize their profits, would have to speculate about the cost value they should

reveal while still ensuring that the offer received by the auctioneer (content index node) from the client side is more than the

minimum price asked by the service chain. To avoid such speculations (and counter-speculations) and enable fast resource

trading, Vickrey auction is used. Vickrey auction is used on both the client and server side to decide how the resource is

eventually priced. In summary, the two layer indexing scheme, and using the content index node, enables the Vickrey auction

protocol, and separates the client side of the lookup process from that of the server side.

After the informal reasoning given above, the formal analysis of the anonymity provided by the proposed anonymous lookup

protocol is described below. Since the anonymous lookup protocol is symmetric on both client and server side and resembles an

“hour-glass” model, only the client anonymity is analyzed. Similar arguments would apply for proving server side anonymity

as well. Also, to make the derived equations more tractable, N is set to 0 2 , where m is the number of bits in a Chord ID.

10

However, the plots given in Figures 6 and 7 are for much smaller values of N, and even these small values provide a high

degree of anonymity. The commonly used metrics of Average Anonymity Set and Degree of Anonymityare used to evaluate the

strengths of an anonymous system. Notations used in the analysis are summarized in Table 4.

Definition 3: Average Anonymity Set: Anonymity set, represented by S, is defined as the set containing all possible initiators

of a lookup request as perceived by the adversary set. The average (or expected) anonymity set is the expected value of Í �ÎÍ .
Definition 4: Degree of Anonymity: Entropy [26] is used to measure the degree of anonymity of a system. If X is a random

variable representing the initiator of a lookup chain, then the entropy, Ï -yÐ 7 is a measure of the information content of the

probability distribution of
Ð

. More formally,

Ï -yÐ 7ÑÁ 5vÒ��Ó X [xµ-yÐ ÁbÔ�7@ÕqÖ%× t [x@-TÐ ÁØÔ�7 (6)

Using this definition of entropy, the degree of anonymity on S is calculated as,

=$l�J - �A7ÌÁ Ï -yÐ 7 V8k�U8P:RTM:K8OQU8K8OÏ -yÐ 78V8k�K8OQU8K8O
Á 5ÚÙ�%Ó X [xµ-yÐ ÁbÔa7@ÕqÖ%× t [xµ-yÐ ÁÉÔa7ÕqÖ%× t -`Û 5Å#H7 (7)

The apriori entropy corresponds to the information that the adversary has before observing any lookup request, and therefore

it can only exclude itself from the anonymity set. In the following subsections several possible threat models that are relevant

for the anonymous lookup protocol are considered.

A. Threat Model A (Single Adversary)

From the perspective of the adversary A, the anonymous lookup protocol provides a high degree of anonymity to the client

C, as summarized by the following theorem.

Theorem 1: The average size of the anonymity set for C is at least 0@2 5F9 - #¾5BÜ§� Ý 2 7
Proof: The average size of the anonymity set is given by,

w - Í �¾Í 7ÞÁ [xµ-Tß 7&�QÍ � -`ß 7�Í�."[xµ- ß 7&�QÍ � - ß 7�Í (8)

Now to derive [x@- ß 7 the following lemma is used.

Lemma 1: For the lookup initiated by C, A lies on at most a single request chain.

Proof: The function = - 7 takes as input two Chord IDs (or nodes) and returns the Chord distance between them. In other

words, = - Ô§}�7 returns the Chord distance between two nodes x and y.

Two cases can arise,

Case 1: = - �,à�7Yá 0 2 ��s : Since only one lookup request is sent for all the terminal nodes that are at a Chord distance greater

than 0 2 ��s from C (all these terminal nodes require going through the 945É# RTâ finger table entry), A can be on the lookup

path to at most one terminal node.

Case 2: = - �,à/7Ëã 0%2 ��s : Let 0 OT��s eØ= - �,à�7Ëe 0�ä ��s , i.e., the Chord ID of A lies between the � RTâ and D RTâ finger table entry

of C. A can only be on the lookup paths to terminal nodes that lie in the same range, i.e., the � RTâ and D RTâ finger table entry

of C.

11

Without loss of generality, let A be on the lookup paths to two terminal nodes � 	 � and � 	�C (#,e6���Dåebd), and = - �/� 	 �(7�e= - �/��	 C 7 . Then it must be true that = - �/��	��G7æeç= - �,à/7 (because the lookup path to a terminal node lying between the � RTâ
finger table entry and A would not pass through A). But since at most a single request is sent out for all the terminal nodes

that go through the same next hop neighbor - the terminal node selected is one which is closest to that neighbor. Therefore,

C sends a request towards only � 	 � . Hence, there is a contradiction that A is on the lookup path to both � 	 � and � 	�C .
From Lemma 1, it can be concluded that request chains are node disjoint, i.e., at most a single request chain passes through

A. Therefore, A will be on a request chain iff it lies on one of the }@O regions (as indicated in Figure 5). The region }@O is the

Chord distance along the clockwise direction between the � RTâ finger of C and the terminal node (when there is a terminal node

between the � RTâ and
- ��.Ø#�7 RTâ fingers), which is closest to that finger. From the property of Chord, the number of hops in the

region } O are ÕqÖ%× - } O 7 . So the probability that A lies on one of these regions (i.e., } O s) is given by,

[x@- ß 7AÁ ÕqÖ%× - Ohè_iÙOqè_s } O 7Û Á ÕqÖ%× - Oqè�iÙOqè_s } O 70 2
For the worst case (best case for the adversary), it can be concluded that

ÕqÖ%× - Ohè_iÙOqè_s }%O�70 2 e ÕqÖ%× - Oqè 2ÙOhè_s }%O`70 2 Á ÕhÖ$× -`Û 70 2 Á ÕqÖ%× - 0%2 70 2 Á 90 2 (9)

Now assuming that the adversary lies on one of the request chains and uses its m RTâ finger for routing the request, the

following expression for the average size of the anonymity set is derived.

w - Í �ÎÍ 7ÞÁ - #Î5 90 2 7�Í � -`ß 7�Í�. 90 2 Í � - ß 7�ÍÁ - #Î5 90 2 7 -TÛ 56#�7�. 90 2 0 2 ��é (10)

The average size of the anonymity set is a function of q, and the minimum value of Í w - �A7�Í is obtained when mêÁØ9 (adversary

uses its 9 RTâ finger to route the lookup). Substituting in 14, the following lower bound is obtained.

w - Í �¾Í 7ëá 0 2 5B9 - #Y5vÜ��±Ý 2 7 (11)

The auctioneer (�,+�) acting as an adversary is a specific case of this threat model, and has similar analysis for the average

anonymity set size. The auctioneer only know the identity of the terminal nodes through which it receive the lookup requests.

B. Threat Model B (Multiple Adversaries)

It is possible to have multiple adversaries in a network that can collude, i.e., share their information, in order to determine

from where the request originated. Let there be u number of such adversaries. The robustness of the proposed protocol against

the multiple adversary scenario is demonstrated by the following lemma.

12

Lemma 2: Adversaries lying on all the request chains cannot collude to further reduce the size of the anonymity set than

that available with the most downstream adversary.

Proof: Consider a scenario in which the number of adversaries in the system is so large that there is an adversary on

all the k request chains. Only the most downstream adversary in each of the request chains is considered, since they are

closest to the client. (In a Chord ring, a node has more information about the region of the identifier space that is closer to

it than about a far away region). Let àês�8à¾t%��������à�i be k such adversaries lying on request chains #% 0 ������&�d , respectively.

The corresponding anonymity sets and finger table entries used by these adversaries are represented by �ÈsH���t�����������i andm s �m t ������&�m i , respectively. Without loss of generality, let m s�ì m t,ì ����� ì m i .
From the property of the Chord routing protocol and also as given in [14], m%s least significant bits of the adversary à/O are the

same as the m s least significant bits of the client C. Therefore, Í � s Í%Á 0�2 ��éG� . Similarly, for any j, where 0 ã�ÁgDEã�ÁÃd , the m ä
least significant bits of the adversary à ä are the same as the m ä least significant bits of the client C, and hence Í � ä Í%Á 0�2 ��é C .
But since mHs ì m�t ì ����� ì m�i , these m ä bits would be a suffix of the least significant m>s bits of à,s .

Now it is easy to see that, � s�í � t_í ����� í � i ÁÊ� s . In other words, the most downstream adversary cannot further reduce

its anonymity set size by using the information available with the adversaries on other chains.

Based on the above observation the expected size of the anonymity set for multiple adversaries is calculated below.

Theorem 2: The average size of the anonymity set is at least 0 2 5Fîa9 - #Y5vÜ��±Ý 2 7
Proof:

w - Í �¾Í 7ÞÁ [xµ-Tß 7&�QÍ � -`ß 7�Í�."[xµ- ß 7&�QÍ � - ß 7�Í (12)

For a large value of N,

[xµ-Tß 7ïÁ - #¾5 90 2 7 j (13)

Using the approximation
- #Y5BÔ�7 jåð #Y5Bî�Ô the following expression for the average size of the anonymity set is derived.

w - Í �ÎÍ 7ïÁ - #¾5 îa90 2 7 -TÛ 56#�7�. î�90 2 0 2 ��é (14)

From Lemma 2, the anonymity set of the most downstream adversary (closest) to the client is contained (subset) in the

anonymity sets of all the other adversaries. Therefore, q in the above equation is the finger used by the most downstream

adversary to route a lookup. Substituting m,Áb9 , a lower bound on the average size of the anonymity set is obtained.

w - Í �ÎÍ 7ëá 0 2 5Fîa9 - #Y5BÜ§� Ý 2 7 (15)

C. Threat Model C (Multiple Adversaries Populate the Finger Table of C)

In this threat model, multiple adversaries are the first-hop nodes of C. Since from Lemma 1 it can be concluded that the

request chains are disjoint, two or more first-hop adversaries receiving a lookup request can accurately identify the client C.

However, the probability of such an event happening is very low, as shown below.

13

Lemma 3: The probability of two or more adversaries being the first hop nodes of C is very small.

Proof: From Lemma 1, it can be conluded that the request chains are node disjoint. Therefore, if there are k request

chains, then there are exactly k first-hop possible positions that the adversaries can occupy. Let X be the event that two or

more adversaries occupy these k positions, Y be the event that no adversary lies on these k first-hop positions, and Z be the

event that exactly one adversary lies on one of these k first-hop positions.

Then,

[xµ-yÐ 7ÞÁ #Y5v[xµ-Tñ 7]5B[xµ-Sò 7 (16)

For a large value of N,

[x@-`ñ 7 ð - Û 5udÛ 7 j (17)

[xµ-�ò 7ÞÁ ó î #>ô - dÛ 7 - Û 5udÛ 7 j$��s (18)

Therefore,

[xµ-TÐ 7 ð #Y5 - Û 5udÛ 7 j 5 ó î #>ô - dÛ 7 - Û 5vdÛ 7 j$��sð #Y5 - #Y5 d@îÛ 7]5 dµîÛ - #¾5 - î¼5Å#H7(dÛ 7ð î t d tÛ t (19)

For large networks, (
Û ìêì d@î) and hence [x@-TÐ 7 is very small. (The maximum possible value of k is only m).

D. Degree of Anonymity Calculation

Based on the average anonymity set size values calculated in the previous sections, a generalized expression for the degree

of anonymity for the proposed anonymous lookup protocol is derived below.

=Ll�J - �È7AÁ Ï -TÐ 7(V8k�U�PSRTM:K�OqU8K�OÏ -TÐ 7 V�k&K�OQU(K�O ð ÕqÖ%× t - 0�2 5Bî�9 - #Y5vÜ��±Ý 2 7(7ÕqÖ%× t - 0 2 7 (20)

The plots of Equation 20 show that a very high degree of anonymity is achieved even when a significant fraction of the

nodes are controlled by adversaries. Figures 6 and 7 show the variation of degree of anonymity with the number of adversaries

present in a network of size 1000 and 50000, respectively. For the case when
Û ÁÃÝ�Ü%Ü$Ü%Ü , =$l�J - �A7 is as high as 0.8 even when

6% of the nodes are malicious. In information theoretic terms, this means that about 80% of the bits of the client’s identity

remains hidden from the adversaries. Moreover, the analytical expression for the degree of anonymity is independent of the

number of request chains and the number of terminal nodes, with the implication that irrespective of the number of request

chains initiated by a client, a very high degree of anonymity is achieved.

14

V. PROTOCOL OVERHEAD

The proposed protocol incurs some extra over overhead, which is mainly due to the following two reasons.

1) Message communication involved in formation of request chains and service chains.

2) Use of monetary transactions among nodes.

3) Sending of data using multiple hops from the selected server to the client.

4) Computations involved in message encryption and decryption to achieve message non-repudiation

The maximum message processing overhead is incurred by �,+�	 , which is õ - då.6�`7 . The message overhead of the client

is õ - ÕhÖ$×�d�7 . The number of messages processed by an intermediate node and a server are õ - #�7 . The maximum number of

nodes involved in the lookup process are õ -8- d¼.b��7 3 ÕhÖ$× Û 7 , where k and l are the number of request chains and service

chains, respectively, and õ - ÕqÖ%× Û 7 is the length of each chain. Thus, it can be seen that the protocol incurs a reasonable overall

message overhead.

VI. RELATED WORK

Anonymity for communication systems has been extensively studied, both for client-server and P2P computing models. Most

of the existing anonymity protocols are for client-server computing model and hide the identity of the initiator (client). Initiator

anonymity is provided using either rerouting based systems or non rerouting based systems. Crowds [16], Mix [4] and Onion-

routing [20] employ rerouting based techniques to achieve initiator anonymity. In Crowds, anonymity on the World-Wide-Web

(WWW) is provided by grouping the users into large and diverse groups, so that Web-servers are not able to learn the true

source of the request. The user or the initiator submits a request which is forwarded to a random member of the crowd, which

then forwards the request to the end server. In Mix and Onion-routing, the sender determines the rerouting path and encrypts

the route in a layered fashion so that each intermediate node only knows its previous and next hop node.

Schemes which use a single hop intermediate rerouting path include Anonymizer [7] and Lucent Personalized Web Assistant

(LPWA) [6]. An example of a non-rerouting based anonymous communication system is DC-Net (Dining Cryptographer’s

network) [5]. In this case a broadcast medium is used to achieve initiator and responder anonymity, and therefore it suffers

from scalability issues.

In P2P publisher-subscriber systems, Freenet [11], Publius [17], FreeHaven [21] are examples of systems which provide

publisher anonymity. Freenet is an adaptive P2P network application that permits publication and subscription of data in an

anonymous fashion. Publius and FreeHaven use similar strategies for achieving publisher anonymity. While Publius splits the

symmetric key used to encrypt and decrypt a document into n shares, FreeHaven splits the document into n shares. Any k of

the n peers must be available to reproduce the key (in the first case) and the document (in the second case). While Gnutella [8]

anonymizes only queries, GNUnet [13] provides anonymity for both queries and data transfers.

The authors in [15] suggest using a trusted index server for generating the rerouting path. Moreover, there is a substantial

amount of overhead involved in encryptions and decryptions. Furthermore, only client anonymity is provided by this protocol.

Other existing work [14], [25], [3] that study anonymity in Chord also focus only on client-side anonymity and not server-side

anonymity.

15

The P5 [22] protocol uses a broadcast hierarchy to achieve both sender and receiver anonymity for peer to peer commu-

nications. The protocol uses public key cryptography with per-hop encryption and redundant noise packets to achieve a high

degree of anonymity, thereby incurring a substantial overhead.

VII. CONCLUSION AND DISCUSSION

In this paper, an anonymous lookup protocol that provides high degree of client and server anonymity (and hence also

unlinkability) in P2P based grids is presented. The protocol builds a distributed anonymity infrastructure by implementing an

incentive scheme that motivate nodes to participate in the system and also maintain secrecy of the identities of nodes they

interact with as part of any transaction. The protocol uses an auction protocol for trading of network resources and ensures

that the rewards received by network nodes are maximized if they truthfully follow the protocol steps. Moreover, the protocol

is light-weight as it does not rely on any trusted centralized entity or require specialized encryptions to be performed by the

nodes.

To the best of the author’s knowledge this is the first protocol that uses an incentive strategy to provide sender as well as

responder anonymity in large-scale P2P networks. Since the underlying model assumes that all the nodes behave selfishly (and

some even maliciously), the authors believe that the protocol is robust enough to be deployable even in large-scale Internet

setting.

As future work, the authors would like to explore the applicability of game theoretical concepts to further analyse and

improve the proposed anonymous lookup protocol. The authors would also like to explore scenarios when malicious nodes are

in fact able to monitor all network links (say when the protocol is deployed to operate in a LAN environment) and the impact

on the degree of anonymity that is provided by the protocol.

REFERENCES

[1] A. Acquisti, R. Dingledine, and P. Syverson. On the Economics of Anonymity, Conference of Financial Cryptography, 2003, pp 84-102.

[2] A. Pfitzman, and M. Waidner. Networks without user observability. Journal of Computer and Security, 1987, vol. 6, no. 2, pp. 158-166.

[3] C. Odonell, and V. Vaikuntanathan. Information Leak in the Chord Lookup Protocol. The Fourth IEEE International Conference on Peer-to-Peer

Computing, 2004, pp. 28-35.

[4] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Communications of the ACM, 1981, vol. 24, pp. 84-88.

[5] D. Chaum. The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability. Journal of Cryptology, 1988, vol. 1, no. 1, pp.

65-75.

[6] E. Gabber, P. B. Gibbons, D. M. Kristol, Y. Matias, and A. Mayer. Consistent yet Anonymous Web Access with LPWA. Communications of the ACM,

1999, vol. 42, no. 2, pp. 42-47.

[7] E. Gabber, P. B. Gibbons, Y. Matias, and A. Mayer. How to Make Personalized Web Browsing Simple, Secure and Anonymous. Conference of Financial

Cryptography, 1997, pp. 17-32.

[8] Gnutella. http://gnutella.wego.com

[9] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications. The

2001 ACM SIGCOMM Conference, 2001, pp. 149-160.

[10] I. Foster, and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. 2nd Edition, Morgan Kaufmann, 2004.

[11] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed Anonymous Information Storage and Retrieval System. Lecture Notes in

Computer Science, 2001, pp. 46-??.

[12] J. Raymond. Traffic Analysis: Protocols, Attacks, Design Issues, and Open Problems. Designing Privacy Enhancing Technologies: Workshop on Design

Issues in Anonymity and Unobservability, 2000, pp. 10-29.

[13] K. Bennett, and C. Grothoff. GAP – Practical anonymous networking. Privacy Enhancing Technologies Workshop, 2003, pp. 141-160.

16

[14] K. J. Kumar, and M. Bansal. Anonymity in Chord. www.cs.berkeley.edu/ kjk/chord-anon.ps, Dec 2002.

[15] L. Xiao, Z. Xu, and X. Zhang. Low-Cost and Reliable Mutual Anonymity Protocols in Peer-to-Peer Networks. IEEE Transactions on Parallel and

Distributed Systems, 2003, vol. 14, pp. 829-840.

[16] M. K. Reiter, and A. D. Rubin. Crowds: Anonymity for Web transactions. ACM Transactions on Information and System Security, 1998, pp. 66-92.

[17] M. Waldman, A. Rubin, and L. Cranor. Publius: A robust, tamper-evident, censorship resistant and source-anonymous web publishing system. USENIX

Security Symposium, 2000, pp.59-72.

[18] Napster. http://www.napster.com

[19] N. Nisan. Algorithms for Selfish Agents: Mechanism Design for Distributed Computation. Symposium on Theoretical Aspects of Computer Science,

Lecture Notes in Computer Science, 1999, vol. 1563, Springer, Berlin, pp. 1-17.

[20] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous Connections and Onion Routing. IEEE Symposium on Security and Privacy, 1997, pp.

44-54.

[21] R. Dingledine, M. J. Freedman, and D. Molnar. The Free Haven Project: Distributed Anonymous Storage Service. Workshop on Design Issues in

Anonymity and Unobservability, 2000, pp. 67-95.

[22] R. Sherwood, B. Bhattacharjee, and A. Srinivasan. P5: A Protocol for Scalable Anonymous Communications. IEEE Symposium on Security and Privacy,

2002, pp.58-70.

[23] R. Gupta, and A. K. Somani. A Pricing Strategy for Incentivizing Selfish Nodes To Share Resources In Peer-to-Peer (P2P) Networks. IEEE International

Conference on Networks, Singapore, 2004.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-addressable network. ACM SIGCOMM (San Diego, 2001), 2001,

pp.342-356.

[25] S. Hazel, and B. Wiley. Achord: A variant of the chord lookup service for use in censorship resistant peer-to-peer publishing systems. 1st International

Workshop on Peer-to-Peer Systems, 2002.

[26] S. Steinbrecher, and S. Kopsell. Modelling Unlinkability. Privacy Enhancing Technologies Workshop, 2003.

[27] T. Sandholm. Limitations of the Vickrey Auction in Computational Multiagent Systems. 2nd International conference on Multi-Agent Systems, 1996,

pp. 299-306.

[28] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. Karma: A Secure Economic Framework for Peer-to-Peer Resource Sharing. Workshop on Economics

of Peer-to-Peer Systems, 2003.

[29] W. Vickrey. Counterspeculation, auctions and competitive sealed tenders. Journal of Finance, 1961, pp. 8-37.

[30] Y. Guan, X. Fu, R. Bettati, and W. Zhao. An Optimal Strategy for Anonymous Communication Protocols. International Conference on Distributed

Computing Systems, 2002, pp.257-??

APPENDIX

1) Chord Overview

Chord [9] supports just one operation, i.e. given a key, it returns the node responsible for that key. Each Chord node

has a unique m-bit (where m is usually 32 or 64) identifier (Chord ID), obtained by say, hashing the node’s IP address.

Chord views the IDs as occupying a circular identifier space. Keys are also mapped into this ID space, by hashing them

to m-bit key IDs. We will use the term “key” to refer to both the original key and its image under the hash function, as

its meaning will be clear from the context. Similarly, the term “node” will refer to both the node and its identifier under

the hash function.

Chord defines the node responsible for a key to be the successor of that key’s ID. The successor of an ID j is the

node with the smallest ID that is greater than or equal to j (with wrap-around). Every Chord node maintains a list of

the identities and IP addresses of its r immediate successors on the Chord ring. The fact that every node knows its

own successor means that a node can always process a lookup correctly: if the desired key is between the node and its

successor, the latter node is the key’s successor; otherwise the lookup can be forwarded to the successor, which moves

the lookup strictly closer to its destination. In a system with n nodes, lookups performed only with successor lists require

17

an average of
{_ö 0 message exchanges. To reduce the number of messages required to õ - ÕhÖ$× { 7 , each node maintains a

finger table with m entries. The � RTâ entry (finger or neighbor) in the table at node j contains the identity of the first node

that succeeds j by at least 0 Oy��s on the ID circle. A new node initializes its finger table by querying an existing node.

2) KARMA Protocol

KARMA is a completely distributed protocol for implementing a system of virtual currency in P2P networks. The protocol

ensures secure transaction between any pair of nodes. By secure it is meant that a node cannot falsely increase its (and

reduce others’) currency, and also does not stand to gain from a transaction (process where nodes provide service for

some compensation) unless it successfully commits its half of the transaction. KARMA maintains all of its internal state

in a peer-to-peer distributed hash table (DHT). The bank-set ÷ z${ dµø of a node à is a set of d peers that independently

maintain the karma balance of that node. KARMA uses the DHT to map nodes to bank-sets. The d closest nodes in the

identifier space to the Chord ID of à constitute the bank-set of à . Picking d consecutive hosts for the bank-set allows

the secure routing to the bank-set to be performed efficiently.

Each member of ÷ z${ d ø stores the amount of karma in à ’s account, signed with à ’s private key, as well as a transaction

log containing recent payments à has made to other nodes. Signing of the balance by à ensures that the value is tamper-

resistant. The transaction log acts as proof of à ’s payment, and comes into play if the other party in the transaction

does not send à the file for which the payment was made. The bank-set corresponding to each node also stores - 1) the

last used sequence number, which is part of the message sent by a node authorizing its bank-set to transfer karma from

its account to the account of some other member (used to eliminate the possibility of replay attacks), and 2) the current

epoch number (for periodic currency adjustments and ensuring that per-capita karma in the system is roughly constant).

The karma transfer between nodes, say node à to node ÷ , takes place as follows. à first sends to ÷ a signed message

authorizing ÷ zL{ d ø to transfer a given amount of karma to ÷ . ÷ forwards this message to its bank-set, who contact÷ zL{ d ø in turn. If à has sufficient karma in its account to fund the transaction, the amount is deducted from à ’s account

and credited to ÷ ’s account, and ÷ can proceed with the resource transfer to à . For details about the security aspect of

the KARMA protocol one can refer to [28].

C S1 2 9 10....

Client Server

Indirection layer

Fig. 1. Figure depicting the intuition behind the anonymity providing strategy.

18

Client node

C

R

SR

SR

Content index node

Intermediate nodes

Terminal nodes

Server nodes

Precedent nodes of CIR

(CIR)

Vickrey auction involving the terminal nodes

Vickrey auction involving the precedent nodes

S

CIR

TR1

TR2

TRk

Set PCIR

Client lookup phase Server registration phase

..

1

2

l

Fig. 2. Figure depicting the operation of the anonymous lookup protocol.

19

Minimum cost at
which the server

the resource
agrees to provide

Price = 100

10

Initial offered price

90

90 60

50

10

70

20

15

90

10

15

20

80

70

RC

RC

1

2

3

75

10

15

20

2

3

C

C

1 1’

2’

3’

TR1

TR2

TR3

PayTR1

SR

1

SR

2

SR

3

70

40

40

50

40

40

5

45

55

SC1

SC2

50

SC3

= 13.33 (= 10 + (10/30)*(70−60)) Pay1’= 6.1 (=5 + (5/45)*(55−45)) PayS1
R
= 48.9

Two phase Vickrey auction
where TR1

 is the winner
Two phase Vickrey auction
where 1’ is the winner

Pay 1 = 13.33 (= 10 + (10/30)*(70−60))

 = 3.33CProfit

(=(10/30)*(70−60))

(Values inside the enclosed region correspond to bids in the respective auction)

RC

SCj = jth service chain

RCi = ith request chain

Fig. 3. An example illustrating how the payoffs are distributed among the WRC and WSC nodes based on their marginal costs.

20

A: Adversary

u: Total number of adversaries (in case of more than one)= - �ùD@7 : Distance (number of identifiers) between nodes i and j=@n�Ohú$V?K8� - �yDL7 : Binary representation of distance between nodes i and j

L: The event that the adversary does not lie on any lookup chain

S(x): Anonymity set for event x

d(S): Degree of anonymity on set S

Fig. 4. Notations for anonymity analysis

21

T1

T2

T3

T4

y1

y2

y3

C

i

j
m

Fig. 5. Multiple request chains initiated by C

22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Number of adversaries(u) for n=1000

D
e

g
re

e
 o

f
A

n
o

n
y

m
it

y
,
d

e
g

(S
)

Fig. 6. Variation of degree of anonymity with size of adversary set when ûÅü �(ý?ý?ý .

23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000

Number of adversaries(u) when n=50000

D
e

g
re

e
 o

f
A

n
o

n
y

m
it

y
,
d

e
g

(S
)

Fig. 7. Variation of degree of anonymity with size of adversary set when ûÅü<þ ý?ý?ý?ý .

24

���G�?�G�����o�S�Q��� ÿ����8ÿ � ����� ¢ ®�� ¢ � 	�
� ��� �q�(�q�?����(�?© �oª � �� ��� °�� ®��&�����:��� ���(��© �«ª�³@�G�T¦?�±´ ��� �� ��� °�� ®��&�����:�
� ���G� ¤��S´ � ��� °�� ®��&� ���(� ¤���´�³µ�G�T¦��±´ � � ��� °�� ®��&� ���(� ²��S�G� �¿»� �¿»¹
TABLE I

VARIOUS MESSAGES COMPRISING THE SERVER REGISTRATION PHASE AND VICKREY AUCTION INVOLVING THE NODES IN � �§� Z . THE RESOURCE NAME

R IS INCLUDED IN ALL THE MESSAGES SO THAT THE RECEIVER CAN CORRECTLY ESTABLISH THE CONTEXT FOR THE RECEIVED MESSAGE (FOR

EXAMPLE IT IS POSSIBLE FOR �]� � TO BE THE CONTENT INDEX NODE FOR SOME OTHER RESOURCE ALSO). � »� AND � »¹ ARE THE LOWEST AND SECOND

LOWEST BIDS, RESPECTIVELY.

25

���(� � �(�8¤�¥�¦ � � � ��� ��� �q�(�q�?� �®�¯ �ù° ¦�¥ © �±�«²���(�?© �«ª � ��� ��� °�� ®��&�����:��� ��� �q�(�q�?� _®�¯ �ù° ¦?¥ © �±�«²���(��© �«ª�³@�G�T¦?�±´ ��� �� ��� °�� ®��&�����:��� _®8¯ �ù° ¦�¥ © �±�o²���G� ¤��S´ � ��� °�� ®��&� _®�¯ �ù°�¦?¥ © �±�«²���(� ¤���´�³µ�G�T¦��±´ � � ��� °�� ®��&� _®8¯ �ù°�¦�¥ © �±�o²���(� ²��S�G� � � �º¹ �®�¯ �ù°�¦�¥ © �±�«²� ��� �q�(�q�?�
TABLE II

VARIOUS MESSAGES COMPRISING THE CLIENT LOOKUP PHASE AND VICKREY AUCTION INVOLVING THE TERMINAL NODES. THE VALUE _®�¯ �ù°&¦�¥ © �±�«² IS

INCLUDED IN ALL THE MESSAGES SO THAT THE RECEIVER CAN CORRECTLY ESTABLISH THE CONTEXT FOR THE RECEIVED MESSAGE.

26

PLACE

PHOTO

HERE

Rohit Gupta is currently working in Amazon.com in Transaction Risk Management group. He earned his PhD degree from Iowa

State University in 2005, and his MBA from University of San Francisco in 2001. He received his undergraduate degree in Computer

Science and Engineering in 1997 from REC Kurukshetra, India. From 1997 to 1999, he worked as a Research Engineer in Call

Processing group, working on ISDN and WLL technologies, in Centre for Development of Telematics (C-DOT), New Delhi India.

His research interests include networking, peer-to-peer systems, parallel and distributed computing, and telecommunications.

PLACE

PHOTO

HERE

Souvik Ray is currently pursuing his PhD in Computer Engineering at Iowa State University. He earned his M.S in Computer Sc

from University of Louisiana at Lafayette. He has a B.S in Chemical Engineering from Jadavpur University, Kolkata, India. His

research interests include distributed systems security, operating systems and computer architecture.

PLACE

PHOTO

HERE

Arun K. Somani is currently Jerry R. Junkins Endowed Chair Professor of Electrical and Computer Engineering at Iowa State

University. He earned his MSEE and PhD degrees in electrical engineering from the McGill University, Montreal, Canada, in 1983

and 1985, respectively. He worked as Scientific Officer for Govt. of India, New Delhi from 1974 to 1982 and as a faculty member

at the University of Washington, Seattle, WA from 1985 to 1997 in electrical engineering and computer science and engineering

departments where he was promoted to Full Professor in September 1995.

Professor Somani’s research interests are in the area of fault tolerant computing, computer interconnection networks, WDM-

based optical networking, and parallel computer system architecture. He is the chief architect of an anti-submarine warfare system

(developed for Indian navy) and Meshkin fault-tolerant computer system architecture (developed for the Boeing Company). He has also developed several

robust interconnection topologies, architected, designed, and implemented a 46-node multi-computer cluster-based system, Proteus, using a large grain message-

passing model and separate data and control planes, and uses fiber optic communication links. His current research is in developing scalable architectures and

algorithms to manage, control, and deliver dependable service efficiently for network employing optical fiber technology, wavelength division multiplexing,

wavelength conversion, wavelength sharing, traffic grooming, access network design, Fault and Attack Management (FAM) in optical networking.

He has served on several program committees of various conferences in his research areas. He was the General Chair of IEEE Fault Tolerant Computing

Symposium - 1997 and Technical Program Committee Chair of International Conference on Computer Communications and Networks, 1999, and OPTICOMM

2003. He is serving as the General Chair of BroadNets 2005. He has served as IEEE distinguished visitor and IEEE distinguished tutorial speaker. He has

been elected a Fellow of IEEE for his contributions to theory and applications of computer networks.

PLACE

PHOTO

HERE

Zhao Zhang is an assistant professor of computer engineering at Iowa State University. His research interests include computer

architecture and parallel and distributed systems. He received the BS and MS degrees in computer science from Huazhong University

of Science of Technology, China, in 1991 and 1994, respectively, and the PhD degree in computer science from the College of

William and Mary in 2002. He is a member of the IEEE and the ACM.

