
Provable Anonymity for Networks of Mixes?

Marek Klonowski and Mirosław Kutyłowski

Institute of Mathematics and Computer Science, Wrocław University of Technology,
Marek.Klonowski@im.pwr.wroc.pl ? ? ?

Miroslaw.Kutylowski@pwr.wroc.pl

Abstract. We analyze networks of mixes used for providing untraceable com-
munication. We consider a network consisting of k mixes working in parallel and
exchanging the outputs – which is the most natural architecture for composing
mixes of a certain size into networks able to mix a larger number of inputs at
once.
We prove that after O(log k) rounds the network considered provides a fair level
of privacy protection for any number of messages. No mathematical proof of
this kind has been published before. We show that if at least one of server is
corrupted we need substantially more rounds to meet the same requirements of
privacy protection.

Keywords: anonymity, mix network, Markov chain, rapid mixing, coupling

1 Introduction

Providing anonymity becomes one of the key security problems of electronic commu-
nication today. There growing dangers both for the private sphere, business communi-
cation and information security on a national level.

Many anonymity systems have been proposed - for a collection of papers see [7].
Most anonymity schemes are based on a MIX - a cryptographic primitive introduced by
David Chaum [8].

1.1 Mixes

A MIX-server processes many encrypted messages at once: it recodes them crypto-
graphically and outputs the re-coded messages in a random order. The purpose of these
operations is that no relation between input and output can be established by an adver-
sary that can see the input and the output of a mix.

For instance, a mix described in [8] works as follows (see Fig.1): assume that users
1, 2, . . . , n want to publish anonymously messages m1, m2, m3, . . . , mn. The users
submit their messages to the mix encrypted with the public key k of the mix server:
Ek(m1), Ek(m2), Ek(m3) . . . , Ek(mn). The mix server decrypts them with its private
key, chooses a permutation π uniformly at random, and outputs mπ(1), . . . , mπ(n).

? ? ? contact author
? preliminary version, accepted for Information Hiding’2005, to be published in LNCS, Springer

Verlag, partially supported by KBN

In fact, some additional precautions are necessary: encryption scheme should be
probabilistic, duplicates should be removed Necessary properties may be imple-
mented in many ways – for example by slightly modified onions [14] or Universal
Re-Encryption [9]. For more details see [8] and other papers available on [7].

E(m1)

E(m2)

E(m3)

E(m4)

mπ(1)

mπ(2)

mπ(3)

mπ(4)

Fig. 1. Batch of messages processed by single MIX-server by using random permutation π

For a proper design, as long as the cryptosystem applied has not been broken, a mix
server provides perfect anonymity – after entering the mix messages become indistin-
guishable. Unfortunately, there are serious drawbacks of this solution. First, we have to
trust the (administrator of the) server. There are also scalability problems, since every
participant has to use the same server. Of course, this is unrealistic. Also, any server
failure (random or caused by an adversary - a “DoS attack”) has severe consequences.

1.2 Networks of Mixes

In order to avoid the problems mentioned, many authors propose mixing structures
consisting of many MIX-servers interconnected, called MIXing networks. The messages
entering a network of mixes must visit the MIX-servers in an appropriate order to get
to the final destination. At each MIX-server visited a message is recoded appropriately.
Of course, encoding scheme must take into account the route of a message.

If a user may distrust certain MIX-servers, then it is reasonable to apply a cascade
of mixes: if k MIX-servers are available, then they are pipelined so that the output of
server i is the input of server i + 1. However, if a mix cannot process all messages at
once, a natural solution is a “parallel mix cascade” (see Fig. 2): let us assume that we
have MIX–servers S1, S2, . . . , Sk (k > 1) and n messages to be mixed. The protocol
consists of T phases (parameter T has to be chosen sufficiently large). During a round
n/k messages are submitted to each MIX-server. Each server recodes the messages
submitted, permutes the results at random, and sends n/k2 messages to the each server.
In particular, n/k2 messages remain at this server.

Details of this protocol may differ slightly in various proposals. For instance, the
next MIX-server can be chosen uniformly at random, independently from other servers,
instead of directing a fixed fraction to each server. For the rest of the paper we shall
consider the former scenario.

2

Fig. 2. Parallel MIX-cascade with n = 18 messages and k = 3 mix servers during T = 4 steps

2 Problem Statement - Anonymity Guarantees

Perfect mixing by the MIX-servers in a MIXing network do not guarantee that all mes-
sages get mixed properly. An extreme case of this problem is when each mix gets two
inputs at a time – then we have to do with a switching network where switches are set
at random. In this case designing a good architecture with quality guarantees remains
an unsolved problem. An existing solution [5] with a provable level of anonymity has
polylogarithmic depth (i.e., the number of rounds T is a bounded by a polynom in log n,
where n is the total number of messages processed), but the exponent is too high for
any practical application. However, the situation we are dealing with is not that extreme
– we are interested in the case that k � n.

The general strategy is as follows: in order to permute n messages at random we
split the messages into k groups, permute at random each group separately, re-arrange
the groups, permute at random each group, re-arrange the groups, and so on. The main
question here is how to arrange the groups. Is the parallel mix cascade the best possible
architecture? How many rounds are necessary until we approach a random permutation
of (encoded) messages?

Still there is no general answer to the question how to permute n elements at random
if we have components that may permute n/k elements in one round. There are at least
two general approaches: one represented by the parallel mix cascade, and one in which
we arrange growing groups of well mixed elements. The main part of such algorithms
is a shuffling procedure that take two groups and merges them.

We assume that there is an adversary trying to trace messages going through a MIX-
network. He knows the algorithm but cannot break the cryptographic scheme used. We
can also consider a situation that an adversary controls certain mixes and therefore
knows the permutations applied by these mixes.

2.1 Previous Work

The very first paper introducing MIXes as a tool for enhancing anonymity level was
published by David Chaum [8]. He also proposed pipelining of several MIX-servers
that form a “MIX-cascade”. In [14] Rackoff and Simon presented a very significant

3

extension of Chaum’s scheme – in this protocol the route of a message is determined
by a sender and the message is encoded in a structure resembling an onion. A similar
approach was used later by many authors (e.g. [15, 12]), but progress in estimating the
runtime such that a good level of anonymity is achieved, was quite slow. The topology
of parallel mix cascade that we consider in this paper was described for instance in [12].

The first paper with an anonymity proof of a mixing protocol was published by
Rackoff and Simon [14]. Further results about the same protocol under a different ad-
versary model have been obtained recently [3, 11]. None of these results applies to
the situation considered in this paper – the main focus of these papers is on how much
information is granted to the adversary through traffic information. In our case the com-
munication is oblivious and does not depend on how the messages are mixed.

2.2 New results

We provide a detailed analysis of parallel mix cascades and estimate how many rounds
are necessary until the probability distribution over possible mappings between the mes-
sages entering the network and those leaving the network becomes close to uniform. It
turns out that this number does not depend on the number of messages! In this case the
adversary cannot link the decoded messages that leave the network with the messages
submitted by the users – the probabilities are close to the case of the uniform probability
distribution. This result is given by Theorem 1.

Our result is based on delayed path coupling - a technique introduced in [6], which
is an extension of path coupling [1]. In fact, there are some traces of the current technical
approach in our former paper [10], namely for the case k = 2.

2.3 Paper Organization

In Section 3 we consider adversary and the definition of anonymity that we use. We dis-
cuss very quickly why this definition provides better anonymity guarantees than some
other definitions used in the literature. Section 4 is devoted to the main result. We start
it with a description of mathematical tools necessary to analyze mix networks. In Sec-
tion 5 we analyze the situation in which one of the MIX-servers is corrupt.

3 Mixing Network and Anonymous Communication

Adversary Model There are substantially different models of an adversary trying to
establish relation between messages entering a MIX-system and the messages leaving
this system. Many papers deal with so–called a global passive adversary. This adver-
sary can just observe the traffic on some number of links and servers (in our case the
traffic on the links is oblivious, so the traffic on the links is of no use). The most com-
mon model assumes that an adversary can eavesdrop all links but none of servers. If a
server reveals permutation that it use to an adversary we call it corrupted or dishonest.

An active adversary can add, remove, replace, duplicate messages at certain nodes
or links. This turns out to be very dangerous and there are several papers dealing with
these issues – for example [9, 13].

4

Our main result refers to the model with a global passive adversary with no control
over the servers. In Section 5 we consider the case of dishonest servers.

Anonymity Definition Anonymity is a vague notion that can be formalized in various
ways. Since it is desired to provide some security guarantees, we consider one of the
strongest notions.

A relation between n messages entering and leaving the whole mixing structure can
be described by a permutation of elements {1, . . . , n}. An adversary wants to reveal (at
least partially) this permutation using information at hand or at least to know that some
permutations are much more probable than the others.

Already applying a few mixes the number of possible permutations is quite a big
one. So an adversary can consider the permutation of messages {1, . . . , n} as a random
variable with some probability distribution Πt depending on the traffic information
gained by the adversary. Of course, we would wish that Πt is a uniform distribution
µU . Unfortunately, in many systems it is impossible due to simple divisibility reasons.
In particular, it cannot happen for a parallel MIX cascade for any number of rounds.

On the other hand, stochastic process {Πt}t∈N+∪0 converges to the uniform distri-
bution over Sn in respect to the metrics total variation distance. Recall that for random
variables Γ1 and Γ2 with a finite set of values Y variation distance between Γ1 and Γ2

is defined by the formula:

TVD(Γ1, Γ2) = 1
2

∑
y∈Y |Pr(Γ1 = y) − Pr(Γ2 = y)| .

(Sometimes in this paper we use distribution of random variable instead of random
variable itself.) We say that the parallel mix cascade provides anonymity after t0 steps
if

TVD(µU , Πt) < 1/c

or every ≥ t0. Parameter c is usually 1/nα. This definition takes into account not only
distribution of a single message, but also correlations between them. This is very im-
portant, for instance in the case when mixes are used for electronic voting [10].

The anonymity definition considered is equivalent to a definition based on infor-
mation theory [3]. Some other papers use yet another substantially weaker definitions
(see for example [13]). They might be useful and suffice in concrete situations. On the
other hand, since we prove a bound for a strong definition, our result applies also to the
weaker ones.

4 Coupling Proof of the Main Result

It is intuitively obvious for the parallel mix cascade the distribution of Πt converges to
the uniform distribution. We use a standard convergence measure called mixing time:

τM(ε) = min {T : ∀π ∈ Sn, ∀t ≥ T TVD(Lπ(Πt), µ) ≤ ε} .

where Lπ(Πt) denotes probability distribution of a random variable Πt under the con-
dition that Xt0 = π and µ is the uniform distribution.

In this section we formally prove that {Πt}t∈N converges very quickly to µ. For
this purpose we use delayed path coupling technique described below.

5

Delayed Path Coupling Delayed Path Coupling [5] is a tool for proving convergence
rate of a homogeneous Markov chain. It is an extension of Path Coupling [4] and the
generic coupling method. Let us recall it briefly. Let M = (Yt)t∈N be a discrete-time
Markov chain with a finite state space S that has a unique stationary distribution µ. A
coupling for a Markov chain (Yt)t∈N is a stochastic process (Yt, Y

?
t) on the space S×S

such that processes Yt and Y ?
t considered separately are faithful copies of Yt. In other

words, Pr(Yt+1 = y|Yt = x) = Pr(Yt+1 = y|Yt = x) = Pr(Y ?
t+1 = y|Y ?

t = x) for
each x, y ∈ S.

We assume that there is a metric ∆ : S × S −→ N; let D be the largest distance
according to metrics ∆. Further, let

Γ = {(Ytδ , Y
?
tδ) ∈ S × S : ∆(Ytδ , Y

?
tδ) = 1} .

Further, we need to assume that for all (Ytδ , Y
?
tδ) ∈ S × S, if ∆(Ytδ , Y

?
tδ) = r, then

there exist a sequence (a “path”) Y = Λ0, Λ1, . . . , Λr = Y ? with (Λi−1, Λi) ∈ Γ for
0 ≤ i < r. No we can formulate the main technical result on delayed path coupling:

Lemma 1 (Delayed Path Coupling Lemma). Assume that there exist a coupling (Ytδ , Y
?
tδ)

for a process (Yt)t∈N such that for some real β < 1 and positive integer δ we have
E[∆(Y(t+1)δ , Y

?
(t+1)δ)] ≤ β for all (Ytδ , Y

?
tδ) ∈ Γ and for all t ∈ N. Then,

τM(ε) ≤ δ · dln(Dε−1)/ ln β−1e .

For further details on delayed path coupling see [5, 4]. By Lemma 1, in order to es-
timate the total variation distance between probability distribution describing the state
of a process after step t and its stationary distribution it suffices to construct an ap-
propriate coupling. We should stress that processes Yt and Y ?

t are usually dependent –
constructing a proper dependence between them is the tricky part of the proof.

4.1 Main Result

Theorem 1 (Main Result) For a parallel MIX cascade TVD(µU , Πt) = 1
n for t > T ,

where T = O(log k) and does not depend on the number of messages n.

Preliminaries At the beginning we observe that {Πt}t∈N is a symmetric and ergodic
Markov chain. So the uniform distribution is its unique stationary distribution.

The second key observation is that after mixing in the first step we can confine
ourselves to permutations of n balls colored with k different colors - n/k balls of each
color. We say that a ball has color i, if it is processed by server i in the first step of the
protocol. So the process {Πt}t∈N has values in a space of all placements of such balls
on n positions. We denote this space by S.

For y1, y2 ∈ S we define ∆(y1, y2) to be the minimal number of transpositions
necessary to get from state y1 to y2. Of course, ∆ is a metric and maxy1,y2

∆(y1, y2) =
n(k − 1).

6

Construction of Coupling Let processes (Υt, Υ
?
t) differ on one position at time t. Let

i0 and j0 be the positions at which the configurations Υt, Υ
?
t do not match, say the first

process has a white ball at position i0 and a black ball at position j0, while for the
second process the roles are reversed: a black ball is at i0 and a white ball is at i0.

A

B

A3

A2

A4
B4

B3

B2

A

B

A2

A1

A3
B3

B2

B1

i0

j0

step t step t + 1 step t step t + 1

the first process the second process

Fig. 3. coupling idea

We shall talk about an “extra white ball” for each process. This is the white ball that
originally stands at position i0 for the first process and ball at position j0 for the second
process. This terminology refers to the fact that if we replace them by black balls, then
the states of both processors become the same. In our approach we take into account
black balls and the extra white balls of each process. The remaining balls go to the same
positions for both processes. Since the remaining positions are left for the black balls
and for the extra white balls, the configuration of each process is determined by the
placement of the extra white ball on the positions that are left.

Let S1, S2 . . .Sk denote sets of positions corresponding, respectively to mixes, 1,
2, . . . , k. Observe that if the extra white balls from both processes are placed in the
same server, i.e. Υt+1(i0) ∈ Sl and Υt+1(j0) ∈ Sl for an l ≤ k, then we can couple
the processes. Namely, the second process uses the same permutation π for Sl as the
first process but composed with a transposition concerning the positions of the extra
white balls (the transposition is applied before π). It is easy to see that this operation
does not change the marginal probability distribution of the second process, because π
has the uniform distribution and so composition of a fixed transposition and of π yields

7

a uniformly distributed permutation. Unfortunately, the situation described has a low
probability, namely 1/k. For this reason a more sophisticated strategy is necessary.

For presenting coupling construction we need some notations. Let i0 ∈ Si and
j0 ∈ Sj . Let A and B be the set of positions occupied by the black balls and the extra
white balls in Si and Sj . Moreover, let Ai = Υ (t)(A) ∩ Si and Bi = Υ (t)(B) ∩ Si.
That is, Ai (Bi) is the set of positions occupied in step t + 1 in server i by balls that
were at positions from set A (B, respectively) at step t. Further, let: a = |A| , ai = |Ai|,
b = |B|, and bi = |Bi|. Let IA = {i | ai

a > bi

b } and IB = {1 . . . k} \ IA.

Coupling Definition

1. We let the first process to place all balls except these starting from positions in set
A∪B. The second process places the corresponding balls in exactly the same way.

2. Now the extra white ball (of the first process) from position i0 is placed uniformly
at random on one of the positions that are left – i.e. Υ (t)(A ∪ B).
Now let us assume that Υt(i0) ∈ Sh. We define how to place the second extra white
ball. Let U =

∑
i∈IB

(bi

b − ai

a). (So U =
∑

i∈IA
(ai

a − bi

b), as well.)

Case 1 – h ∈ IB: in this case we put the extra white ball of the second process on
a position chosen uniformly at random from the set Bh.

Case 2 – h ∈ IA: we toss an asymmetric coin:
– with probability bh

b /ah

a = bh·a
b·ah

we place the extra white ball of the second
process on randomly chosen position from set Bh,

– with probability 1− bh·a
b·ah

, we choose a position at random: we put the extra
white ball into set Bl with probability

(bl/b) − (al/a)

U

for l ∈ IB . The choice of position within Bl is uniform.

3. We are left with black balls only. Each process simply places them at the remaining
unoccupied positions.

If the extra white balls fall into the same server at step t + 1, then in the next step
we couple successfully the processes as it was described above.

Correctness of Coupling Now we have to show that the procedure described above is
a proper coupling - that is the second process has appropriate probability distribution
of transitions. Obviously, it is enough to show that the extra white ball from the second
process will be placed in each set Bh with probability bh

b . We consider two cases:

Case 1 – h ∈ IB: In this case the extra white ball had to fall into the set Ai and we had
a “positive” result of tossing the coin. So

Pr(Υt(j0) ∈ Bi) =
ah

a

(
bh · a
b · ah

)
=

bh

b
.

8

Case 2 – h ∈ IB: In this situation the extra white ball from the second process could be
placed in set Bh in two situations. Either the extra white ball from the first process
falls into set Ah or it falls into some of the sets Ai, i ∈ IA. Events leading to these
situations are disjoint. So:

Pr(Υt(j0) ∈ Bh) =
ah

a
+
∑

i∈IA

ai

a
·
(

1 − bi · a
b · ai

)
· bh/b − ah/a

U
=

ah

a
+

bh/b− ah/a

U
·
∑

i∈IA

ai

a

(
1 − bi

b
· a

ai

)
=

ah

a
+

bh/b − ah/a

U
· U =

bh

b
.

Success Probability of Coupling Strategy Now we estimate probability of the event
that the processes get coupled in two steps. As we have seen, it happens at the beginning
of step t + 2 if at the end of step t + 1 the extra white balls get into the same server.

As before, we consider two cases with respect to the position of the extra white ball
of the second process at step t + 1. Let Υt(i0) ∈ Sh.

Case h ∈ IA: the processes get coupled with probability bh·a
b·ah

. So this contributes
ah

a · bh·a
b·ah

= bh

b to the overall probability of successful coupling.
Case h ∈ IB: the processes get coupled with probability 1. So this contributes ah

a to
the overall probability of successful coupling.

Hence:

Pr(Υt+2 = Υ ?
t+2) =

∑
i∈IA

bi

b +
∑

i∈IB

ai

a =
∑k

i=1 min
{

ai

a , bi

b

}
.

Now our goal is to estimate ai

a and bi

b

Lemma 2. Starting at any situation in our model after one step each server contains
at least n/16k2 balls of each color with probability greater then 1 − exp(−n/32k2)

Sketch of the proof. Without loss of generality, we consider the black balls and server
S1, only. Let us assume that in the first step we have xi black balls in the server Si. So
x1 + x2 + . . . + xk = n/k. Let yi be the number of black balls that goes from server
Si in first step to server S1 in the second step. Of course yi ≤ xi. We are interested in
estimating y = y1 + y2 + . . . + yk We consider two cases:

xi ≤ n/2k2 : then we can estimate yi from below by xi independent Bernoulli trials
each with probability 1/2k.

xi > n/2k2 : in this case we can estimate from below yi by n/4k2 Bernoulli trials
each with probability of success xik/2n.

Indeed, if xi > n/2k2, then probability of assigning the jth position connecting Sj

with S1 to a black ball after making decisions about positions 1 through j − 1 is at least

(xi − (j − 1))/(n/k) ≥ (xi − n/4k2)/(n/k) > (xi/2)/(n/k) = xik/2n .

9

W.l.o.g. let us assume that exactly the first l servers belongs to the first category – they
have xi ≤ n/2k2 black balls at first step. The remaining k − l servers belong to the
second category. Then

E(y) ≥ (x1 + . . . + xl)
1
2k + n

4k2

xl+1k
2n + . . . + n

4k2

xkk
2n ≥

= (x1 + . . . + xk) 1
8k = n

8k2 .

We use Chernoff bound in the following form: if X is a sum of independent random
variables, then Pr(X ≤ (1 − δ)E(X)) ≤ exp(−δ2E(X)) for each 0 < δ < 1. So for
δ = 1/2 and the previous estimations we get that Pr(y ≤ n

16k2) ≤ exp(−n/32k2).
Let us recall the following lemma probability theory (see [2]):

Lemma 3. Let assume that we choose βN balls at random from set of αN black balls
and (1−α)N white balls without replacing. Let X be the number of black balls chosen.
Then for γ > 0

Pr(|X − αβN | >
√

2βγN) ≤ 2 exp(−γ) .

Now we can estimate the values ai/a and bi/b. We use Lemma 3 with the parameters
N = n/k, α = ak/n and β = 1/k. We get:

Pr
(∣∣ai − a

k

∣∣ > √
2γn/k

)
< 2 exp(−γ) ,

Pr
(
ai < a

k −√
2γn/k

)
< 2 exp(−γ) .

So by dividing by a we get

Pr
(

ai

a < 1
k −

√
2γn
ka

)
< 2 exp(−γ) .

By Lemma 2 applied to a in expression written above and using very rough estimation
of probabilities we have for γ = n0.4:

Pr

(
ai

a
<

1

k
−

√
2

k

16

n0.3

)
< 2 exp(−n0.4) + exp(−n/32k2) .

Note that analogous formulas hold for ai/a as well as bi/b for all 0 < i ≤ k. Thereby

Pr(Υt+2 = Υ ?
t+2) =

∑k
i=1 min

{
ai

a , bi

b

}

> k
(

1
k −

√
2

k
16

n0.3

)
− 2k(2 exp(−n0.4) + exp(−n/32k2)) .

For sufficiently large n we can estimate the expression above by 1 − 23/n0.3.

Stopping Time Now we have all factors necessary to evaluate formula of Delayed Path
Coupling. Since in our coupling the distance cannot increase we have:

β = E(∆(Υt+2, Υ
?
t+2)) = Pr(Υt+2 6= Υ ?

t+2) < 23/n0.3

By our construction, δ = 3. Since D = n(k − 1) we get finally

τM(ε) ≤ 3

⌈
ln n(k − 1)ε−1)

0.3 lnn − ln 23

⌉
.

So for a standard value ε = 1/n used in the literature we have τM = O(log k), which
is O(1) with respect to the number of messages n.

10

5 Dishonest Server Case

In this section we compare the results obtained in the previous section with the case in
which at least one server is dishonest (i.e. reveals permutations used to an adversary),
and show that we need significantly more steps to achieve the same level of anonymity.
Namely, namely this number of steps becomes a function of n, which is a significant
difference with the previous case.

First observe that if the exact position of at least one message after mixing process
is known - i.e. Π̂T (i) = j for certain i, j, then

TVD(Π̂T , µU) ≥ 1 − 1/n .

(This shows how sensitive is total variation distance as a measure of anonymity.) Ob-
viously, the variation distance considered reaches a minimum if Π̂T maps all messages
(except i) uniformly at random on positions {1, . . . , n} \ {j}. In this case

TVD(Π̂T , µU) = 1
2

(
(n − 1)!

∣∣∣ 1
(n−1)! − 1

n!

∣∣∣+ (n! − (n − 1)!)
∣∣0 − 1

n!

∣∣
)

= 1 − 1/n .

Now we check that if a dishonest server permanently reveals how it permutes the
messages, then with a constant probability the route of some message will be revealed
for T = Θ(log log n/ log k) steps. After the first step exactly n/k2 messages remain at
the dishonest server. We choose n/2k2 of them and for each of them estimate the chance
that it will remain at the dishonest server all the time. In order to analyze a single step
we assume that the distinguished messages choose the output position of the mix at
random: the first message can choose an arbitrary output position, the next message
chooses at random from all output positions of this mix except the one occupied by the
first message, the third message chooses among n/k-2 positions, and so on. In any case
each of the distinguished messages has probability at least n/k2−n/(2k2)

n/k = 1/2k to
remain at the dishonest server, hence at least (1/2k)T within T steps, no matter what
happens with the remaining distinguished messages. Hence the probability that at least
one message stays at the same dishonest server is grater than

1 −
(
1 −

(
1
2k

)T)n/2k2

.

So if T = Θ(log log n/ log k), then with a constant probability an adversary can trace
the whole route of some message.

6 Conclusions and Open Problems

In this paper we have proved that parallel mix cascade provides very high standard of
privacy security. We need O(1) protocol steps if all servers are honest. It is not enough
when at least one server is dishonest or corrupted.

We have shown an interesting phenomenon that if all servers of parallel mix cascade
are honest, the number of steps necessary to achieve good provable anonymity does not
depend on the number of messages, while it is not true if a single mix is dishonest.

It is still open question how many steps we do need for other mix-network topolo-
gies and what is the optimal topology.

11

References

1. Aldous, D.: Random Walks of Finite Groups and Rapidly Mixing Markov Chains. In: Azéma,
J., Yor, M. (eds.): Séminare de Probabilités XVII 1981/82. Lecture Notes in Mathematics,
Vol. 986. Springer-Verlag, Berlin (1983), 243-297

2. Auletta, V., Caragiannis, I., Kaklamanis, C., Persiano, P.: Randomized Path Coloring on
Binary Trees. APPROX’2000, LNCS 1913, Springer-Verlag, 60-71

3. Berman, R., Fiat, A., Ta-Shma, A.: Provable Unlinkability Against Traffic Analysis. Financial
Cryptography 2004, LNCS 3110, Springer-Verlag, 266-280

4. Bubley, B., Dyer, M.: Path Coupling: A Technique for Proving Rapid Mixing in Markov
Chains. ACM-SIAM FOCS ’38, 1997, 223-231

5. Czumaj, A., Kanarek, P., Kutyłowski, M., Loryś, K.: Switching Networks for Generating
Random Permutations. In: Switching Networks: Recent Advances. Kluwer Academic Pub-
lishers, (2001)

6. Czumaj, A., Kutyłowski, M.: Delayed Path Coupling and Generating Random Permutations.
Random Structures and Algorithms (2000) 17(3-4): 238-259

7. Dingledine, R. Anonymity Bibliography http://freehaven.net/anonbib/
8. Chaum, D.; Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.

CACM 24(2) (1981) , 84-88
9. Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal Re-encryption for Mixnets. RSA-

CT’04 LNCS 2964, Springer-Verlag, 163-178
10. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Rapid Mixing and Security of Chaum’s

Visual Electronic Voting, ESORICS’2003, LNCS 2808, Springer-Verlag, 132-145
11. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.: Provable Unlinkability Against Traf-

fic Analysis Already After O(log(n)) Steps!, Information Security Conference (ISC)’2004,
LNCS 3225, Springer-Verlag, 354-366

12. Gülcü, C., Tsudik, G.: Mixing E-mail with BABEL. ISOC Symposium on Network and Dis-
tributed System Security, IEEE 1996, 2-16

13. Kesdogan, D., Egner, J., Büschkes, R.: Stop-and-Go-MIXes Providing Probabilistic
Anonymity in an Open System. Information Hiding ’98 LNCS 1525, Springer-Verlag, 83-
98

14. Rackoff, C., Simon, D.R.: Cryptographic Defense Against Traffic Analysis. ACM Sympo-
sium on Theory of Computing25 (1993) 672-681

15. Syverson, P. F., Reed, M. G., Goldschlag, D. M.: Anonymous Connections and Onion Rout-
ing. IEEE Journal on Selected Areas in Communication, 1998, 16(4):482-494

12

