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Abstract. In a re-identification attack, an adversary analyzes the sizes of inter-
cepted encrypted VoIP packets to infer characteristics of the underlying audio—
for example, the language or individual phrases spoken on the encrypted VoIP
call. Traffic morphing has been proposed as a general solution for defending
against such attacks. In traffic morphing, the sender pads ciphertext to obfuscate
the distribution of packet sizes, impairing the adversary’s ability to accurately
identify features of the plaintext.
This paper makes several contributions to traffic morphing defenses. First, we
argue that existing traffic morphing techniques are ineffective against certain re-
identification attacks since they (i) require a priori knowledge of what information
the adversary is trying to learn about the plaintext (e.g., language, the identity
of the speaker, the speaker’s gender, etc.), and (ii) perform poorly with a large
number of classes. Second, we introduce new algorithms for traffic morphing
that are more generally applicable and do not depend on assumptions about the
goals of the adversary. Finally, we evaluate our defenses against re-identification
attacks, and show, using a large real-world corpus of spoken audio samples, that
our techniques reduce the adversary’s accuracy by 94% with low computational
and bandwidth overhead.

1 Introduction

Over the last decade, the use of voice-over-IP services as an alternative to landlines and
mobile phones has dramatically increased. For instance, Skype calls accounted for just
2.9% of the international call market in 2005 [19]; by 2012, that percentage increased by
an order of magnitude to 34% [20]. Between 2011 and 2012, the number of concurrent
users online nearly doubled from 27 million to 50 million [16].

Additionally, VoIP offers the ability to more easily secure the communication con-
tent using end-to-end (e2e) encryption – either as part of the communication protocol
(cf. Skype [3]) or by layering established cryptographic protocols such as SSL/TLS
(cf. WebRTC). The widespread adoption of encrypted VoIP services such as Skype im-
plies a more secure communication infrastructure that is resistant to eavesdropping.

However, existing work has shown that even when strong encryption is applied, en-
crypted VoIP streams often leak significant information about the plaintext audio. To
conserve bandwidth, most popular VoIP systems make use of variable bit-rate (VBR)
encoders in which the amount of output data per time unit varies according to the com-
plexity of the audio sample. Importantly, although VoIP systems may encrypt audio
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Fig. 1: Attack workflow. An adversary conducts a re-identification attack by extracting features
from an intercepted, encrypted stream. In this example, each observed packet size is mapped to
a symbol from the alphabet Σ = {a, b}. The feature extractor counts the number of occurrences
of each symbol (“unigram”) and adjacent pair of symbols (“bigram”). Using a corpus of labeled
training data whose features have been similarly extracted, the attacker uses machine learning
techniques to infer the class of the intercepted communication (e.g., the speaker is speaking Ger-
man or is Groucho Marx).
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Fig. 2: Conceptual overview of the traffic mor-
phing approach by Wright et al. [28].
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Fig. 3: Conceptual overview of Muffler.

packets, the systems’ underlying use of VBR induces a side-channel through which an
adversary may infer information about the plaintext by observing only the sizes of en-
crypted packets. In particular, Wright et al. showed that such observations are sufficient
to accurately infer the language being spoken [26]. As shown in Figure 1, an adversary
can extract features from the ciphertext based on packets sizes and use machine learn-
ing techniques to infer attributes of the underlying plaintext. Followup work by many
of the same authors demonstrated that machine learning techniques could additionally
identify speakers [13] and phrases [24, 27] with high accuracy. Throughout this paper,
we use the term class to denote a group of audio samples that share a common attribute
(e.g., speaker’s gender, speaker’s identity, or spoken language).

We present a novel blackbox approach that we call Muffler to defend against traffic
analysis of encrypted VoIP streams. As with other blackbox defenses [28], we assume a
closed-source VoIP client that sends encrypted packets, e.g., Skype. To maintain com-
patibility with existing applications, Muffler operates as an add-on security layer; we
make no modifications to client software.



1.1 Strawman Defenses

An obvious and simple defense against VoIP re-identification attacks is to replace VBR
codecs with CBR encoding. However, this strategy would require either degradation of
call quality, or a significant increase to stream bandwidth. CBR encoding is not well-
suited for networks with limited bandwidth (e.g., mobile data networks) – our aim is to
develop defenses that incur low bandwidth overheads.

1.2 Background: Traffic Morphing

To defeat traffic analysis while maintaining high-quality audio, Wright et al. proposed
a traffic morphing approach in which one class of traffic is transformed to match the
statistical properties of another existing class [28]. Specifically, they selectively add
padding to packets to obfuscate a stream’s true distribution of packet sizes and make
the stream appear indistinguishable from another distribution while minimizing the
amount of padding necessary. Using a comparison function such as the χ2 statistic
and convex optimization, they find the distribution closest to a target distribution that
is attainable by padding (see Figure 2, left). The result is a morphing matrix A where
each value aij in the matrix represents the probability that an (encrypted) audio sample
of size si is padded to sj (see Figure 2, right). They show that for binary classification,
their traffic morphing technique significantly degrades the accuracy of the classifier
from 71% (without obfuscation) to 30%, while incurring a communication overhead of
15.4% [28].

In a blackbox design, packet padding can be achieved by tunneling the encrypted
VoIP packets in another layer of encryption where padding may be added.

The receiver decrypts this layer and discards the padding to obtain the original en-
crypted VoIP stream. Importantly, while the sender can pad packets, packet sizes cannot
be decreased since the VoIP client functions as a blackbox. That is, if sj < si, then
aij = 0 in the morphing matrix.

1.3 A New Approach to Blackbox Traffic Morphing

This paper proposes a new traffic morphing technique that we call Muffler. In contrast
to existing work in which one distribution is morphed to a another ‘target’ distribution,
we construct a new synthetic distribution to which all input audio streams are morphed.
Also, as discussed in the next section, a limitation of existing techniques is that they
assume that the sender knows the adversary’s intent (e.g., to determine if the speaker
is speaking English or German). With Muffler, we adopt a stronger threat model and
assume that the sender does not know the adversary’s classification task (language,
speaker, gender re-identification, etc.).

Figure 3 presents a high-level overview of Muffler. Given a background corpus of
encrypted audio (either labeled or unlabeled), Muffler uses clustering techniques to
form groups of samples, where each group could potentially be a classification used by
an adversary in a re-identification attack. For example, a cluster of samples could corre-
spond to spoken Arabic, female speakers, et cetera. Using these clusters, Muffler creates
a “superdistribution” of packet sizes to which all discovered clusters may be mapped.
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Using a large suite of classifiers, we demonstrate that Muffler effectively thwarts traffic
analysis of encrypted VoIP streams with both low computation and bandwidth over-
heads.

2 Improved Traffic Morphing

The state-of-the-art defense against re-identification attacks is the traffic morphing ap-
proach introduced by Wright et al. [28]. (We survey other related literature in Section 8.)
In this section, we highlight some of the advantages of Muffler over this existing work.

2.1 Lightweight Traffic Morphing

The approach taken by Wright et al. uses convex optimization to find the best-matching
distribution between two audio streams. Calculating the optimal stream transformation
requires over an hour on their tested audio samples [28]. Muffler avoids expensive con-
vex optimizations and is therefore able to dynamically adapt to the input signal: we
show that our processes are sufficiently lightweight to adjust the transformation map-
pings in real-time.

2.2 Finding a Morphable Distribution

As described above, we consider blackbox defenses, where the traffic morphing ap-
proach may only increase packet sizes. Wright et al. study both whitebox and blackbox
solutions, where packet sizes may be decreased in the former case, e.g., by temporarily
using a lower bitrate. For whitebox systems, their traffic morphing scheme optimally
morphs one distribution into another. For clarity, we will refer to the two distributions
throughout this paper as the “source” and “target”, respectively.

For blackbox settings, where the only permitted operation is padding packets, it
may be impossible to transform an existing distribution into another existing distribu-
tion. Consider the example distributions of packet sizes for spoken English, French,
and Spanish depicted in Figure 4. Morphing the Spanish distribution to appear as the
English distribution is straightforward: a portion of Spanish small packets are padded
to appear as medium packets, and a greater portion of Spanish medium packets are
padded to appear as large packets. However, given the distributions shown in the fig-
ure, the converse is not possible: an English speaker’s traffic cannot be morphed into a



Spanish speaker’s, and in fact none of these three distributions can be morphed to from
both of the other two.

The key benefit of Muffler is that it calculates, based on a set of speakers’ streams,
the “superdistribution” with minimal bandwidth cost that may serve as the target dis-
tribution for any of the source distributions. Once the superdistribution is established,
Muffler then uses lightweight traffic morphing techniques to map streams to the su-
perdistribution.

2.3 Automated Class Detection

The traffic morphing technique introduced by Wright et al. requires labeled training data
(e.g., audio samples that are marked as containing spoken English, French, or Spanish).
To avoid this, we apply unsupervised clustering techniques to an unlabeled corpus of
audio samples containing representative samples for the classes that an adversary may
attempt to re-identify. An advantage of our unsupervised learning technique is that the
classes need not be explicitly labeled in the corpus. Hence a large and diverse corpus
of audio samples may be sufficient to construct a superdistribution that captures a large
range of possible classifications.

In Section 4, we show that (1) simple clustering techniques are sufficient to detect
classes, and (2) the performance of Muffler when clustering is used to detect classes is
approximately equivalent to cases where the classes are explicitly specified.

3 System and Attacker Models

We consider two parties communicating via a stream of encrypted VoIP packets. Each
packet represents a fixed-time audio sample encoded using a VBR codec. We denote the
stream of audio samples recorded by the sender as an ordered list S = 〈s1, . . . , sm〉.
Let v(si) be the output of sample si after encoding with the VBR codec and E(v(si))
be the encryption of that encoded output. Let |E(v(si))| be the length (in bits) of that
ciphertext. We define the alphabet Σ as the set of possible lengths of encrypted audio
samples produced by the codec; i.e., ∪si∈S{|E(v(si))|} ⊆ Σ, with equality usually
being the case for spoken audio that is longer than a few seconds. Without loss of
generality, we consider the symbols (packet sizes) in Σ to be ordered by size; that is,
we set Σ = 〈z1, . . . , zn〉 such that zi < zj iff i < j. Finally, we assume that ∀si ∈ S,
|E(v(si))| − |v(si)| = c, where c ≥ 0 is a small constant. This latter assumption is
necessary to allow an adversary to determine the size of the unencrypted audio sample
|v(si)| without knowledge of the sample or the decryption key. Or, equivalently, we
assume that the audio samples have not been padded.

We model a passive adversary who intercepts all encrypted VoIP packets in the
order in which they were sent. The adversary does not have access to the plaintext. Let
L = 〈l1, . . . , lm〉 be an ordered list of the lengths of ciphertexts for the stream S. That
is, li = |E(v(si))|, li ∈ Σ. We note that the sequence L induces a distribution of packet
lengths. The adversary’s goal is to use the side-channel L to infer information about S.

We consider classes of speakers where speakers that share a particular attribute
(e.g., gender) belong to the same class. Let A = 〈a1, . . . , aq〉 be the set of classes that



are of interest to the adversary. For a given sample S, we denote the correct class as
as. As with existing work, we assume that an audio stream has exactly one class. By
assumption, as ∈ A and, to avoid the trivial case, |A| > 1.

We also conservatively assume that the adversary has access to a corpus Γ of un-
encrypted audio samples such that (i) S /∈ Γ , (ii) for all S′ ∈ Γ, aS′ ∈ A, (iii) for
all S′ ∈ Γ , aS′ is known to the adversary (i.e., the corpus is labeled with the correct
classes), and (iv) the adversary may compute the lengths of ciphertexts 〈l′1, . . . , l′m〉 pro-
duced by encoding and encrypting the audio of each sample in Γ . The first requirement
ensures that the intercepted stream does not already appear in the corpus, while the sec-
ond conservatively assumes that each sample in the corpus has a class in A. Finally,
for any audio stream S whose encoded ciphertext may be intercepted by the adversary,
we assume that there are samples in Γ that belong to the class as. We say that such a
corpus provides coverage of the class as.

Given L and Γ , the adversary’s goal is to correctly infer as—that is, to re-identify
the audio’s class. The goal of Muffler is to make the adversary’s probability of correctly
guessing as similar to the probability of guessing correctly without L.

As discussed above and visualized in Figure 1, the adversary may frame the re-
identification task as a machine learning problem. For example, the approach by Wright
et al. forms n-grams (overlapping segments of n-length sequences) over L, and uses
a count of each n-gram as a feature for a machine learning classifier [26]. Using a
background corpus to train the classifier, Wright et al. show that the adversary can
reliably predict as when no obfuscation is applied. In Section 6 and in Appendix A, we
formalize our security properties under the assumption that the adversary uses n-grams
as features, noting that this approach is used by all re-identification attacks of which we
are aware [24, 26–28].

With Muffler, we assume the speaker has access to a corpus of audio samples, Γ ′,
that he may use to form a superdistribution to which traffic may be morphed (see Fig-
ure 3). As with Γ , we assume that Γ ′ provides coverage, i.e., there are samples in Γ ′

of the same class as the speaker’s audio streams. Unlike Γ , we do not require that the
samples in Γ ′ be labeled with their correct classes.

We envision that Γ ′ could be bundled with the Muffler software or obtained by the
user. We note that acquiring a large corpora of speech is not particularly difficult: we use
the public domain Librivox [15] collection of audio books; George Mason University
maintains a set of more than 1,800 speech samples that cover a large range of languages
and accents [1]; the University of Pennsylvania’s Linguistic Data Consortium hosts
hundreds of language corpora [2].

In this paper, we let Γ ′ = Γ . This is a conservative assumption, as it allows the
adversary to train on the exact data used by the sender to form its superdistribution.
(In cases where Muffler is applied, the adversary is allowed to train on the modified
packets.)

Importantly, we note that a non-goal of our system is to provide deniability: Muffler
does not attempt to conceal its use. Since Muffler morphs traffic to a superdistribution
that may not resemble any non-obfuscated distribution, an adversary could use similar
classification techniques to detect it. Our goal is to provide VoIP communication that
resists re-identification attacks.



Algorithm 1 Given an array of distributions from a training corpus, calculate the su-
perdistribution to which each input distribution may be mapped
1: proc calcSuperdistribution(arrayOfDistributions)
2: packetSizes← 〈zn, . . . , z2, z1〉, n← |packetSizes|
{iterate through packet sizes, starting with the largest}

3: for all p1 in packetSizes do
4: Max← largest frequency of packetsize p1

{given the maximum, create a superdistribution to which all other distributions may be morphed:}
5: for all dist in arrayOfDistributions do
6: deficit← Max
7: for all p2 in packetSizes[packetSizes.index(p1):n] do
8: deficit←deficit−dist[p2]
9: if deficit < 0 then
10: dist[p2]← −1×deficit
11: break
12: end if
13: if p1 == p2 then
14: dist[p2]← −1× Max
15: else
16: dist[p2]← 0
17: end if
18: end for
19: end for
20: end for
21: return ArrayOfDistributions[0]
{After the last iteration, each distribution in arrayOfDistributions will be identical, and equal to the smallest
possible (bandwidth-wise) distribution to which any of the distributions could be transformed.}

4 Forming the Superdistribution

In order to reduce the ability of an adversary to reliably determine any attributes of
an audio stream, we aim to shape the distribution of the packet sizes within the streams
such that classification (re-identification) is as difficult as possible. One method to make
streams indistinguishable would be to pad each packet to the maximum size, which,
while effective in preventing classification of speakers, negates the bandwidth savings
achieved by using VBR in the first place. Another method is to attempt to pad a stream’s
packets in order to ‘morph’ the packet distribution to resemble that of other known
streams. As discussed above, such an approach was explored by Wright et al. [28], and
Muffler can also be categorized as a traffic morphing system. However, the approach by
Wright et al. is not well-suited for disguising multiple classes, since not all streams are
easily morphable to all other streams.

Muffler considers the distributions of all speakers in a training corpus, and then cal-
culates the least bandwidth-intensive distribution to which all speakers in the corpus
could be padded to. Specifically, letting Ls = 〈l1s , . . . , lms〉 be an ascending list of
the m different posssible lengths of ciphertexts for a stream s: Muffler calculates su-
perdistribution Lsuper such that for all 1 ≤ n ≤ m,

∑
(lnsuper

+ · · · + lmsuper
) =

maxs(
∑

(lns
+ · · ·+ lms

)) over all streams s in the corpus.
The process used to calculate this superdistribution is presented as Algorithm 1. The

algorithm is given an array of distributions such as that visualized in Figure 4. Each of
the three bars in the figure reflects a different speaker class, the distinction between
which our superdistribution will seek to eliminate. Note that Algorithm 1 creates a
superdistribution from unigrams. (Section 4.1 presents the algorithm for n-grams.)



The algorithm works as follows: in line 4, the algorithm finds, amongst the input dis-
tributions, the largest count for the largest packet-size (zn). In our example, the largest
proportion of z3 packets (where z3 is the largest packet size) occurs in Spanish, and this
maximum value is 30%.

Lines 5-20 describe the formation of the superdistribution. Conceptually, the su-
perdistribution considers the relative frequencies of the packet sizes, in order of de-
creasing packet size. The superdistribution uses the largest relative frequency amongst
the input distributions.

4.1 n-gram Superdistributions

Algorithm 1 calculates a superdistribution based on the distributions of packet sizes in
a set of streams. However, morphing only unigrams may be insufficient if the adversary
is using n-grams to classify streams. (In Section 7, we evaluate the effectiveness of a
unigram-based superdistribution against an adversary who uses trigrams.)

To defend against n-gram adversaries, we construct multiple superdistributions.
Muffler computes a superdistribution for each unique sequence of n−1 packet lengths.
That is, if Muffler is considering trigrams and a packet length zq in a sample is proceded
by packet sizes za and zb, then Muffler increments the counter for zq in the distribution
corresponding to the sequence 〈za, zb〉. There will be |Σ|n−1 such superdistributions.

Muffler uses this set of superdistributions, once built, to dynamically morph packets.
Given the (n−1) packets that were most recently output, Muffler uses the corresponding
superdistribution (i.e., the one that matches the (n − 1)-length sequence) to determine
how the next packet should be morphed. The morphing operation is explained in more
detail in Section 5.

4.2 Dynamic Clustering

Algorithm 1 takes as input an array of distributions of packet sizes, where each distri-
bution within the array corresponds to a class (e.g., Spanish, English, and French, in
the case of language re-identification). However, it may be the case that the classes are
not known a priori—either because the corpus is unlabeled or the sender does not know
the type of re-identification that the adversary will attempt (e.g., language vs. speaker
re-identification). We expect that this latter case will be the norm in most deployment
scenarios.

In light of this, we explored an alternate method of superdistribution generation in
which the algorithm, given the set of streams as a whole, first creates its own classifi-
cations of the streams using an unsupervised clustering algorithm. In what follows, we
will refer to this data preprocessing step as dynamic clustering.

We find that k-means clustering is sufficient to automatically generate the input
distributions for Algorithm 1, given an unlabeled collection of audio samples. In Sec-
tion 7, we show that Muffler is similarly able to mitigate re-identification attacks when
the speaker’s training corpus is (i) labeled or (ii) unlabeled and k-means clustering is
applied. We discuss finding an appropriate value of k in Section 9.



Algorithm 2 Given a calculated superdistribution array, pad the packets of an input
stream as necessary to map its distribution to the superdistribution
1: proc morphStream(packetInStream, targetDistro, numPossibleSizes, gramSize)
2: currentDistro← an array of numPossibleSizesgramSize empty distribution arrays
3: precedingNPackets← an empty queue of packet sizes
4: maxSizePacket← a maximally-sized packet
5: for all x in range(0,gramSize) do
6: currentPacket←packetInStream.dequeue()
7: packetOutStream.enqueue(maxSizePacket)
8: precedingNPackets.enqueue(currentPacket.size())
9: end for
10: while currentPacket← packetInStream.dequeue() do
11: distributionDisparities← an array noting the current distribution’s disparity from the target distribution.
12: for all possibleSize in range(currentPacket.size(),maxPossibleSize) do
13: if currentDistro[precedingNPackets][possibleSize]/currentDistro[precedingNPackets][totalPackets] <

targetDistro[precedingNPackets][possibleSize] then
14: probabilitiesOfChoosing[possibleSize] ← (targetDistro[precedingNPackets][possibleSize] - cur-

rentDistro[precedingNPackets][possibleSize]) x maxPossibleSize / (1 + possibleSize)
15: else
16: probabilitiesOfChoosing[possibleSize]← 0
17: end if
18: end for
19: chosenPacketSize← WEIGHTEDCHOOSER(distributionDisparities)
20: currentDistro[precedingNPackets][chosenPacketSize]++
21: currentDistro[precedingNPackets][totalPackets]++ //totalPackets being the sum of all packet sizes
22: precedingNPackets.enqueue(chosenPacketSize)
23: precedingNPackets.dequeue()
24: padAndSendPacket(currentPacket,chosenPacketSize)
25: end while

5 Mapping to the Superdistribution

Algorithm 2 describes how Muffler transforms an input stream to resemble a pre-
determined superdistribution. For clarity, we focus on the particular case in which the
sender wishes to morph his traffic at the level of trigrams; we note that the algorithm
works for any size n-gram.

In lines 5-8, we pad the initial n − 1 packets to the maximum packet size. (Since
packets usually convey 20ms of audio, this initial maximal padding is quickly amortized
away.)

After this initial special case, the algorithm proceeds as follows: based on the pre-
vious n − 1 outputted packet sizes (i.e., the packets that were transmitted after being
morphed), we compare the target distribution of what should come next to the actual
distribution of what has followed these two packet sizes in the current, obfuscated, out-
put stream so far. In lines 13-17, the algorithm assigns probabilities to the possible
choices for the packet size to output, based on which sizes are most underrepresented.
These probabilities are skewed slightly toward smaller packets in line 14. On line 19, we
use the WeightedChooser subroutine, which chooses a random packet size from those
with disparities (i.e., distances from the superdistribution) greater than zero, weighted
by the value of the disparity; or, if there are no such probabilities greater than zero, it
returns the largest packet size. In lines 20-22, the current distribution is updated with
the packet size we have chosen, and the precedingNPackets window is shifted forward
to include this packet. In line 23, the current packet is sent, after being padded to the
chosen packet size.



6 Security Analysis

Theorem 1. Our scheme is IND-CGA (Indistinguishability against Chosen Generator
Attack) secure.

The IND-CGA game allows an adversary A to select a pair of generators g0 and g1,
where generators are algorithmic models of speakers. Specifically, a generator outputs
packet streams which share characteristics similar to those that would be produced by a
particular speaker. From the pair of generators provided by the adversary, one such gen-
erator is chosen at random, with the choice being invisible to A. The randomly chosen
generator is then used to produce a packet sequence, which is then morphed (using Muf-
fler) and returned to A. Given g0, g1, the Muffler algorithms, and the morphed stream,
the adversary’s goal is to decide whether the randomly chosen generator was g0 or g1.
Intuitively, if the adversary cannot make this determination for any set of generators g0
and g1, then the morphing provides a form of indistinguishability, which is exactly the
goal of Muffler.

We remark that in the standard indistinguishability under chosen-plaintext attack
(IND-CPA) game used to evaluate cryptosystems, the adversary there is allowed to
choose arbitrary packet streams, as opposed to generators. As such, any reasonable
blackbox morphing technique must morph all packets to the maximum size to be se-
cure under IND-CPA, since the adversary could choose a sequence of all smallest-size
packets and a sequence of all largest-size packets as his inputs. The adversary could
then trivially identify that the smallest-size sequence was the one randomly chosen if
the morphed sequence contains a single packet that is not the largest size. This applies to
less extreme packet streams. As such, in our IND-CGA game, we restrict the adversary
to choosing randomized generators whose output reflect real speech distributions.

In our analysis, we assume that the adversary performs classification by using n-
grams as features. As explained in more detail in Appendix A, we believe that this is
a realistic assumption, at least given currently known re-identification attacks, all of
which (to the best of our knowledge) perform classification using n-grams (cf. [24, 26–
28]). In Appendix A, we show that Muffler achieves IND-CGA under assumptions that
existing work and our empirical results indicate hold true in practice.

7 Evaluation

Dataset We gather public-domain audio from Librivox [15], a collection of literature
read aloud by volunteers. This source of data is especially good for our purposes, as
the variance in background noise as well as the quality and frequency response of the
microphones being used are all factors that affect the ability of a codec to compress
the audio stream; this makes traffic morphing more difficult, since the streams are more
easily distinguishable than if they were all recorded in a controlled environment with
identical equipment. From the Librivox dataset, we extract 100 samples of 200 seconds
of audio from each of 158 different speakers, totaling nearly 878 hours of audio.

We encode the audio samples from the Librivox dataset using the Silk codec [21]
(the same codec used by Skype until late last year, and the basis for the current codec).



The output of this encoding step is a series of discrete audio packets. Using Silk’s
default parameters, there are eight possible sizes for the encoded audio; i.e., |Σ| = 8.
Since we assume that the adversary is not able to decipher the traffic, we consider only
the sizes, and not the content, of these packets.

Methodology In order to measure the efficacy of Muffler, we compare an adversary’s
ability to classify VoIP streams without any obfuscation beyond basic encryption, to
an adversary’s ability to classify streams that have been morphed with Muffler. The
adversary’s goal is to identify the speaker of an intercepted stream, from amongst the
158 speakers in our dataset.

Each sample in the Librivox dataset is an ordered sequence of packet sizes, L =
〈l1, . . . , lm〉. From this sequence, we count the occurrences of unigrams, bigrams, and
trigrams, where a unigram is a symbol, a bigram is a subsequence of two contiguous
symbols, etc. The counts for each unigram, bigram, etc. are used as features for a ma-
chine learning classifier. For supervised learning, each sample is labeled with its correct
class (as specified in the Librivox data). In this paper, we present results for adversaries
using (i) unigrams and (ii) unigrams, bigrams, and trigrams.

The adversary uses a battery of classifiers: three variations of k-Nearest-Neighbor
and Naı̈ve Bayes, the J48 decision tree algorithm (based on C4.5), and a support vec-
tor machine (SVM) [25]. For the adversary who examines only unigrams, the training
corpus contains only unigram counts; the stronger adversary has counts for unigrams,
bigrams, and trigrams as training features.

To evaluate the efficacy of Muffler to mitigate re-identification attacks, we com-
pare the adversary’s ability to correctly classify streams with Muffler and without any
attempted traffic morphing. For each configuration, we report the mean classification
accuracy amongst all the machine learning classifiers and the worst case accuracy—
i.e., the classification accuracy of the best performing classifier (and the worst-case
accuracy from the perspective of the communicants).

For the results presented below, we use five-fold cross-validation. We conserva-
tively assume that the adversary has access to the same corpus used by Muffler to form
the superdistribution; that is, Γ = Γ ′. However, the adversary always has access to
a labeled training corpus; when Muffler uses dynamic clustering, we assume that the
speaker does not know the class that interests the adversary (language, speaker iden-
tity, etc.) and consequently remove the labels from Γ ′. For dynamic clustering, we use
k-means clustering with k = 32.

For all cases where Muffler has been applied, the adversary allowed to train on the
morphed versions of the packet streams.

7.1 Baseline Classification

Without any obfuscation (other than the encryption of packets), each of these classifiers
is extremely adept at classifying speakers. The adversary’s unigram classifiers average
26.3% accuracy in identifying the speaker, among 158 possible speakers, with the best
classifier being able to correctly classify the speaker 28.1% of the time. Trigram classi-
fiers average 43.3% accuracy in identifying the speaker, with a worst case accuracy of
72.4%, provided by SVM.
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7.2 Obfuscation against Unigram Classifiers

Using our method for unigram distribution obfuscation, we are able to significantly re-
duce the average and worst case accuracies of the unigram classifier battery: Figure 5
illustrates the accuracy of the classifiers before and after Muffler has been applied.
Applying our unigram obfuscation technique reduces the average accuracy of the clas-
sifiers from 26.2% to 1.8%, and the worst case accuracy from 28.6% to 2.4% when
Muffler has access to a labeled training corpus.

The bars marked “Uni+DynCluster” in Figure 5 show Muffler’s accuracy when pro-
vided an unlabeled training corpus. (The corpus used by the adversary to train his clas-
sifiers remains labeled.) Here, k-means clustering is used on the entire set of audio
streams in the training corpus Γ ′, and the resulting clusters are used as speaker classes
by Muffler. The superdistribution is calculated by combining these 32 distributions.

The high comparative efficacy of our algorithm when using dynamic clustering is
important to note. The similar performance of our algorithm when using dynamic clus-
tering versus using a priori knowledge of class divisions means that deployment of
Muffler would have very few technical hurdles: concealing speakers within a network
could be achieved by simply placing Muffler at the edge of that network.

7.3 Obfuscation against Trigram Classifiers

Unigram-based traffic morphing is less effective when the adversary classifies streams
based on longer n-grams.1 Figure 6 shows the accuracy of classification based on tri-
grams on our audio streams. These “trigram classifiers” achieve very high accuracy on
unobfuscated streams, with a worst-case accuracy of 72%, and an average-case accu-
racy of 49.6%, as can be observed from the first pair of bars. Muffler significantly de-
grades the accuracy of re-identification, providing mean and worst-case classification
rates of 9.8% and 15.8% respectively.

1 There is, of course, decreasing returns when n is large. As n increases, there are more unique
n-length sequences and each are less likely to occur in the test data; hence, they provide less
predictive value.
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When we use our trigram-based superdistribution, the adversary’s classifier accu-
racy drops even more. As seen in the middle bars of Figure 7, the worst- and average-
case accuracies drop to 4.6% and 2.8%, respectively. This represents a reduction in
accuracy of 94%, for the worst-case, when compared to unmorphed traffic.

7.4 Random Padding

We wish to show that the decreased accuracy of re-identification is not merely due to
padding the streams away from their original form, but rather is attributable to morphing
traffic to the superdistribution. We implement a simpler traffic morphing algorithm that
randomly pads each packet in a stream by an amount adjusted such that the bandwidth
cost of this random padding was similar to that of Muffler. As expected, while the
padding did slightly decrease the adversary’s ability to classify speakers, its efficacy
at this task was far below that of our trigram superdistribution obfuscation technique,
as shown in Figure 8. While the average classifier accuracy dropped to 17.5%, worst-
case accuracy stood at 50.0%. As mentioned in Section 7.3, the equivalent worst-case
accuracy for Muffler is 4.4%.

7.5 The Cost of Privacy

Figure 9 shows the relative cost of Muffler using a unigram superdistribution on the
Librivox dataset, compared to the unmodified stream’s bandwidth, for various numbers
of speakers (classes) from which superdistributions are created. Because the cost of cre-
ating a superdistribution from a set of speakers depends on which speakers are included
in that set, for each set size, we take a random sample of 16 possible combinations,
and average the results to arrive at the data in the figure. Creating a superdistribution
between two speakers in the set has a 20% bandwidth cost, while a superdistribution
from 128 speakers incurs a 79% increase in bandwidth, on average. By comparison, the
cost of full padding to the largest packet size (roughly analogous to using a constant
bitrate audio codec) is a 171% increase over the original stream’s size.



7.6 CPU Overhead

In comparison to existing traffic morphing techniques, Muffler avoids expensive op-
erations and has a low CPU overhead. To build the superdistribution and morph the
entire 878-hour corpus of audio from Librivox takes Muffler just under 30 minutes on
a 3.1GHz Xeon E31220 with 8GB of DDR3 memory. This factor of 1,765 between the
CPU time and amount of audio processed in that time means that it is entirely possible
to have a Muffler implementation that dynamically updates the superdistribution being
mapped to regularly, even while obfuscating several audio streams at once.

8 Related Work

Website fingerprinting. Much of the early work in packet- and stream-based traffic anal-
ysis focused on identifying the webpages conveyed in intercepted HTTPS streams. Sun
et al. showed that the web page being visited by a user over an SSL-encrypted con-
nection can often be identified based solely on the sizes of the objects being accessed.
They additionally showed that this attack was resilient against padding object sizes as an
obfuscation technique [18]. Later, Hintz introduced website fingerprinting techniques
that infer the identity of a requested website by examining the size of an observed
HTTPS stream [10]. In addition to inferring content, website fingerprinting has also
been proposed as a method to defeat anonymity systems (most notably, Tor [6]) by
identifying the webpages that have been requested by an observed client [5, 9, 22, 23].
Kadianakis [12] has suggested applying a variant of Wright et al.’s traffic morphing
technique [28] to protect Tor against fingerprinting attacks.

Voice-over-IP. A series of papers including the work of Wright et al. discussed ear-
lier have examined traffic analysis as a means to infer attributes about the audio signal
embedded in an encrypted VoIP stream, and explored morphing techniques to disguise
one class of speaker as another [26, 28]. However, when there are more than two pos-
sible classifications, they do not explore which distribution should be chosen as the
target distribution. Subsequent work by many of the same authors showed that particu-
lar phrases can be identified by observing only the sizes of encrypted packets [24, 27].
Similarly, Khan et al. demonstrated that the adversary can identify the speaker of a con-
versation given a set of potential speakers, a corpus of their speech, and the encrypted
VoIP stream [13].

Defenses. Developing defenses against traffic analysis is a growing area of research.
Liberatore and Levine proposed padding packets up to the network MTU as a defense
against web fingerprinting attacks [14]. However, recent work by Dyer et al. showed
that such a strategy is ineffective against an adversary who employs a Naı̈ve Bayes or a
support vector machine classifier [7]. Folga et al. [8] explored the use of polymorphic
blending to evade detection by intrustion detection systems. Their polymorphic blend-
ing approach included altering payload characteristics such as the byte frequency to re-
semble normal traffic. Iacovazzi and Baiocchi explored finding optimally efficient (with
respect to bandwidth) algorithms to mask traffic against traffic classification tools [11],
but their technique allows packet fragmentation, and is not applicable to our model.



9 Discussion and Limitations

Improved Dynamic Clustering. When implementing Muffler using dynamic clustering,
there remains a choice of how many classes should be derived from the audio corpus.
For our testing purposes, we found k = 32 to be sufficient for k-means clustering.
It may be useful to adjust k given any available background knowledge of the au-
dio streams being combined into a superdistribution. Additionally, other clustering ap-
proaches that automate the process of discovering the number of clusters (for example,
X-means clustering [17]) may serve as a drop-in replacement for k-means clustering.

The Inviability of Pairs. As previously argued, a traffic morphing system that morphs
one speaker class to resemble another specific class is not well-suited for masking the
identities of a large set of speakers (since it is unlikely that any one speaker in the set
will have a distribution to which all other speakers can be padded). However, it could
be argued that such approaches are sufficient, when applied in a pairwise fashion. Even
if such a method were able to make pairs of speakers indistinguishable, an obfuscation
scheme that results in the adversary knowing that a stream comes from one of two
speaker classes still leaks considerable information. Additionally, we know that the
packet size distributions of the speakers in the pair can very easily be such that one
speaker cannot be padded to resemble the other, nor vice versa. This paper argues for
a more versatile technique that morphs potentially many input distributions to a single,
synthetic target distribution.

Muffler beyond VoIP. This paper shows the effectiveness of Muffler in the context
of protecting against VoIP re-identification attacks. The general traffic analysis attack
framework applies to other situations in which variations in packet sizes may reveal
attributes of the plaintext. For example, similar traffic analysis attacks are applica-
ble to streaming video (which also uses VBR codecs), remote database access, and
anonymous web browsing. Although we do not evaluate it in this paper, Muffler can
be straightforwardly applied to protect against re-identification attacks on encrypted
streaming video. For applications where packets are sent at irregular time intervals—in
particular, web browsing—Muffler would also need to consider the timing of packets.

10 Conclusion

This paper proposes an efficient blackbox defense called Muffler that protects against
encrypted VoIP re-identification attacks. Our approach is based on the fabrication of a
superdistribution to which all of the streams in a population can be morphed. Experi-
mental results using a large corpus of audio show that even against an adversary who
applies a battery of machine learning techniques, Muffler reduces the adversary’s ac-
curacy by 94%, while maintaining half of the bandwidth savings provided by using a
variable-bitrate codec.
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A Security Analysis

We do not attempt to strengthen the security of VBR encoding to traditional IND-CPA
but argue that under certain assumptions, our scheme is able to provide information
theoretic indistinguishability against the best known speaker re-identifying attacker.

Definition 1. A scheme is IND-CGA (Indistinguishability against Chosen Generator
Attack) secure if, for all pairs of probabilistic polynomial-time adversaries A1, A2,
their advantage in the following game is negligible.

Algorithm 3 Security Experiment

b
$← {0, 1}

sd
$← calcSuperdistribution(trainingData)

(g0, g1, state)
$← A1(sd, trainingData)

stream
$← gb()

c
$← morphStream(stream, sd, trainingData, state, c)

b′
$← A2(sd, trainingData, state, c)

Return (b == b′)

The $← notation implies that the function on the right is randomized. In this game,
the adversary (the pair of algorithms A1, A2) has access to the training data and the
superdistribution sd. For simplicity, we consider numPossibleSizes and gramSize
fixed and public. The adversary selects two stream generators g0, g1, where the gener-
ators produce packet streams under some restrictions detailed below. The game selects
one at random, generates an actual packet stream from it, morphs it to c using our mor-
phing (Algorithm 2) and returns it to the adversary. The adversary’s goal is to determine
which generator was selected.

We first define generators.

Definition 2. Generators model speakers whose audio is processed into packets as a
VBR codec encryption layer would. A stream of packets output by a specific generator
shares n-gram characteristics with all other streams output by that generator. A gener-
ator’s output is always randomized in the same way that the audio streams by the same
speaker having 2 different conversations will be encoded differently.

Since we perform a black-box modification of the packet stream by padding it, al-
lowing the adversary to define, and therefore know, the input packet stream will allow it
to win the game trivially. By allowing the adversary to define a generator, the adversary
is still able to select the stream characteristics which will give it the best probability of
winning the game.

While not a rigorous definition, this allows a generator to be implemented as a
human speaker who is generating packets by using an encrypted VoIP service, or even a
text-to-speech program with a large set of words, where generating output corresponds
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Fig. 10: The Bhattacharyya Distance between morphed distributions and the expected perfect
output of the superdistribution

to selecting a random string of words, running them through the text-to-speech program
and then running the produced audio through an encrypted VoIP service.

We also make the following assumptions and restrictions, with justification, to com-
plete our security argument.

Assumption A1 The adversary is only allowed to choose generators whose output
characteristics are covered by the training data.

A generator with output that does not sufficiently match any of the training data cor-
responds to a speaker whose speech patterns are not represented in the training data.
Unfortunately, our system is not designed to protect such users.

Assumption A2 Our probabilistic morphing technique maps a valid packet stream
(one which follows assumption A1) to one which is is negligibly close to the superdis-
tribution.

Additionally, the output packet stream distribution does not vary over time.

Our morphing algorithm is designed such that the output stream converges to the su-
perdistribution quickly and stays there. To evaluate whether this holds in practice, we
compared morphed distributions to the expected output of the superdistribution. We
used the Bhattacharyya distance measure [4] which is used to measure the similarity
between two discrete (or continuous) probability distributions. This measure has been
used in feature extraction and speaker recognition among other areas of research.

To construct the expected trigram distribution of the superdsitribution, we gener-
ated packet streams using the superdistribution as a transition matrix. Recall that the
superdistribution, on trigrams, is defined as 64 probability distributions, one for each
bigram prefix. As such, we generated streams with each of the possible bigrams as an
initial state, repeated this process 1000 times, and calculated the expected distribution
over all the runs.

Figure 10 shows, for both our labeled and unlabeled techniques, the mean Bhat-
tacharyya distance, over all morphed streams in our corpus against the superdistribution
described above, as the number of packets in the stream increases. As the figure shows,
the distance quickly converges to 0 as the number of packets obfuscated increases, in-
dicating that the distributions are very similar.



Assumption A3 In a realistic stream of packets, any long subsequence of packets car-
ries very little, if any, additional information.

The efficiency of our unigram obfuscator against a tri-gram adversary in Section 7.3
lends support to the assumption that any n-gram characteristics for large n are removed
or reduced after morphing.

Under these assumptions, it is straightforward to show that our scheme is IND-CGA
(Indistinguishability against Chosen Generator Attack) secure.

Proof. From assumptions A1 and A2, the stream returned to A2 will have n-gram char-
acteristics of the superdistribution.

We remark that classification with n-grams is the basis for all re-identification at-
tacks with which we are familiar [24, 26–28], and is regularly used in informational
retrieval and natural language processing for similar identification tasks. That is, we
believe our adversary model reflects best-known attack techniques.

From assumption A3, the returned packet stream is effectively indistinguishable
against such an adversary.

The other thing the adversary can do is to attempt to first reverse the morphing be-
fore deciding which stream was used. Consider its attempt to revert the ith packet. From
assumption A2 and the way the morphing probabilities are calculated, we note that his
probabilistic inference on the source packet, based on the what the packet is and all
preceeding packets, is always the same (no matter what the source packet actually was)
since the n-gram distribution of packets prior to i is the superdistribution. Therefore,
the best the adversary can do is guess.

What remains to be shown is how the security argument is affected by relaxing as-
sumption A2. Since the algorithm works as a black box with actual packet streams, it
isn’t always able to output the packet that would keep the actual output n-gram distri-
bution close to the superdistribution.

We postulate that for short packet streams, where our algorithms works the poorest,
the adversary does poorly due to lack of information. On long packet streams the output
distribution is very close to the superdistribution, as shown by the bhattacharyya dis-
tance tests in Figure 10. As the source streams embed more difficult patterns of n-grams
which prevent us from outputting the superdistribution, the adversary’s advantage, and
the extent of his ability to reverse the morphing, increases.
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