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Abstract. Existing low-latency anonymity networks are vulnerable to
traffic analysis, so location diversity of nodes is essential to defend against
attacks. Previous work has shown that simply ensuring geographical di-
versity of nodes does not resist, and in some cases exacerbates, the risk of
traffic analysis by ISPs. Ensuring high autonomous-system (AS) diver-
sity can resist this weakness. However, ISPs commonly connect to many
other ISPs in a single location, known as an Internet eXchange (IX). This
paper shows that IXes are a single point where traffic analysis can be
performed. We examine to what extent this is true, through a case study
of Tor nodes in the UK. Also, some IXes sample packets flowing through
them for performance analysis reasons, and this data could be exploited
to de-anonymize traffic. We then develop and evaluate Bayesian traffic
analysis techniques capable of processing this sampled data.

1 Introduction

Anonymity networks may be split into two categories: high latency (e.g. Mixmin-
ion [1] and Mixmaster [2]) and low latency (e.g. Tor [3], JAP [4] and Free-
dom [5]). High latency networks may delay messages for several days [6] but
are designed to resist very powerful attackers which are assumed to be capa-
ble of monitoring all communication links, so called global passive adversaries.
However, the long potential delay makes these systems inappropriate for pop-
ular activities such as web-browsing, where low-latency is required. Although,
in low-latency anonymity networks, communications are encrypted to maintain
bitwise-unlinkability, timing patterns are hardly distorted, allowing an attacker
to deploy traffic analysis to de-anonymize users [7,8,9]. While techniques to resist
traffic analysis have been proposed, such as link padding [10], their cost is high
and they have not been incorporated into deployed networks.

Instead, these systems have relied on the assumption that the global passive
adversary is unrealistic, or at least those who are the target of such adversaries
have larger problems than anonymous Internet access. But even excluding the
global passive adversary, the possibility of partial adversaries remains reason-
able. These attackers have the ability to monitor a portion of Internet traffic but
not the entirety. Distributed low-latency anonymity systems, such as Tor, aim
to resist this type of adversary by distributing nodes, in the hope that connec-
tions through the network will pass through enough administrative domains to
prevent a single entity from tracking users.
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This raises the question of how to select paths through the anonymity net-
work to maximize traffic analysis resistance. Section 2 discusses different topol-
ogy models of the Internet and their impact on path selection. We suggest that
existing models, based on Autonomous System (AS) diversity, do not properly
take account of the fact that while, at the AS level abstraction, a path may
have good administrative domain diversity, physically it could repeatedly pass
through the same Internet eXchange (IX). Section 3 establishes, based on In-
ternet topology measurements, to what extent the Tor anonymity network is
vulnerable to traffic analysis at IXes.

Section 4 describes how IXes are particularly relevant since, to assist load
management, they record traffic data from the packets being sent through them.
As aggregate statistics are required and the cost of recording full traffic would be
prohibitive, only sampled data is stored. Hence, the quality of data is substan-
tially poorer than was envisaged during the design and evaluation of previous
traffic analysis techniques. Section 5 shows that, despite low sampling rates, this
data is adequate for de-anonymizing users of low-latency anonymity networks.
Finally, Section 6 discusses further avenues of research under investigation.

2 Location Diversity in Anonymity Networks

Tor has been long suspected, and later confirmed [11,12], to be vulnerable to
an attacker who could observe both the entry and exit point of a connection
through an anonymity network. As no intentional latency is introduced, timing
patterns propagate through the network and may be used to correlate input and
output traffic, allowing an attacker to track connection endpoints.

Delaying messages, as done with email anonymity systems, would improve
resistance to these attacks, at least for a small number of messages. However,
the additional latency here (hours to days) would, if applied to web browsing,
deter most users and so decrease anonymity for the remainder [13]. In addition
to the scarce bandwidth in a volunteer network, full link-padding would also
introduce catastrophic denial of service vulnerabilities, because all parties would
need to stop communicating and re-negotiate flow levels when one party left.
Hence, the only remaining defense against traffic analysis is to ensure that the
adversary considered in the system threat model is not capable of simultaneously
monitoring enough points in the network to break users’ anonymity.

While this approach would be of no help against a global passive adversary,
more realistic attackers’ traffic monitoring capabilities are likely to be limited to
particular jurisdiction(s), whether they derive from legal or extra-legal powers.
This intuitively leads to the idea that paths through anonymity networks should
be selected to go through as many different countries as possible. The hope here
is that an attacker attempting to track connections might have the ability to
monitor traffic in some countries, but not all those on the path.

Unfortunately, Feamster and Dingledine [14] showed this approach could
actually hurt anonymity because international connections were likely to go
through one of a very small number of tier-1 Internet Service Providers (ISP) –
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Fig. 1. Multiple-country path through a hypothetical anonymity network at geograph-
ical and AS level abstractions. Here, despite the path traveling through 3 countries
between Brazil (.br) and the US (.us), there are two tier-1 ISPs which see all links. For
example, the hop through China (.cn) is vulnerable since the incoming and outgoing
links are observed by AS2. At first glance, the Swedish (.se) hop seems secure, as the
incoming link is seen by AS2 and the outgoing by AS1. However, the Swedish ISP
connects to AS1 and AS2 at LINX (IX), opening up the risk of observation there.

those who offer transit to the full Internet. Thus, connections to and from a far-
flung Tor node are likely to both pass through a single tier-1 ISP, negating the
anonymity benefit against an ISP level adversary. So, while – at the abstraction
level of direct connections – a multi-country path may appear to have location
diversity, by taking into account the ISPs that the data passes through between
Tor nodes, weak points become clear, as shown in Fig. 1.

Instead, Feamster and Dingledine propose, when selecting paths, the rela-
tionship between ISPs carrying data between pairs of Tor nodes is taken into
account. They did this by collecting Border Gateway Protocol (BGP) data,
which controls how packets are routed between entities on the Internet, known
as Autonomous Systems (AS) and roughly correspond to ISPs. From this data,
assumptions about commercial relationships between ISPs, and heuristics about
routing patterns, it is possible to estimate the ASes which will be on each path.

Optimizing path selection to maximize AS diversity reduces the likelihood
that there will be one ISP who can observe the connection though the anonymity
network at enough points to de-anonymize the user. However, although this level
of abstraction is a substantial improvement over the näıve model of direct node
connection, it does not fully take in account all potential monitoring points. This
will be illustrated in the following section.

3 Impact of Internet Exchanges on Physical Topology

In the previous section, we discussed the advantages of selecting paths through
anonymity networks such that there was no single AS which could monitor all
hops between anonymity network nodes. This may be achieved by selecting nodes
on ASes with high-degree i.e. those which are connected to multiple other ASes.
ISPs owning such ASes might purchase cable connections to many other ISPs,



but doing so would be extremely expensive. Instead, ISPs may connect their
network to an IX, which will provide connectivity to all other ISPs with a pres-
ence at that IX. This approach is more prevalent in Europe than in the US, due
to differing commercial structures and historical development; also because of
language differences, intra-country traffic is substantial.

Thus, while at the AS level it appears that the path makes multiple tran-
sitions between distinct ASes, physically, each of these connections might pass
through the same IX. Hence, despite the path attaining high AS diversity, there
remains one entity who is able to de-anonymize the traffic. In order to establish
how much of a problem this is for deployed anonymity networks, we set out to
determine how successful an IX level adversary would be, compared to an AS
level one, in de-anonymizing Tor users.

The techniques of Feamster and Dingledine [14] rely on building a map of AS
paths from BGP data, but this is not helpful for our purposes as the IXes do not
appear at this level. From the perspective of a router in an IX, packets travel
directly to the destination AS. Furthermore, their approach depends on informa-
tion about ISP relationships and routing policies which are a carefully guarded
secret and so must be guessed. However, it is common practice to allocate each
router in an IX an IP address from a single subnet.

Hence, while the AS path of a connection will not reveal whether it is going
through an IX, a traceroute [15] is likely to. Unlike finding AS paths, collecting
traceroute data requires access to the system at both ends of the path. As Tor
does not currently implement a mechanism for performing traceroutes, the
operator of the node must do so manually. To limit the effort to a feasible level,
here we take the UK as a case study.

3.1 Experimental Results

Based on geo-location databases and manual investigation, we identified Tor
nodes hosted in the UK and contacted the operators to request that they run
a script to collect data to validate our hypothesis. One of our constraints was
that no custom binary applications could be used, as the recipient could not
easily confirm they were benign. Instead, we simply invoked the OS provided
traceroute (or on Windows, tracert). These are not designed with speed or
parallelism in mind, so to keep the runtime reasonable (2–24 hours, depending on
timeouts) on the slower Windows test machines we only traced 140 destinations,
and on *nix machines, tested 595 destinations. These destinations consisted of
the same 15 websites and 11 US consumer ISPs tested in [14] and the remainder
were randomly selected Tor nodes.

We received 19 (14 *nix, 5 Windows) responses from the 33 operators we
were able to contact. This totaled 9 025 paths with an average path length of 14
hops (excluding failed responses). For each hop we established whether it was in
one of the subnets of LINX (London InterNet eXchange), AMS-IX (AMSterdam
Internet eXchange) or DE-CIX (the German Internet exchange, in Frankfurt).
Also, using the Team Cymru Database [16], we established the BGP origin AS
for each IP address. Note that although we are arranging data by AS, this path



Table 1. Number of paths passing through ASes and IXes.

AS name (ASN) Paths %

Level 3 (3356) 1 961 22%
NTL (5089) 1 445 16%
Zen (13037) 1 258 14%
JANET (786) 1 224 14%
Datahop (6908) 996 11%
Tiscali (3257) 953 11%
Sprint (1239) 935 10%
Cogent (174) 871 10%
Telewest (5462) 698 8%
Telia (1299) 697 8%

IX name (subnet) Paths %

LINX (195.66.224.0/22) 2 392 27%
DE-CIX (80.81.192.0/22) 231 3%
AMS-IX (195.69.144.0/22) 202 2%

is not the same as the BGP path discussed in [14]. Importantly, while IXes may
have an AS, they do not broadcast routes, and so do not appear in BGP paths,
whereas traceroute establishes the IP address of the border routers, from which
the IX can be inferred.

The results are summarized in Table 1. As can be seen, Level 3, a large
tier-1 ISP appears at least once on 22% of paths and other tier-1 ISPs, such
as Tiscali, Sprint, Cogent and Telia also appear. Since our tests were all from
UK Tor nodes, mainly run by volunteers, consumer ISPs also feature, such as
NTL, Zen and Telewest, as does the UK academic network operator, JANET.
Finally, Datahop, who provide connectivity between 10 data-centers in London,
are present on 11% of paths. This broadly matches the results of [14], in that a
small number of ISPs are present many paths.

However, if we now examine whether an IX is on the path, we find a new class
of observation points. Despite being invisible at the BGP level, LINX is present
on 27% of paths. There are 22 distinct ASes in the previous hop to LINX and
109 following the LINX hop, so AS-diverse paths will not substantially impact
LINX crossings. Hence, exploiting the IX as an observation point is an effective
attack against both existing and proposed anonymity network routing schemes.
The connectivity graph of selected ASes, based on our data, is shown in Fig. 2.

4 Traffic Analysis from Sampled Data

The previous section has shown how an adversary positioned at an IX would be
capable of monitoring a substantial quantity of traffic through the Tor network.
A powerful adversary would be in a position to install expensive hardware to
mount conventional traffic analysis attacks but such an adversary would likely be
able to deploy other, more effective, attacks. However, the network infrastructure
provided by an IX may already have the traffic analysis capabilities that a more
modest attacker could use.
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Fig. 2. AS connectivity via IX graph. Only ASes in Table 1 are shown and all sources
and destinations are collapsed to single nodes. Links between ASes which pass through
LINX are shown as solid lines, AMS-IX is shown by dotted lines and DE-CIX by
dashed lines. Paths which go through none of these IXes are omitted. From this we
can see that, in our data, connections through Sprint and Datahop go from source to
destination without passing through any of the IXes we have selected.

To aid network management, high-end switches and routers have monitoring
features which, although not designed for this purpose, may still be effective in
tracing users of anonymity networks. This section will evaluate the suitability of
network monitoring data for traffic analysis.

4.1 Traffic Monitoring in High-Speed Networks

On low-bandwidth small-office or business networks, full packet analysis tools
such as tcpdump [17] are adequate to monitor traffic for debugging or to measure
load. However, on links found on high-speed networks, the capacity required to
store all packets rapidly becomes infeasible. For example, at time of writing, both
LINX and AMS-IX carry approximately 150 Gb/s, which exceeds the theoretical
maximum capacity of the high-speed PCIe bus, 64 Gb/s (32 lanes at 2 Gb/s
each). Despite these difficulties, there is high demand for monitoring of such
high-speed links, to detect problems such as routing loops, balance load across
network infrastructure and anticipate future demands on capacity.

These applications do not rely on packet content, and for privacy reasons it
may be desirable not to record this at all. Thus, medium to high-end networking
equipment is commonly equipped with the ability to record aggregate data on
the traffic passing through it. One such mechanism is NetFlow [18], developed
by Cisco Systems but supported by other equipment manufacturers. NetFlow
equipped infrastructure records unidirectional flows as defined by a tuple (source
IP, destination IP, source port, destination port, IP protocol, interface, class of
service). For each of these, the device will record information such as the number
of packets, total byte count and bitwise-or of TCP flags.



A disadvantage of this approach is that it requires the network hardware to
inspect every packet flowing through it. This can incur substantial load at higher
network speeds, so to counter this difficulty sampled NetFlow only inspects a
proportion q of packets. While sampling reduces CPU load, the network hard-
ware must still store state for every flow it considers to be live, which could
potentially be very large. An alternative, as adopted by sFlow [19], is to move
the aggregation out of the network device by immediately exporting sampled
packet headers. This approach also gives access to additional fields in packet
headers, such as the sequence number, which could be useful for traffic analy-
sis. However, to ensure generality, we will concentrate on information available
in sampled NetFlow style data, which could be constructed from sFlow logs if
needed (the converse is not true).

Not only is high-speed traffic monitoring possible with standard networking
equipment, but it is common practice to do so. Two examples which are particu-
larly relevant to this paper are that AMS-IX record data for traffic management
monitoring [20] and LINX (who record 1 in 2 048 packets [21]) additionally are
considering using sFlow data for detecting email spam [22]. The same data could
also assist tracking users of an anonymity network because Section 3.1 showed
that a significant number of Tor flows pass through an IX. In the following
section we will examine how successful this type of traffic analysis would be.

4.2 Traffic Analysis Assumptions

There are two basic types of traffic analysis. The first treats the anonymity
network as a “black-box” and only inspects traffic entering and leaving the net-
work. The second approach additionally examines flows within the network, and
so improves the accuracy of the attack. In this paper, we will concentrate on the
former category. As this does not make any assumptions about the structure of
the network, it is the more general approach. However, the techniques we present
here could also be applied to the latter category of attacks, as intra-network Tor
traffic will also often cross a small number of Internet exchanges.

We assume that the attacked flow passes through an attacker controlled IX
on both its path into and out of the anonymity network. This would be the
case if, for example, both the customer and site are hosted on ISPs whose back-
bone connection was through an IX under surveillance. Also, we assume that
packet sampling is independently and identically distributed over the flow. Al-
though some models of network hardware implement periodic sampling, rather
than random, this assumption will remain true because Tor traffic makes up an
insignificant proportion of overall traffic.

The attacker observes a single flow going into the network and wishes to
establish which of several outgoing flows it corresponds to. This could be, for
example, finding which website a known criminal is uploading stolen data to.
Alternatively, the attacker might wish to discover who has uploaded a particular
video to a news website – now there is one outgoing flow and many incoming
candidates. In both cases, the attacker will have a number of candidates in mind
who are also generating traffic at the same time, and for our simulation we



assume that these produce around 1 000 flows per hour. We also assume that
the adversary can distinguish Tor traffic from other traffic, which may trivially
done by IP address and port number, based on information in the Tor directory.

5 Mathematical Analysis

5.1 Model

Our model consists of n client-server flows. Each flow p = p1, . . . , pm is a col-
lection of packets sent at times t1, . . . , tm. We model the times as a Poisson
process with a start time s, duration l, and rate r (average packets per second).
These three parameters are chosen independently at random for each flow.

Neither s, l, r nor the flow p are directly observable. The attacker sees a
down-sampled version of p, in which each packet is retained independently with
a fixed probability q, called a sampling rate (typically about 1/2 000). Each flow
is sampled at the input and at the output, resulting in two vectors of times: x
and y. Given a flow p, the sampling processes p→ x and p→ y are independent:

s, l, r
Poisson−→ p x

sampling←− p
sampling−→ y (1)

In an n-flow system, the attacker sees all n output vectors y1, . . . , yn, and
one input vector x, which corresponds to some yk. The task of the attacker is
to compute the probability P (Tk) that x corresponds to yk, for each k.

To simplify the model, we assume that no packet from p appears simultane-
ously in both x and y. Since x and y are independently sampled from p, a given
packet from p appears in both x and y with the probability of q2 = 2.5 · 10−7,
that is, once every 1/q2 = 4·106 packets (≈ 2 GB). Seeing the same packet on the
input and the output is thus very unlikely, which prevents packet-matching at-
tacks [9] and makes independent random delays of individual packets practically
unobservable in the sampled data. For simplicity, we therefore assume instanta-
neous packet transmission. Section 5.5 shows that introducing a moderate delay
to the system does not change the effectiveness of our attack.

The assumption of no common packets in x and y allows us to simplify (1)
by observing that x and y are now independent Poisson processes with rate rq.

x
Poisson←− s, l, rq

Poisson−→ y (2)

This simplification eliminates the original (unobservable) flow p from the model.

5.2 Basic Solution

Let Tk denote the event in which input x and output yk belong to the same
flow. In our model, the exact probabilities P (Tk) can be uniquely determined
from Bayes’ formula:

P (Tk|y1..n,x) =
P (y1..n|Tk,x)P (Tk|x)∑
i P (y1..n|Ti,x)P (Ti|x)

. (3)



Probabilities P (Tk|x) express our prior information about the target, possibly
based on the sampled input flow x (but not output flow y). For example, we
might know that a particular server k is just more popular than others, or that
it is the only one to regularly receive high-volume traffic and x looks to be high-
volume. For simplicity, in the rest of the analysis, we treat all servers equally;
any prior information can be easily taken into account using (3).

The probabilities P (y1..n|x, Tk) in (3) can be computed as follows:

P (y1..n|x, Tk) = P (yk|x, Tk)
∏
i 6=k

P (yi) =
P (yk|x, Tk)

P (yk)

∏
i

P (yi). (4)

Here, we used the fact that output flows yi are independent, and that P (yi|Tk) =
P (yi): the information about input-output connection Tk is only relevant for
statements that involve both inputs and outputs (such as P (yk,x|Tk)).

Since we are only interested in relative probabilities for different k’s, we can
ignore all factors independent of k, such as P (x|Tk) = P (x) or

∏
i P (yi), as they

would cancel out in (3) anyway:

P (Tk|y1..n,x)
(3)∼ P (y1..n|x, Tk)

(4)∼ P (yk|x, Tk)
P (yk)

=
P (yk,x|Tk)

P (x|Tk)P (yk)
∼ P (x,yk|Tk)

P (yk)
.

(5)
We therefore need to compute P (yk) and P (x,yk|Tk). We are dealing with

a single flow x ← p → yk, so – to avoid notational clutter – we will drop the
explicit index k and assumption Tk from our formulae. In the new notation, we
have P (y) and P (x,y), which can be computed from appropriate conditional
probabilities by integrating out the unknown parameters s, l, r:

P (y) =
∫

s,l,r

P (y|s, l, r)P (s, l, r). (6)

P (x,y) =
∫

s,l,r

P (x,y|s, l, r)P (s, l, r) =
∫

s,l,r

P (x|s, l, r)P (y|s, l, r)P (s, l, r). (7)

The last equality holds because x and y, generated by model (2), are independent
given s, l, r. The distribution P (s, l, r) expresses our prior knowledge about flow
starting times, durations, and rates.

We divide the interval [s, s + l] into infinitesimally small windows of size dt.
Since y is a Poisson process (2), the probability of observing a single packet in
one such window is rq dt. The probability of no packets in [s, s+ l] is e−rql. Thus,

P (y|s, l, r) =

{
e−rql(rq dt)ny if all times in y ∈ [s, s + l],
0 otherwise.

(8)

Here, ny is the number of packets in y. The same formula (with nx) holds for
P (x|s, l, r). Since P (x,y|s, l, r) = P (x|s, l, r)P (y|s, l, r), we also have

P (x,y|s, l, r) =

{
e−2rql(rq dt)nx+ny if all times in x,y ∈ [s, s + l],
0 otherwise.

(9)



5.3 Long-Lived Flows

We first consider a simplified model, in which all flows start at the same known
time s and have the same known duration l (basically, [s, s+ l] is our observation
window). The only factor distinguishing the flows is their (unknown) rate r.
From (8), we get:

P (y) =
∫

r

P (y|r)P (r) =
∫

r

e−rql(rq dt)nyP (r). (10)

where P (r) is our prior information about the rate r. Since r is a positive param-
eter, we express our complete lack of prior knowledge by using the scale-invariant
Jeffrey’s ignorance prior P (r) ∼ r−1 dr [23]. This basically says that log r is dis-
tributed uniformly: the probability of r ∈ [a, b] is proportional to log(b/a). For
example, r ∈ [1, 10] and r ∈ [10, 100] have the same probability.

P (y)
(10)
=

∫
r

(rq dt)nye−rqlP (r) = (q dt)ny

∫ ∞

r=0

rny−1e−rql dr =
dtny

lny
Γ (ny).

(11)
We used

∫∞
0

za−1e−bz dz = Γ (a)/ba; for integer n we have Γ (n) = (n− 1)!.
Similarly, from (9),

P (x,y) =
∫

r

(rq dt)nx+nye−2rqlP (r) =
dtnx+ny

(2l)nx+ny
Γ (nx + ny). (12)

We can now use (5) to compute the final probability:

P (Tk|y1..n,x) ∼ P (x,yk|Tk)
P (yk)

=
dtnx

(2l)nx
· Γ (nx + nyk

)
2nyk Γ (nyk

)
∼ Γ (nx + nyk

)
2nyk Γ (nyk

)
. (13)

Interpretation. Fig. 3(a) shows a normalized plot of (13) for nx = 5 as a
function of ny. The maximum probability is assigned to ny ≈ nx, when the
numbers of observed packets on the input and on the output are similar. This
confirms our intuition and also yields quantitative probabilities for different ny’s,
which can be used for combining evidence from multiple observations.

The exact maximum occurs for ny > nx because the prior P (r) ∼ r−1 dr
causes P (r ∈ [4, 5]) > P (r ∈ [5, 6]) (because 5

4 > 6
5 ). This makes small ny’s more

probable to be produced by chance than larger ones, decreasing their match
probability. Using Stirling’s approximation of n!, we get (see appendix):

P (Tk|y1..n,x) ∼ (nx + ny − 1)nx+ny− 1
2

2ny (ny − 1)ny− 1
2

, (14)

which very closely matches the original, as shown in Fig. 3(a). The maximum of
(14), obtained by comparing its derivative to zero, is ny ≈ nx + 1

2 .
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Fig. 3. Relative probabilities based on (a) observed packet counts and (b) lengths.

5.4 General Flows

Now, we consider the general case, in which flows have different (unknown) du-
rations l and starting times s. From (8), we can compute P (y|l, r) by integrating
s out. For a given duration l, the possible starting times s belong to the interval
[max y − l, miny]. If ly = max y −miny is the observed length of y, then this
interval of possible values of s has the length (l−ly)0 = max{l−ly, 0}. Assuming
lack of prior knowledge about s (uniform prior P (s) ∼ ds), we have

P (y|l, r) =
∫

s

P (y|s, l, r)P (s)
(8)∼ (l − ly)0e−rql(rq dt)ny . (15)

Using Jeffrey’s priors P (l) ∼ l−1 dl and P (r) ∼ r−1 dr, we get:

P (y) =
∫

l,r

P (y|l, r)P (l, r) =
∫

l,r

(l − ly)0e−rql(rq dt)ny l−1r−1 dr dl =

(q dt)ny

∫
l

(l − ly)0l−1

∫
r

e−rqlrny−1 dr dl =

(q dt)ny

∫
l

(l − ly)0l−1Γ (ny)(ql)−ny dl =

dtnyΓ (ny)
∫ ∞

l=ly

(l − ly)l−ny−1 dl = dtnyΓ (ny)
l
−ny+1
y

ny(ny − 1)
. (16)

We can compute P (x,y) in a similar way. Let nxy = nx + ny be the total
number of packets in x and y, and lxy = max{max x,max y}−min{minx,miny}



the observed length of superimposed sequences x and y. In general, lxy 6= lx+ly.

P (x,y) =
∫

l,r

(l − lxy)0e−2rql(rq dt)nxy l−1r−1 dr dl =

Γ (nxy) dtnxy

2nxy (nxy)(nxy − 1)lnxy−1
xy

. (17)

Ignoring all factors independent of k, (5) gives us the final probability

P (Tk|x,y1..n) =
P (x,yk|Tk)

P (yk)
∼ Γ (nxyk

)
2nxyk Γ (nyk

)
· nyk

(nyk
− 1)

nxyk
(nxyk

− 1)
· l

nyk
−1

yk

l
nxyk

−1
xyk

. (18)

Interpretation. Formula (18) consists of three factors: (i) the rate formula
(13), (ii) a rate-dependent correction ny(ny − 1)/(nxy(nxy − 1)), and (iii) the
length-dependent factor l

ny−1
y /l

nxy−1
xy , which is of the most interest to us here.

Consider matching an input flow with the observed starting time minx = 0,
ending time max x = 10, and nx = 5 observed packets, against output flows y
with the same number of observed packets ny = 5. For various starting and end-
ing times min y and maxy, Fig. 3(b) presents the matching likelihood assigned
by (18) (since nx and ny are constant, so are the first two factors).

As expected, the maximum is attained when the observed starting and ending
times of both flows coincide: minx = miny = 0 and maxx = maxy = 10. Each
contour line consists of two parallel straight lines joined by two curves. The two
straight lines correspond to the observed input flow period completely containing
the observed output flow period, and vice versa.

Optimality. The derivation of (18) is strictly Bayesian, so – given the model
assumptions – the result is exact and uses all relevant information. Note that,
despite the timings of all packets being available through x and y, formula (18)
uses only the total packet counts (ny, nxy) and the observed lengths (ly, lxy).
This shows that the exact timings of individual packets (used by timing-based
attacks) are irrelevant for the inference in our model.

5.5 Evaluation

To evaluate the effectiveness of our method in attacking an individual Tor node,
we first collected real traffic distributions of observed flow rates and durations
(Fig. 4). Then, we performed a number of simulations of a 120 min execution of a
node. Flow durations (1–30 min) and rates (0.1–50 packets/s) were drawn from
the log-uniform (P (z) ∼ z−1 dz) prior, consistent with Fig. 4. Starting times
were selected uniformly from the interval [0, 120 min− l].

Our scoring method was “1” if the highest probability was assigned to the
correct target, and “0” otherwise (if i > 1 targets shared the top probability,
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Fig. 4. Distribution of observed rates and flow durations on a single Tor node. Only
flows that completed the three-way TCP handshake, at least 1 minute long, and consist
of at least 5 packets are shown. Flows are closed after being idle for 1 minute.

then the score was 1/i instead of 1). For each simulation, we applied the attack
independently to each input, and then averaged the results.

We varied the following parameters: the number of flows per hour (50–1 000),
the sampling rate q (1/100–1/2 000), the mean network latency (0–10 min), and
the attack method. Our parameter ranges are consistent with their real values:
our Tor node transmitted 479 flows/h on average, the average Tor network la-
tency was 0.5 s, and the current typical sampling rate is 1/2 048, but may increase
in the future. The results of our simulations are summarized in Fig. 5.

Average number of flows. Fig. 5(a) confirms that more flows provide more pro-
tection. For a typical number of 500 flows/h, the attack had a 50% chance of
success when the target sends ≈ 20 000 packets, that is ≈ 10 MB of data. With
50 flows/h, the same success rate required only 7 000 packets (3.5 MB).

Sampling rate. Fig. 5(b) suggests that the effectiveness of the attack depends
only on the number of sampled packets, so doubling the sampling rate is equiva-
lent to doubling the number of transmitted packets. For the technically feasible
sampling rate of 1/100, a success rate of 50% required only 1 000 transmitted
packets (500 kB).

Attack methods. We compared the following attacks: (i) rate attack, which ap-
plies (13), taking into account the observed number of packets and ignoring



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) variable flows/hour

transmitted packets

P
(c

or
re

ct
 ta

rg
et

)

10 100 1,000 10,000 100,000

50 flows/h
100 flows/h
250 flows/h
500 flows/h
1000 flows/h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) variable sampling rate

transmitted packets

P
(c

or
re

ct
 ta

rg
et

)

10 100 1,000 10,000 100,000

1 per 100 
1 per 200
1 per 500
1 per 1000
1 per 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) variable attack method

transmitted packets

P
(c

or
re

ct
 ta

rg
et

)

10 100 1,000 10,000 100,000

full attack
durations
rate+overlap
rate only

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) variable delay

transmitted packets

P
(c

or
re

ct
 ta

rg
et

)

10 100 1,000 10,000 100,000

no delay
30 s
1 min
2 min
5 min

Fig. 5. Simulation results: the probability of choosing the correct target, as a function
of the number of transmitted packets, for varying numbers of flows/hour (default 1 000),
sampling rate (1/2 000, except (c)), attack method (full attack), and delay (0).

packet times; (ii) rate+overlap attack, which additionally ignores outputs with
observed packet timings disjoint with the input; (iii) length attack, which selects
the output y with the highest ratio ly/lxy; (iv) full attack, which uses (18).

Fig. 5(c) shows the effectiveness of these four methods in a system with a
sampling rate of 1/100. The combined rate and length information (18) resulted
in a 50% success rate for ≈ 1 000 packets (10 sampled). In comparison, taking
only one factor (rate or length) into account, required 100 times more packets
to achieve the same accuracy.

Delays. Fig. 5(d) shows the effects of introducing an exponentially distributed
random delay to the system. The effectiveness of our attack stayed approximately
the same for delays up to 30 s, and then started to deteriorate, reaching the 0%
level for a 5 min delay. Note, however, that our attack explicitly assumes no delay
whatsoever, therefore this result does not mean that a 5-minute random delay
safeguards against all sampling attacks.



6 Future Work

For simplicity, we ignored several phenomena that occur in practice, such as
different sampling rates and how Tor cells are split over IP packets. Generalizing
our analysis to support different known sampling rates at input and output seems
straightforward (but an attack by a single adversary with a fixed sampling rate
is most likely). Similarly, the effect of packet splitting by Tor nodes seems to
be statistically equivalent to different sampling rates. Our analysis could also
be modified to take TCP sequence numbers, available from sFlow records, into
account, to give more accurate rate calculation.

As reasonable random delays do not protect against our attack, we plan to
examine other defenses, such as a moderate amount of dummy traffic. We would
also like to measure the effectiveness of our attack against real systems, using
an empirically determined prior distribution on durations and rates, for both
the analysis (numerical integration required) and the evaluation. Ideally, such
an evaluation should be performed for the entire Tor system, with its average
1 million flows per hour.

Furthermore, we are considering how intra-network traffic analysis could be
performed. Similar techniques could be used, and are likely to work better than
whole-network analysis since the number of flows will be smaller. However, there
are complications which must be considered, in particular that multiple flows
between the same pair of Tor nodes may be multiplexed within one encrypted
TLS tunnel. An improved analysis would take this possibility into account and
empirical studies would show to what extent this interferes with analysis.

7 Conclusion

We have demonstrated that Internet exchanges are a viable, and previously
unexamined, monitoring point for traffic analysis purposes. They are present on
many paths through our sample of the Tor network, even where BGP data would
not detect any common points of failure. Furthermore, Internet exchanges are
particularly relevant as in some cases they may record, and potentially retain
data adequate to perform traffic analysis.

To validate to what extent this was true, we developed traffic analysis tech-
niques which work on the sampled data which is being collected in practice by
Internet exchanges. Using a Bayesian approach, we obtained the best possible
inference, which means that we can not only attack vulnerable systems, but also
declare others as safe under our threat model. Our probability formula is difficult
to obtain by trial-and-error, and – as we show – can give orders of magnitude
better results than simple intuitive schemes.

We also show that exact “internal” packet timings are irrelevant for optimum
inference, so timing-based attacks cannot work with sparsely sampled data. For
the same reason, deliberate random packet delays do not protect low-latency
anonymity systems against our attack, as the minimum sensible latency (1 min)
is unacceptable for web browsing and similar activities.
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A Appendix

Theorem 1. Formula (13) attains maximum for ny ≈ nx + 1
2 .

Proof. Stirling’s factorial approximation gives us

n! ≈
(n

e

)n√
2πn.

Denoting a = nx, b = ny, and c = a + b, we have:

P (Tk|y1..n,x) ∼ Γ (a + b)
2bΓ (b)

=
(c− 1)!

2b(b− 1)!
≈

(
c−1

e

)c−1 √
2π(c− 1)

2b
(

b−1
e

)b−1 √
2π(b− 1)

∼

(c− 1)c− 1
2

2b(b− 1)b− 1
2

= X. (19)

Instead of finding the maximum of X, it is easier to find the maximum of
log X:

log X = (c− 1
2 ) log(c− 1)− b log 2− (b− 1

2 ) log(b− 1). (20)

We can find the maximum of log X by differentiating it w.r.t. b, and remem-
bering that c′ = (a + b)′ = 1:

(log X)′ = log(c− 1) +
c− 1

2

c− 1
− log 2− log(b− 1)−

b− 1
2

b− 1

= log(c− 1) +
1

2(c− 1)
− log 2− log(b− 1)− 1

2(b− 1)

≈ log(c− 1
2 )− log 2− log(b− 1

2 ) = log
(

c− 1
2

2b− 1

)
.

(21)

Now, (log X)′ = 0 implies c − 1
2 = 2b − 1, which implies b = a + 1

2 , that is
ny = nx + 1

2 .
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