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Abstract. As decentralized computing scenarios get ever more popu-
lar, unstructured topologies are natural candidates to consider running
mix networks upon. We consider mix network topologies where mixes are
placed on the nodes of an unstructured network, such as social networks
and scale-free random networks. We explore the efficiency and traffic
analysis resistance properties of mix networks based on unstructured
topologies as opposed to theoretically optimal structured topologies, un-
der high latency conditions. We consider a mix of directed and undirected
network models, as well as one real world case study – the LiveJournal
friendship network topology. Our analysis indicates that mix-networks
based on scale-free and small-world topologies have, firstly, mix-route
lengths that are roughly comparable to those in expander graphs; second,
that compromise of the most central nodes has little effect on anonymiza-
tion properties, and third, batch sizes required for warding off intersec-
tion attacks need to be an order of magnitude higher in unstructured
networks in comparison with expander graph topologies.

1 Introduction

As governments pursue large scale surveillance and censorship programs,
anonymity in online communication mechanisms is an increasingly impor-
tant requirement. Anonymous communications are also useful in building
resistance against a global passive adversary who can subject the targets
to traffic analysis. Often, an attacker will try to destabilize a network by
building a dossier of the most central nodes, and attacking ones on the
top of the list. Traffic analysis of inter-node communication offers basic
tools to collect necessary intelligence in order to plan an attack.

Seminal work by Chaum [Cha81] introduced mix networks as a tech-
nique to provide anonymous communications where messages are relayed
through a sequence of intermediate nodes called mixes, to make the task
of tracing them through the network as difficult as possible. The essential
idea is to make the inputs of each mix bit-wise unlinkable to its outputs.



Anonymity research conducted since, can be classified into low-latency
or real time systems primarily for Internet browsing such as onion rout-
ing [STRL00] and high-latency or non-real time systems such as mixmin-
ion [DDM03].

The topology of a mix network plays an important role in its effi-
ciency and traffic analysis resistance properties. The mainstream design
paradigm that has emerged so far is that of structured network topologies
based on regular graphs. The theory is that such topologies are amenable
to theoretical analysis that proves they have optimal expansion prop-
erties. This leads to a mix network design that is highly efficient and
resistant to traffic analysis. Examples are onion-routing systems such as
TOR [DMS04]that use a complete graph topology, where a mix can con-
tact every other mix in the network. While such models are theoretically
elegant, the assumption that every node in the network is equally re-
sourced (as regular graphs necessitate) to handle network traffic loads is
their main drawback.

An alternate paradigm is topology based on unstructured networks,
such as those inspired from social networks. The argument in their favor
being that the incentive to carry traffic is clear and simple - friends carry
each-others traffic. Moreover, no additional resources go into constructing
an overlay network since the pre-existing topology is used by the mix
network as well, which works well for power constrained environments
such as adhoc networks and sensor networks. Legal considerations play
an important role too. It is not enough to merely have a large number of
mixes. When hassled by legal requests (such as a subpoena to hand-over
mix server logs to the police), a mix-network where friends route each
others traffic, is likely to have a higher proportion of servers in operation,
as opposed to a synthetic network.

A comparison between the two paradigms needs to address mix-network
efficiency, resilience to corrupt nodes and the loss of anonymity from sta-
tistical disclosure attacks.

In this paper we analyze various types of unstructured networks, es-
pecially social networks and evaluate their suitability as mix topologies.
We discuss the reasons behind using social networks to route mix traf-
fic and we analyze the suitability of various types of model networks to
routing mix traffic and offer a comparison between them. We also ana-
lyze the theoretical bounds on anonymity such networks can provide in
terms of mixing speed and resistance to traffic analysis. We apply con-
cepts from spectral graph theory to derive the route length necessary to
provide maximal anonymity.



This paper is organized as follows: Section 3 discusses the various
topologies used in our analysis. Section 4, lays out the evaluation frame-
work to measure the traffic analysis resistance of various topologies. Sec-
tion 5 discusses the application of the framework to various topologies
and the results obtained. Finally, we offer our conclusions in section 6.

2 Related work

Danezis [Dan03] explored the anonymity provided by expander graph
topologies, this is one of the main sources of inspiration for our work. He
established the thoretical bounds of anonymity for expander graphs, and
also showed that they were optimal.

Borisov [Bor05] analyzes anonymous communications over a De Bruijn
graph topology overlay network. He analyzes the deBruijn graph topology
and comments on their successful mixing capabilities.

3 Network models

In this section we give a brief introduction to the network models we wish
to analyze as candidates for mix network topologies.

3.1 Erdös-Rényi model of random networks

On the earliest models for heterogeneous networks is the Erdös-Rényi
(ER )model [ER59]. Although seldom found in real world networks, their
use has been popularised by the work of Eschenauer and Gligor [EG02]
is designing a key management scheme for sensor networks.

Here, we start from N vertices without any edges. Subsequently, edges
connecting two randomly chosen vertices are added as the result of a
Bernoulli trial, with a parameter p. It generates random networks with
no particular structural bias. The average degree 〈k〉 = 2L/N where L
is the total number of edges, can also be used as a control parameter.
ER model networks have a logarithmically increasing l, a normal degree
distribution, and a clustering coefficient close to zero.

3.2 Scale-free networks with linear preferential attachment

A number of popular peer-to-peer systems are found to have heteroge-
neous topologies with heavy tailed degree distributions. The work of Ri-
peanu [RFI02] shows that two popular systems, Gnutella [KM02] and
Freenet [CSWH00], have power-law degree distributions.



A variable X is said to follow a heavy tail distribution if Pr[X > x] ∼
x−k L(x) where k ∈ <+ and L(x) is a slowly varying function so that
limx→∞

L(tx)
L(x) → 1. A power-law distribution is simply a variation of the

above where one studies Pr[X = x] ∼ x−(k+1) = x−α. The degree of a
node is the number of links it has to other nodes in the network. If the de-
gree distribution of a network follows a power-law distribution it is known
as a scale-free network. The power-law in the degree or link distribution
reflects the presence of central individuals who interact with many others
on a continual basis and play a key role in relaying information.

We denote a scale-free network generated by preferential attachment,
by Gm,N (V,E) where m is the number of initial nodes created at time=t0
and N is the total number of nodes in the network. At every time step
ti, i ≥ 0, one node is added to the network. For every node v added, we
create m edges from the v to existing nodes in the network according to
the following linear preferential attachment function due to Barabasi and
Albert [AB02]:

Pr[(v, i)] = ki/
∑

j

kj

where ki is the degree of node i. We continue until |V | = N .

3.3 Scale-free random graph topology

An alternate way of constructing a large scale-free network is to create
a network with a given power-law degree sequence that is random in all
other aspects. Aiello et.al. [ACL00] propose such a random graph model
inspired by massive AT&T call graphs, with two parameters α and β.
Where, α gives the fraction of nodes with degree 1 and β defines the
exponent of the power-law function. Then, if y be the number of vertices
of degree x > 0, x and y satisfy log(y) = α− βlog(x).

3.4 Klienberg-Watts-Strogatz(KWS) small world topology

Our next network model is inspired by the network of social contacts.
It is well known that any two people are linked by a chain of half a
dozen others who are pairwise acquainted – known as the ‘small-world’
phenomenon. This idea was popularised by Milgram in the 60s [Mil67].

The KWS graph topology models a small world network that encap-
sulates the following: a network rich in local connections, with a few long
range connections. The network generation starts from a N by N lattice



each point representing an individual in a social network. The lattice dis-
tance d((i, j), (k, l)) = |k− i|+ |l−j|. For a parameter p, every node u has
a directed link to every other node v within d(u, v) ≤ p. For parameters
q and r, we construct q long range directed links from u to a node v with
a probability distribution [Pr(u, v)] = (d(u,v))(−r)P

v(d(u,v))(−r)
.

Low r values means long-range connections, whereas higher values
lead to preferential connections in the vicinity of u.

3.5 LiveJournal (LJ)

In order to test our ideas on a real world unstructured network, we
turned to a large-scale social network called LiveJournal (LJ). LiveJour-
nal is a social networking and blogging site with several million mem-
bers and a large collection of user defined communities. LiveJournal al-
lows members to maintain journals, individual and group blogs, and –
most importantly for our study here – it allows people to declare which
other members are their friends. Using a web crawler called touchgraph
(http://www.touchgraph.com), we traced the LJ network to the online
friendship network. The snapshot of the network we use in our analysis
has 3,746,240 nodes and 27,430,000 edges.

A mix server bundled along with a future LiveJournal client acts as
the basis of mix deployment. Mix circuits are built on top of the social
network topology.

3.6 Expander graphs

Danezis [Dan03] previously analyzed the use of expander graph topologies
to construct mix networks. Expanders are well known to have excellent
expansion properties. We include this as a baseline comparison against
theoretical structured topologies. An expander graph GN,D has a homo-
geneous topology with N nodes each with a degree D.

4 Evaluation framework for measuring traffic analysis
resistance

Before we set out the evaluation framework, we first clarify what we
mean by “anonymity” in this paper. The focus of this work is on mes-
sage anonymity [SD02]: given a message, the attacker should not be able
to determine who sent it to whom. There are other definitions such as
relationship anonymity defined by Pfitzmann et. al. [PH00].



The objective of our analysis is to determine how the topology of a
mix network affects the amount of effort on the attacker’s part to uniquely
identify communication endpoints using traffic analysis attacks alone. The
effectiveness of such attacks depends heavily on the topology of the un-
derlying network. If the attacker is not able to reduce anonymity beyond
his or her initial knowledge then the mix network is said to be resistant
to traffic analysis attacks under the given threat model.

The attacker might also employ side channel analysis on the end-
points before the data enters the mix network, we do not consider such
attacks here. Side channel information might be timestamps or other in-
formation related to the protocol or mechanism in use. Attacks using
such information can be used to link messages to the communication
end-points, and are known as traffic confirmation attacks [RSG98], their
effectiveness depends on the mixes’ batching and flushing strategy.

4.1 Threat Model

Throughout this paper we consider the adversarial context of a global
passive adversary.

4.2 Measuring anonymity

There are several ways one can express the anonymity a system pro-
vides. In our analysis we use a quantitative method due to Serjantov and
Danezis [SD02], based on the following definition: “Anonymity of a sys-
tem may be defined as the amount of information the attacker is missing
to uniquely identify an actor’s link to an action”. In information theoretic
terms, the anonymity of the system A, is the entropy E , of the probability
distribution over all the actors αi, that they committed a specific action.

A = E [αi] = −
∑

i

Pr[αi]log2Pr[αi] (1)

This gives the number of bits of information, with a negative sign,
that the attacker is missing before they can uniquely identify a sender or
a receiver.

4.3 Modeling mix route selection

In order to understand the maximal anonymity provided by a mix network
we use Markov chains to model the route selection process, as they closely
match the way mixes are selected to form a mix route.



The process of selecting a mix route of length k by selecting k ran-
dom nodes in the mix network, is equivalent to first selecting a random
mix node, and, then a random neighbour of the first mix, repeating this
process k − 2 times. Hence we may model the route selection process as
a random walk on the underlying graph, with the various states of the
Markov chain process being the mix nodes of the network.

4.4 Measuring mix network efficiency

In analyzing the anonymity provided by a particular network topology we
need to examine the probability that a specific message is at a particular
node at a certain time. In order to link the sender and the receiver to
a particular message, the attacker must retrace the steps taken by the
message through the mix network starting from the receiver. Let the mix
network be an undirected graph G(V,E). If messages mij are inserted at
node i destined for j, then for a message mt

x at node x at time t, the
attacker must link mt

x to mij . Note that mt
x might either be in the edge

or the core of the mix network.
Applying the above mentioned information theoretic metric we have:

A = E(pij)

where pij = Pr[mt
x is mij ] is the probability distribution over all the

nodes in V .
Suppose a message is inserted into the mix network through a ran-

domly chosen node. Then after an infinite number of steps, the probability
that the message is present on any randomly chosen node in the network
is given by stationary distribution of the Markov chain π. Let q(0) be the
initial probability distribution describing the node on which message m
is introduced into the mix network, this is equivalent to the distribution
of input load across the nodes in network. q(t) then, is the probability
distribution of the node on which the message is present after t steps.
(this is also known as the state probability vector of the Markov chain at
time t ≥ 0). With increasing t one would like to see that q(t) merges with
π. The rate at which this takes place is known as the convergence rate of
the Markov chain, and the difference itself is called the relative point-wise
distance defined as:

∆(t) = maxi
|qt

i − πi|
πi

(2)

The smaller the relative point-wise distance, faster the convergence,
and more efficient the mix network. It is now easy to see that the maxi-



mum anonymity the network can provide is the entropy of the stationary
distribution of the chain.

Anetwork = E(π) (3)

.
When P is the transition matrix of the chain it is well known that P

has n real eigen-vectors πi and n eigenvalues λi [Wes01].
By using the relation q(t) = q(0)P (t), we calculate the probability

distribution of a message being on a node after having transited a mix
route of length t.

4.5 Compromised mixes

Suppose a subset of mixes are taken over by an adversary. Then a com-
promised mix route is defined as a mix circuit that is solely composed of
compromised mix nodes. Then, what is the probability that a randomly
chosen mix route is compromised?

A network topology with poor expansion properties (or lower eigen-
value gap ε = 1 − λ2) tends to have relatively ’localized’ mix routes, so
that, given the first mix of a route, there exists a subset of mixes within
the network that have a higher chance of being on the route than others.

The spectral theory of graphs lends us a few tools, namely chernoff
bounds, in quantifying this risk. Suppose S is the set of subverted nodes,
and πS the corresponding probability mass of the stationary distribu-
tion π. The upper bound of the probability that a mix route (random
walk) of length t goes through tS nodes of S is given by Gilbert [Gil98]:

Pr[tA = t] ≤
(
1 + (1−π(A))ε

10

)
e−t

(1−π(A))2ε
20 . However as Danezis [Dan03]

notes, given that this probability exponentially decreases with increase in
t, a small increase in route length will successfully mitigate this risk.

What is more relevant in the context of unstructured networks, is the
presence of ’hub’ nodes and ’weak-ties’. Hubs [New03] are special nodes
that owing to their position in the network topology handle large amounts
of traffic reducing. Similarly, weak-ties [Gra73] are edges responsible for
significantly reducing average path-lengths in networks of tightly knit
communities such as social networks. The risk of compromised mix routes
is significantly higher in a topology where hubs only connect to other
hubs, and handle most of the network traffic. If an attacker can locate
and strategically target mix nodes that also play the role of a hub, then
the percentage of mix routes under risk can be significant.



Hence, we simulated a large number of random walks for various
topologies presented in section 3, of different lengths, and make a rec-
ommendation on the route length to mitigate this risk in section 5.1.

4.6 Intersection attacks

The term intersection attack was introduced by Berthold et.al. [BPS00].
These attacks involve the detection of the preferential use of a mix route.
If for some reason, a sender under attack sends more traffic along a specific
route much more often than other routes, then a simple intersection attack
is carried out by intersecting the set of possible next-hop mixes of every
mix with the set of possible next-hop destinations of previous messages.
The the actual path of a message will then become apparent unless the
network has countermeasures against observability.

If each link from a mix node is used to flush messages to its neigh-
bours, then the potential for the simplest of intersection attacks can be
greatly reduced [KAP02]. So, for a given node i, we wish to calculate
the probability that any out going link remains unused during a flushing
cycle. If each mix node receives b messages per batch, then each of these
will appear on a particular outgoing link j with a binomial probability
distribution pi = 1/degi. Danezis [Dan03] then calculates the volume of
incoming traffic required so that the probability of any out going link
being unused is negligible.

b =
9
f2

(
1− pi

pi

)
(4)

where f is the percentage deviation of traffic output on a particular link
of i in a given flushing cycle from the mean traffic output.

Combining this with pmin, the probability associated with the highest
degree node in the mix network, we can derive the amount of genuine
traffic to be mixed together.

The prevention of basic intersection attacks as a system design criteria
can be traced back to the work of Reiter and Rubin [RR98].

5 Results and Discussion

5.1 Simulation parameters

In all the synthetically generated networks we considered, we N u 5000
nodes. The parameters used for each of them are listed below.



We model scale-free networks with linear preferential attachment with
m links per node and average node degree 〈d〉 ; 2 ≤ m ≤ 7 and 4 ≤ 〈d〉 ≤
14.

Next we model scale-free random networks which have a scale-free
degree sequence but which are random in all other respects. Generated
with parameters α = 0.25, β = 0.25 and Average node degree 4 ≤ 〈d〉 ≤
14. See section 3.3 for an explanation of α and β

Klienberg-Watts-Strogatz model of directed social network ties is an-
alyzed next, generated with parameters r, the lattice radius within which
each node creates direct links to all its neighbors. q is the number of weak
ties. We used 1 ≤ r ≤ 4 and 2 ≤ q ≤ 10.

Our next network is based on our primary source data, obtained by
web-crawling the LiveJournal site. The snapshot of the network we use
in our analysis has 3,746,240 nodes and 27,430,000 edges.

Finally we analyze two theoretical topologies, one degree heteroge-
neous and the other degree homogeneous, to offer a baseline comparison
against ER graph and constant expander graph topologies.

The ER graph is created with each edge formation as the result of a
Poisson distribution of p = 0.0028 with 〈d〉 = 14.

The constant expander graph is created with each node having D =
14 edges. Motwani et.al. [MR95] prove a relation between the second
eigenvalue λ2 of the transition matrix of a constant expander graph and
the degree D of a node λ2 ≥ 2

√
D−1
D . We can then use the result of

Sinclair [Sin93] connecting λ2, random walk length t and convergence rate
∆(t), namely ∆(t) ≤ λt

2
mini∈V πi

. For D = 14, we have a constant expander
graph with theoretical minimum second eigen-value of λ2 ≥ 0.5527708,
converging to maximal anonymity state in approximately 4 steps. This
forms the baseline against which we compare all the other topologies.

5.2 Efficiency

We can now comment on the efficiency and recommended mix route
lengths for various network topologies by comparing them to our base-
lines.

The efficiency of mix topologies based on a scale-free random networks
is shown in Figure 1. It plots the anonymity achieved against increasing
random walk lengths. Maximal anonymity is calculated using equation 3
is the entropy of the probability distribution of the chain at convergence.

Our calculations show that maximal anonymity is reached in just 6
steps in the medium density case 〈d〉 ≥ 4, as opposed to 4 steps in to 4
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Fig. 1: Convergence rates: Efficiency and maximal anonymity for Scale-free random,
ER and Constant expander graph topologies

steps in an expander graph topology. It turns out that social collaboration
networks [New01a,New01c,New01b] with scale-free characteristics have
average degrees in the range of 4 ≤ 〈d〉 ≤ 18. This suggests, firstly, that
efficient mix networks can be designed using scale-free random networks,
and second, that mildly denser scale-free networks are more suitable for
building mix networks than sparser ones.

While this is an encouraging initial result, it is important to strike a
note of caution. Scale-free random graphs only model the scale-free aspect
of degree distribution, while being random in every other way. However
most real world unstructured networks have several other non-random
characteristics apart from their degree distributions.

A number of real world unstructured networks are not scale-free, hence
we included the Klienberg-Watts-Strogatz(KWS) network topology, as it
explicitly models the presence of weak ties in a network. We experiment
with a number of parameter configurations; selecting r = 1 and r = 4 to
model low and high richness in local links or ’strong ties’ between nodes;
and 2 ≤ q ≤ 10 the number of short cuts or ’weak ties’, between mix
nodes. Figure 2-a plots mix-route length vs mix network anonymity, for
the KWS topology. When the topology is poor in local links, it seems
to converge in 7 to 8 hops, given enough short cuts. However, if the
network invests a large amount of resources into local connections form-
ing relatively tightly knit communities, then regardless of the amount of
shortcuts, convergence is not achieved until 62 hops!
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Fig. 2: Mean entropy vs mix-route length

Our final model network topology is the scale-free network based on
linear preferential attachment, which has attracted much attention in the
complex networks literature. This topology models a scale-free network
where hubs are connected to other hubs, a pattern that is repeatedly ob-
served in many real world scale-free networks. The parameter m controls
graph sparsity, random walk and convergence results are shown in fig-
ure 2-b. Our simulations show that while very sparse topologies converge
in 10 to 15 hops, topologies that are relatively dense converge within 6 or
so hops, this is comparable to the optimal 4 hops of a constant expander
graph.

Next, we considered our primary data source the LiveJournal graph
with a little less than 4 million nodes. Figure 3 shows the convergence
rate of mix routes, which we note converges to the stationary distribution
in around 11 hops. While this seems a high number in comparison to
expander graphs (converging in 4 hops), we also note that the entropy
achieved by the random walk in 4 hops in LJ is A4

LJ = 15.56. To obtain
the equivalent on an expander graph topology we would only need 215.56

or 48309 nodes. On the face of it the design decision seems really simple,
to go for a structured expander graph topology. We argue a different view:
A successful mix network design must also consider liability management
issues arising from running a mix. Considering that aspect, topology links
backed up by social capital are likely to be more robust than those of an
optimal topology, but where nodes quickly buckle under legal pressure.
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q = 10, p = 1 5 12.2939
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ER 〈d〉 = 14 7 12.2339

Expander D = 14 4 12.2877

Fig. 4: Convergence rates: Effi-
ciency and maximal anonymity for
linear Scale-free, KWS, ER and
constant expander graph topologies

We propose, running mixes on the nodes of the LJ topology bundled along
with a future LiveJournal client. Nodes only allow incoming traffic from
their neighbors, and will only direct outgoing traffic to their neighbors.

In this context, an interesting question is why nodes would process
traffic that didn’t originate from their neighbors, and especially so in the
face of legal hassles?

We offer the following reasoning: Humans making decisions on whether
or not to run a mix server, will have to consider the following costs. They
benefit in the long term, from processing traffic for unknown nodes in or-
der to generate a diverse user base, the need for which is well illustrated
in Dingledine and Mathewson [DM06]. However this only holds if other
mixes cooperative accordingly. Then there is the immediate social benefit
of having processed traffic for your friends. The success of the system
then depends on the extent to which individual nodes perceive the costs
of litigation pressure to be less than the total of immediate social bene-
fit and the long term benefit of a diverse user base. Psychology studies
tell us that humans involved in taking security decisions weigh short and
long term benefits differently. It should also be interesting to investigate
whether the idea of running a mix to primarily process traffic for your
friends is an effective tool for seeding indirect reciprocity in a mix network
where cooperation flourishes.



5.3 Compromised mix nodes

As explained in our evaluation framework, compromised nodes can lead
to compromised routes. This presents a special challenge in unstructured
networks where πA, the probability mass of the stationary distribution
π, corresponding to set of compromised nodes A, can be significant for
topological reasons.

To measure the robustness to nodes being strategically compromised
by an attacker, we simulated 100000 random walks of different lengths, for
each of our network topologies, in the range indicated by efficiency con-
siderations of the previous section 3 ≤ t ≤ 6, and measured the fraction
that passed through compromised nodes. The set of compromised nodes is
chosen to consist of the nodes with the highest degrees in the network. In
each case, for mix routes greater than 4 hops the probability of existence
of a compromised mix route is negligible. Fig 5 in the appendix confirms
that the threat of mix route compromise can be successfully reduced by
suitably increasing the mix-route length.

5.4 Intersection attacks

Using equation 4 we consider the required batch sizes for a threshold mix,
so that the traffic output on any link in the mix network does not deviate
by more than 5% from the mean traffic output on that link. For f = 5 we
calculate the number of messages that must be received in each mixing
cycle in table 1.

From table 1 it is clear that scale-free random networks and KWS both
require a batch size that is 4-5 times that of expander graphs. Whether
social networks can produce enough ’chatter’ to feed genuine traffic into
the mix network is an open question.

Our theoretical base line of ER network topology does slightly bet-
ter at a little over twice that. More significantly, the LJ network has a
batch size of almost 9 times the required batch size for expander graphs.
Scale-free networks with linear preferential attachment are the worst per-
forming, requiring a batch size almost 20 times larger than expanders.
We think that the exceptionally high value of batch size in LJ network
is due to its size of four million or so nodes. While does not mean that
LJ is inherently unsuitable as a mix network topology, but it certainly
indicates a scalability limit with the deployment of mixes on LJ nodes,
as proposed earlier.



Network 〈d〉 pmin Batch size

SFR 2 0.0344 10.08
3 0.0222 15.84
4 0.0243 14.4
5 0.0192 18.36
6 0.0135 26.28
7 0.0125 28.44

KWS 27 (q = 1, r = 1) 0.0294 11.88
43 (q = 10, r = 1) 0.0169 20.88
26 (q = 1, r = 4) 0.0333 10.44
28 (q = 10, r = 4) 0.0294 11.88

SF-linear 4 0.0048 74.16
6 0.0048 74.16
8 0.0041 86.04
10 0.0038 93.6
12 0.0037 96.12
14 0.0031 112.32

LJ 7.3221 0.00857 41.64
ER 14 0.0333 10.44
Expander 14 0.0714 4.68

Table 1: Batch sizes required to prevent intersection attacks

6 Conclusions

We have analyzed a comprehensive set of network topologies from the per-
spective of efficiency, maximal anonymity, compromised nodes and sim-
ple intersection attacks in comparison with (provably optimal) expander
graphs.

To the standard threat model of the global passive adversary, we have
added real world issues such as liability management and the need for
clear incentives for carrying traffic under the pressure of legal threats,
and discussed our simulation results in this context.

We considered topologies with two important characteristics found
in empirical studies of large-scale unstructured networks: scale-freeness
(scale-free random graph) and the small-world property (Klienberg-Watts-
Strogatz (KWS) graph). In both the topologies, we can recommend mix
route lengths for achieving 95% of maximal anonymity, that is only a
few hops larger than the optimal route length found in expander graph
topologies. Currently deployed mix networks such as TOR have around
540 volunteers. To increase the scale of such mix deployments the Inter-
net, we believe the way forward (for high latency systems only) is to use



online social networks. The minimum mix route must have three mixes
to allow sender and receiver anonymity. For this length, a mix network
constructed by placing mixes on the nodes of a social network such as
LiveJournal can achieve far higher maximal anonymity as per the en-
tropy metric we have used. We argue that including network incentives
within a framework does not allow the construction of structured overlay
mix topologies that can robustly withstand the threat of legal action. By
moving to social networks, we make a start on tapping the social capital
underlying node-node interaction to encourage users to deploy and run
mixes with policies that reflect this aspect.

We also found that subverted nodes, either compromised randomly,
or by strategic choice, on the basis of their degrees has little effect on
the efficiency of a mix network. This is because the route length required
to mitigate that risk is less than the recommended length for achieving
efficient convergence rates.

We also analyzed scale-free and the small-world topologies for their
robustness to attacks based on traffic load patterns observable on their
out-going and in-coming links. Both the scale-free random graph topol-
ogy and the KWS topology turn out to require almost 5 times as much
traffic as corresponding expander graph topology. This suggests the need
for further tests to see if enough genuine traffic is generated in online
social network interaction, to satisfy the minimum batch sizes required
for preventing the most basic versions of these attacks.

We conclude that, unstructured networks based on large-scale topolo-
gies are indeed very promising, we have outlined the merits and challenges
these topologies present to the design of mix networks for anonymous
communication.
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A Mix-route compromise on linear preferential
attachment scale-free networks

In this section we sketch a few analytical results concerning mix-route
compromise in BA scale-free networks.



Let B be the set of compromised high vertex-order centrality nodes.
For a route to be fully compromised, all intermediate nodes must be in
B. We then wish to calculate,

P (Cl) = [Pr(Random−Walk(v1....vl))]∀v1...vl ⊆ B.
It is straightforward to see that if l > |B| then P(C)=0. In BA scale-

free networks, all hubs(high vertex-order) nodes are connected to each
other. Hence,

P (C) =
|B| − 1∏

j∈B
kj
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Fig. 5: Probability of mix-route compromise vs no. of corrupt nodes



B Convergence rate and network size in scale-free
random networks

Simulations conducted in this paper have not accounted for the effect of
varying network size on the convergence rate of the respective topologies.
We address this, by offering a simple conductance based proof that the
second eigen-value of a scale-free network is a independent of the network
size. See [Ran06] for a review of the conductance based technique as well
as others.

We denote a scale-free network generated by preferential attachment,
by Gm,n(V,E) where m is the number of initial nodes created at time=t0
and n is the total number of nodes in the network. At every time step
ti, i ≥ 0, m nodes are added to the networks. For every node added,
we create m edges from the node to existing nodes in the network. We
continue until |V | = n.

Next, there is an intimate relationship between the rate of convergence
and a certain structural property called the conductance of the underlying
graph. Consider a randomly chosen sub-graph S of G(V,E). Suppose a
random walk on the graph visits node i i ∈ S. What is the probability
that the walk exits S in a single hop. If conductance is small, then a walk
would tend to “get stuck” in S, whereas if conductance is large it easily
“flows” out of S.

Formally, for S ⊂ G, the volume of S is volG(S) =
∑

u∈S dG(u), where
dG(u) is the degree of node u. The cutset of S, CG(S, S), is the multiset of
edges with one endpoint in S and the other endpoint in S. The textbook
definition of conductance ΦG of the graph G is the following:

ΦG = min
S⊂V,volG(S)≤volG(V )/2

|CG(S, S)|
volG(S)

(5)

[MPS03] prove that the conductance of a scale-free network is a con-
stant. Specifically, ∀m ≥ 2 and c < 2(d− 1)− 1, ∃α = α(d, c) such that

Φ =
α

m + α
(6)

From [Sin93] we have the following bound for λ2:

1− 2Φ ≤ λ2 ≤ 1− Φ2/2 (7)

Substituting for Φ from equation 6 in equation 7, it is easy to see that
λ2 is a constant.
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