
Reducing Latency in Tor Circuits with Unordered Delivery

Michael F. Nowlan, David Wolinsky, and Bryan Ford
Yale University

Abstract

Tor, the popular anonymous relay tool, incurs signifi-

cant latency costs—partly due to extra network hops, but

also due to TCP’s strict in-order delivery. We examine

the problem of TCP’s head-of-line blocking in Tor, al-

though this problem affects any application multiplexing

streams atop TCP. Using uTCP and uTLS, techniques for

enabling unordered delivery in TCP and TLS, respec-

tively, we eliminate head-of-line blocking between Tor

circuits sharing a TCP connection, without sacrificing

Tor’s security. The small code footprint of uTCP and

uTLS, and the minimal changes required to Tor, suggest

the feasability of our approach. A micro-benchmark in-

dicates that the integration of uTCP and uTLS can no-

ticeably lower application-perceived latency.

1 Introduction

Tor [10] is a protocol and open-source tool providing in-

creased anonymity to network communication by routing

it through a dynamically-chosen set of relay servers. In

addition to hiding the communicating endpoints’ iden-

tities, Tor also obfuscates its use by “blending in” with

regular encrypted traffic (e.g. e-commerce). Tor users

observe significantly increased latency partly due to the

extra hops imposed by the relay scheme, but also due to

side effects of Tor’s use of TLS [9] over TCP [27] as its

general transport substrate. These side effects may man-

ifest in any application that uses TCP in this way.

TCP offers an attractive underlying substrate for a net-

work overlay for reasons including reliability, congestion

control and widespread network support. In the case of

Tor and other communication overlays [18, 28], the use

of TCP goes even further to help provide unobservabil-

ity, wherein a malicious eavesdropper cannot easily dis-

tinguish overlay traffic from regular Internet traffic [16].

Despite its benefits, TCP only supports strict in-order de-

livery, requiring a node to delay delivery of subsequent

packets after a lost packet. In overlays like Tor, this delay

can introduce latency in one logical stream even though

the loss may be in a different stream.

In this work, we attempt to reduce the observed la-

tency in Tor streams by eliminating cross-stream head-

of-line blocking. Unordered TCP (uTCP) and Unordered

TLS (uTLS) [20] have been shown to combat head-of-

line blocking in cases where logical streams are mul-

tiplexed over TCP by enabling out-of-order delivery of

packets upon the application’s request. By deploying

uTCP and uTLS at relay servers within the Tor network,

we expect to reduce the interdependence created by in-

terleaving streams.

The code changes are minimal, though they do affect

multiple layers of the stack. We deploy uTCP and uTLS

to support unordered deliveries at the OS and socket-

level, respectively, each with a small (< 5%) code in-

crease. The application-level changes to Tor are even

smaller (95 lines, ≪ 1%). Although we have not per-

formed an extensive experimental evaluation, our initial

experiments suggest the feasibility and benefits of our

approach. Tor presents a unique deployment scenario for

uTCP and uTLS, which primarily focus on application-

perceived latency. In Tor, unlike other applications, re-

ducing latency cannot come at the cost of its anonymity

or security properties. Thus, the isolation of changes just

to delivery semantics, leaving other properties such as

congestion control and wire format unaffected, makes

uTCP and uTLS an ideal protocol stack for this situation.

2 Motivation

This section explores the design of the Tor network and

its use of TCP as a transport substrate. We then illustrate

the head-of-line blocking problem inherent to any appli-

cation using TCP in this way. Lastly, we discuss related

work and propose a set of requirements for a solution.

2.1 The Tor Network

Tor [10] is a distributed overlay network and protocol

for carrying generic application data, though it is often

used for web browsing. Tor enhances a user’s privacy

by interposing several additional hops between the user’s

client node and a desired communication target (e.g.,

web server) external to the Tor network. This indirection

prevents the server from identifying the client directly.

The client uses layered symmetric-key encryption on

the payload to prevent eavesdropping while data is en

route. The client encrypts upstream payloads with

several layers of encryption; each intermediate Onion

Router (OR) then decrypts one layer before relaying each

payload. Downstream traffic from the server follows the

reverse path, with each OR adding a layer of encryption

to each payload and the client decrypting all layers.

A Directory Server (DS) dynamically maintains a set

of ORs that are willing to act as relays for communi-

1



Figure 1: A simple Tor circuit using 3 Onion Routers.

cation. A user then executes the Onion Proxy (OP)

software locally, which contacts a DS and selects a set

(usually three) of ORs for the current session. The

user then passes application data (e.g., HTTP [5, 12] re-

quest/response) through the OP, where they follow the

pre-built circuit through the Tor network and exit before

reaching the desired endpoint. Figure 1 shows a diagram

of an example Tor circuit.

In addition to encrypting payloads manually, Tor uses

TLS [9] to encrypt OR-to-OR connections. From TLS

downward, Tor follows the traditional protocol stack for

encrypted web traffic: application data over TLS, over

TCP [27], over IP [17]. A beneficial side effect of us-

ing this traditional stack is that, apart from sophisticated

packet size and timing analysis, Tor traffic appears simi-

lar to common, “innocuous” e-commerce traffic in tran-

sit. A potentially negative consequence of using this

TLS/TCP stack, however, is its delivery semantics.

2.2 A Pure TCP Substrate

TCP is a stable and robust protocol, thanks to decades

of evolution and fine-tuning, and it is by far the most

popular transport used in the Internet. Partly as a result

of its popularity and familiarity, many applications use

TCP even when other transport semantics may fit better.

TCP’s strict in-order delivery model is ill-suited for real-

time applications and other applications in which there

is a natural division of data into multiple logically inde-

pendent communication units or streams. TCP enforces

serialization of data on the wire and only delivers the data

in the same order at the receiver. When logically distinct

streams are sharing an underlying TCP connection, this

serialization is often arbitrary and unimportant to the ap-

plication. TCP, however, delays delivering a packet un-

til all prior packets have been delivered, causing a lost

packet on one logical stream to delay all other streams

sharing the connection unnecessarily.

Tor for example uses point-to-point TCP connections

between relays, serializing packets from multiple Tor cir-

cuits onto a single TCP connection for each pair of com-

municating relays. Thus, a dropped packet between two

relays will delay the forwarding of packets on its own

and all other circuits sharing this OR-to-OR link. This

is known as the head-of-line blocking problem. Figure 2

shows a diagram of this situation in Tor with 3 circuits

sharing a single point-to-point connection.

Figure 2: Tor circuits sharing a single TCP connection,

creating a head-of-line blocking situation across circuits.

2.3 TCP Substrate Proliferation

Head-of-line blocking is well-known and understood

and, in many cases, tolerated simply because alternatives

can be more difficult to deploy. Despite the fact that other

transports, including UDP [22] and SCTP [25], sup-

port unordered delivery, applications consistently tend to

build their own transports atop TCP. Examples include

media transports such as RTP [24], and experimental

multi-streaming transports such as SST [13], SPDY [2],

and ØMQ [1]. Applications increasingly use HTTP or

HTTPS over TCP as a substrate [21]. Furthermore, a

recent study found over 70% of streaming media using

TCP [15], and even latency-sensitive conferencing ap-

plications such as Skype often use TCP [4].

Despite sometimes non-ideal delivery semantics, TCP

also offers other real benefits over UDP and other trans-

ports, including: robust congestion control, fine-tuned

timeout and retransmissions, flow control, and bene-

fits from Performance-Enhancing-Proxies [6] and other

modern hardware optimizations for TCP.

Even if one wishes to use TCP for compatibility or

reachability, one could break the interdependence on the

wire by using separate TCP connections for each stream

(or circuit). However, this approach incurs considerable

network latency and bandwidth and host memory costs

for each TCP connection, may consume many socket file

descriptors, and may exhaust the port space for popular

Tor relays, potentially discouraging casual volunteers.

2.4 Goals and Related Work

There have been previous attempts to solve Tor’s head-

of-line blocking problem. We briefly describe a few in

light of Tor’s overall goals and requirements. Reardon’s

approach tunnels Tor’s TCP traffic over DTLS [23],

effectively breaking interdependence on the wire via

UDP’s unordered delivery. This approach relies on a

minimalist userspace TCP stack and, along with others

using UDP [19], results in a different wire format and

significant code changes. DefenstraTor [3] addresses the

latency issue by changing the shared congestion control

2



context between circuits, but does not address the head-

of-line blocking problem. Our work preserves Tor’s ap-

proach to congestion control: multiple circuits on the

same TCP connection share a congestion control context.

Torchestra [14] and other prioritization schemes [26] re-

duce latency on interactive flows by separating them

from bulk downloads. These approaches generally pro-

pose significant changes to Tor and its protocol and do

not actually eliminate head-of-line blocking for circuits

on the same TCP connection.

Our approach to the head-of-line blocking problem at-

tempts to satisfy the following requirements. First, the

solution must be fully backward compatible, so as not

to alienate the established Tor user base. Ideally, we en-

vision Tor relays negotiating a new OR-to-OR protocol

version, and automatically employing the solution within

the Tor network with no externally visible changes to

clients. Second, the solution should be modular enough

that two relays could negotiate its use completely on their

own. This allows for an incremental rollout with better

testing and enables individual relay operators to monitor

and evaluate the effects of an upgrade. Lastly, eliminat-

ing head-of-line blocking should not weaken the privacy

and anonymity properties of the protocol.

3 TCP in Tor

This section explores how Tor uses TCP as its underlying

transport substrate. We examine how Tor constructs cir-

cuits, why Tor multiplexes them over a single TCP con-

nection, and why this design is problematic for latency

in the presence of packet loss.

3.1 Tor Components

As previous introduced, there are three types of nodes

in the Tor network: 1) Directory Server (or Authority)

(DS) – maintains lists of available Onion Routers and

connectivity status; 2) Onion Router (OR) – acts as a

relay server, accepting cells, performing enryption or de-

cryption, and routing them to the next hop in the circuit;

3) Onion Proxy (OP) – client-executed proxy server run-

ning locally on the client’s machine, responsible for ob-

taining lists of ORs from a DS and injecting requests into

the Tor network along negotiated circuits.

DSs and ORs need to be more stable nodes – volun-

teers launch instances and may let them run for weeks or

longer; while OPs are more fleeting – a client may launch

an OP for a single browsing session and then terminate

the process afterward. Additionally, OPs only partici-

pate as the “origin” of circuits; they do not act as relays

for other users’ circuits.

On startup, ORs establish TCP connections to multi-

ple DSs to advertise their willingness to relay traffic. Oc-

casionally, an OR will perform a bandwidth assessment

test, or transmit other types of “heartbeat” communica-

tion back to the DS. Similarly, an OP contacts multiple

DSs and obtains information about the currently avail-

able ORs and their properties (location, bandwidth, etc.).

For this control traffic, TCP is an appropriate trans-

port as the reliability and in-order delivery provide es-

sential guarantees for correctness. Additionally, TCP’s

widespread support throughout the Internet helps max-

imize reachability and connectivity within the Tor net-

work. For example, some NATs [11] might block non-

TCP traffic making it difficult to deploy Tor and other

application overlays over another transport such as UDP.

3.2 Tor Circuits

A circuit consists of multiple ORs (usually 3) that ferry

traffic sent from the OP. The final OR in the circuit estab-

lishes a direct TCP connection with the OP’s desired des-

tination, often external to Tor. Each request a client sends

to its local OP is broken into cells that are relayed from

OR to OR along the OP’s pre-determined circuit. The

OP encrypts each cell multiple times prior to transmis-

sion, forming an “onion skin” several layers thick around

the data. Each OR in the circuit decrypts one encryption

layer, until the final OR produces the client’s original re-

quest and transmits it to the external endpoint.

An OP is responsible for selecting ORs for a circuit

from the list of available ORs that it receives from the

DSs. An OP is free to discriminate among ORs based

on geolocation or other arbitrary attributes such as band-

width or past performance. (Tor’s configuration file for-

mat allows for this discrimination.) This requirement is

somewhat due to the sensitive nature of Tor’s anonymous

communication: a user may not wish to route its traffic

through a particular OR if he perceives that OR is poten-

tially under control of a malicious or adversarial entity.

To hide the origin’s identity, the OP never directly con-

tacts any OR other than the first OR in the circuit. When

building a circuit, the OP obtains from the DS the public

keys of all ORs selected for the circuit. During circuit

initialization, the ORs use an “extend” message to the

next OR in a circuit, establishing point-to-point connec-

tions to carry the OP’s data. This design decision to have

ORs act on behalf of the OP to establish each additional

link in the circuit is fundamental to Tor’s security model.

The potential volume of circuits in flight through a sin-

gle OR at any moment prevents ORs from using a new

TCP connection per circuit. This is partly due to the

port exhaustion problem discussed earlier. Additionally,

TCP’s 3-way handshake per connection has been shown

to increase latency due to roundtrip costs [2, 13].

Thus, a single TCP connection carries all cells for all

circuits traveling between two ORs. This design decision

amplifies TCP’s delivery semantics all the way into the

application’s processing loop. Because of TCP’s strict

in-order delivery, application datagrams can only be pro-

3



cessed in the order that they were sent over the network,

regardless of when they actually arrive at the destination.

The cross-circuit interdependence introduced by TCP

manifests itself in the form of head-of-line blocking, and

increases latency for circuits even if the circuit’s data it-

self was not dropped. Whether or not reliability and in-

order delivery are the correct design decisions within cir-

cuits is not discussed here – that is the abstraction that

Tor’s designers chose. We do not argue for changing this

abstraction, as that would require a much bigger over-

haul, especially to the application endpoints that would

then need to handle unordered application data. Instead,

we argue for simply breaking the interdependence across

circuits that TCP inherently introduces.

4 Unordered TCP and TLS

There are potentially many designs to eliminate head-of-

line blocking in Tor circuits. Here, we describe just one

approach using two techniques for delivering unordered

data with TCP in a wire-compatible way.

4.1 Unordered TCP

Unordered TCP (uTCP) [20] is a technique used for de-

livering unordered TCP data in a wire-compatible way.

We describe the high-level design points here for clarity.

The goal of uTCP is to allow applications to request

immediate delivery of available data, even if the data is

not the “next” data in the TCP byte sequence space. The

uTCP code is a kernel patch that provides a new socket

option for enabling unordered delivery. When set, a call

to read() returns a contiguous region of bytes, either

the next logical bytes in the stream, or some future region

in the stream (i.e. out-of-order). Additionally, each call

to read() returns metadata indicating the position of

the contiguous bytes in the TCP byte sequence space.

With this metadata, the application, or another library [7,

9], can reorder the segments as needed using application-

level “framing markers”, for example.

The design of uTCP is motivated by the goals of main-

taining exact compatibility with TCP’s existing wire-

visible protocol and behavior, while simply exposing

data that the kernel normally buffers. As discussed previ-

ously, exact wire compatibility is important for Tor, and

the reduction of time spent in kernel buffers should ex-

pedite the relaying of cells.

4.2 Unordered TLS

Unordered TLS (uTLS) provides traditional TLS-like [9]

security atop Unordered TCP. Though uTLS is not new,

we describe its high-level design here for clarity.

The goal of uTLS (like uTCP) is to remain entirely

indistinguishable on the wire from regular TLS. To this

end, uTLS uses the metadata returned by uTCP on each

socket read to construct an ordered queue of the byte

stream at the receiver. It then scans this byte stream look-

ing for the 5-byte TLS record header. If it finds what it

believes to be a record, it attempts to decrypt and authen-

ticate the record. If authentication succeeds, the record

is returned. Otherwise, the bytes remain queued, eventu-

ally to be decrypted in-order once any “holes” are filled.

Because the uTLS code is simply a receiver-side

change, the wire format is unaffected, and appears iden-

tical to HTTPS when run on port 443, regardless of

whether the encrypted data carries HTTP headers or not.

This is especially useful for Tor as HTTP is not the only

application-level protocol Tor supports. Furthermore,

uTLS preserves the security properties of TLS. uTLS re-

quires TLS protocol version 1.2 in CTR or CBC mode,

with explicit initialization vectors in CBC mode.

5 Unordered Tor

Given the techniques described above and that Tor al-

ready communicates in a datagram-oriented way, we

made few significant code changes to support unordered

cell processing. Although we did change Tor’s wire for-

mat, ORs negotiate this using a new Tor version num-

ber and fall back to a previous version if either OR does

not support “Unordered Tor”. We now summarize the

changes we made to the Tor source code.

5.1 Cell Boundaries

Processing cells out-of-order over TCP requires that the

underlying substrate provide Tor with complete cells on

each socket read. Otherwise, Tor may process portions

of cells as though they were complete cells, causing fail-

ure. Fortunately, uTLS already creates records on the

byte boundaries it receives at the time of the sender’s

write() call. These boundaries are preserved over the

wire, and the receiver’s subsequent read() returns the

same byte regions. Thus, if the Tor sender writes com-

plete cells into the uTLS socket, it is guaranteed that the

receiver will read byte regions on cell boundaries.

Modifying Tor to produce this behavior was straight-

forward. We ensure that each time a cell is ready for

transmission, it triggers a call to write() on the socket.

Similarly, Tor already tries to process data after each

read, optionally reading more data if it had an incom-

plete cell. With complete cells being written and uTLS

boundary preservation, each read now produces a com-

plete cell, ready for processing.

5.2 Sequence Numbers and Cell Packing

To guarantee correctness, we wish to process cells in-

order within a circuit. To identify the ordering of cells

within a circuit, we added a sequence number to all out-

going cells. This required a change to Tor’s wire format,

which we now negotiate with a new Tor version number.

4



ORs maintain sequence numbers for each circuit in

both the “forward” and “backward” directions, from the

origin and to the origin, respectively. The transmitting

OR writes the sequence number into each cell header

upon transmission. Additionally, ORs maintain an “ex-

pected” sequence number for each direction on the cir-

cuit. The receiving OR then increments the circuit’s ex-

pected sequence number whenever an in-order packet ar-

rives on that circuit. This exposes a circuit-level gran-

ularity for ordering cells, rather than a connection-level

granularity, as is the case currently in Tor. We use a 16-

bit sequence number, but 32-bits could be used if needed.

We perform no special handling for sequence number

wrap-around, but leave this to future work.

The extra 2 bytes for the sequence number in the cell

header increase the cell header size from 5 to 7 bytes,

leaving the cell payload size of 509 bytes unchanged.

(The header is 9 bytes if using “wide” circuit ids.) By

changing only the header, an OR can receive a cell from

a normal TCP connection and send out the same pay-

load with the new “unordered” header. Because cells are

processed in-order within a circuit, a TCP-based OR will

never receive cells out-of-order within a circuit, even if

the transmitting uTCP-based OR processed cells across

circuits out-of-order. In this way, two ORs can agree

to use the new header format independently (and ben-

efit from unordered delivery), without consent from or

negative effect to other nodes on the circuit. Simply put,

a transmitting OR uses the header format it negotiated

with the receiving OR at connection setup.

With a sequence number added to cells, we needed

to adjust Tor’s wire-packing code. This code serializes

cell headers into network order and produces a byte array

for transmission, performing the opposite task on recep-

tion. We modified Tor to correctly serialize and deserial-

ize cells containing a sequence number.

5.3 In-Order Circuits

Tor already uses a cell queue for storing received cells

prior to processing, although we find that in practice the

queue rarely fills up. We leveraged this existing queue to

store cells that arrive out-of-order within their circuit.

If a cell’s sequence number matches the circuit’s “ex-

pected” sequence number, we process the cell normally

and increment the expected sequence number. Other-

wise, the OR places the cell in Tor’s receive queue to

be processed once the circuit’s expected sequence num-

ber has increased to match the cell’s. We thus enforce

in-order delivery within each circuit to avoid breaking

circuit-level protocol invariants, for example, by process-

ing a DESTROY cell prior to a data cell on that circuit.

Tor Unordered Tor Delta

Lines of Code 81418 81513 +95 (0.001%)

Table 1: Code size of Unordered Tor prototype as a delta

compared to stock Tor for the OR code only.

5.4 Correctness

As just stated, Unordered Tor does not currently support

unordered delivery within a circuit: all cells are pro-

cessed in the same order within a circuit as in normal

Tor. Future work might investigate mechanisms to han-

dle unordered data within a circuit, which might bene-

fit the performance of UDP-based applications tunneled

over TOR, for example. For now, however, we prioritize

simplicity, correctness, and ease of deployment.

Similarly, the per-cell onion encryption is unaffected

because cells within the same circuit are processed in-

order. A Tor node maintains a separate encryption con-

text for each circuit, ensuring that cell encryption and de-

cryption only affects the circuit the cell belongs to. At the

transport level, uTLS [20] demonstrated that there is no

loss of security in delivering TLS records out-of-order.

However, we do not perform a formal and thorough

security analysis here, and leave to future work the in-

vestigation of whether Unordered Tor might expose new

vulnerabilities, such as traffic analysis or timing attacks.

6 Preliminary Evaluation

We provide a simple proof-of-concept experiment to

validate that Unordered Tor” can address head-of-line

blocking and reduce latency across circuits. We believe

this experiment is suggestive of the results achievable in

a large-scale authentic deployment of Unordered Tor.

6.1 Prototype Implementation

Our prototype implements the changes outlined in Sec-

tion 5. To measure code complexity, we compare the

lines of code [8] in stock Tor and Unordered Tor for the

OR code only (not the tools or proxy).

Table 1 shows that the code complexity for enabling

unordered relaying in Tor is extremely small – much less

than 1%. This small delta is due mainly to the fact that

Tor already processes application payloads in datagram-

like cells, enabling us to reuse existing data structures.

6.2 Experimental Setup

Our test setup uses a small virtual Tor network to cre-

ate a controlled environment to examine the behavior of

Unordered Tor. We make no claims that this experiment

portrays Tor’s performance “in the wild” on the real In-

ternet. Instead, we merely use this setup to highlight the

differences in behavior between the two variants.

Our Tor testbed network contains 3 relay servers

(ORs), 3 Directory Authorities, and a single proxy (OP)

5



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18F
ra

c
ti
o

n
 C

o
m

p
le

te
d

 D
o

w
n

lo
a

d
s

Time (seconds)

Download Completion with Tor Variants

uTor
Tor

uTor-Loss
Tor-Loss

Figure 3: Application-observed completion times for

HTTP downloads using Tor relays with and without un-

ordered delivery.

instance. We configure the OP to use the same path

(same entry, middle, and exit relays) for all circuits. This

setup creates competing traffic, and enables us to induce

head-of-line blocking across circuits by triggering loss

on a single link. Each client request to the OP is routed

through the Tor network, and then exits the network to

the desired endpoint on the external Internet.

The Tor network is configured with a normally dis-

tributed, 50ms mean one-way propagation delay. For the

series names ending in “-Loss”, the path from the second

OR to the exit (i.e. final) OR was configured with a 5%

artificial loss rate on the outgoing link. We acknowledge

this high loss rate is unrealistic, but use it to emphasize

the difference between stock Tor and Unordered Tor. We

believe even the more moderate loss rates common in

the Internet may still affect a significant number of users,

given the large size of Tor’s user base and the heavy traf-

fic loads that popular Tor ORs commonly sustain.

6.3 Results

Figure 3 presents the application-observed completion

time for a set of simultaneous, independent HTTP down-

loads. As mentioned above, both Tor and Unordered

Tor (uTor) were tested twice: with and without artificial

loss on the link to the exit relay. The experiment issues

web requests to 40 popular sites on the Internet, with the

download sizes ranging from 10KB to 400KB.

Under normal network conditions, we see that Tor and

uTor perform similarly in over 80% of downloads, which

is expected for the many (often short) downloads that

encounter no TCP segment loss event. In about 15%

of downloads, however, uTor shows significantly lower

latency – often 30–40% – by eliminating head-of-line

blocking and localizing to a single Tor circuit the latency

impact of normal, occasional TCP segment losses.

The artificial loss cases amplify this difference, show-

ing a much larger effect on flow completion times. In

uTor, over 50% of flows complete within 5 seconds,

while less than 30% of flows over stock Tor complete

in the same time span. This illustrates the head-of-line

blocking scenario: with drops, Tor must delay all flows

while uTor allows unaffected circuits to proceed. Both

uTor and Tor show some “stragglers” – flows that do not

complete until long after all others. This is expected, as

unordered delivery does not eliminate drops, only their

influence on subsequent data on the same TCP link.

6.4 Future Work

Our next task is to deploy and evaluate Unordered Tor

in more real-world scenarios, to test interoperability on

circuits with both uTCP and TCP hops, and to investigate

more subtle protocol issues such as negotiation fall-back

and sequence number wrap-around. We intend to open-

source our code and share it with the Tor development

community once the prototype is sufficiently mature.

In the longer term, we would like to explore Tor and

application extensions to process cells in a single cir-

cuit out-of-order, which may benefit UDP-based VoIP

or VPN applications for example. We also wish to ex-

plore further the prevalence of head-of-line blocking in

other applications that do stream multiplexing, such as

SPDY [2]. While it is logically clear how latency fol-

lows from in-order semantics, we have limited quantita-

tive data on how high this cost is in practice.

7 Conclusion

In this work, we demonstrate and analyze the existence

of head-of-line blocking in Tor. We show how the inte-

gration of two techniques known to reduce head-of-line

blocking in TCP can alleviate application-perceived la-

tency in Tor circuits. We show that the changes to the

Tor source are minimal and fully compatible both with

previous versions of Tor and the goals of Tor to subvert

exposure and disruption. Although a full-scale evalua-

tion is needed to prove the feasibility of this deployment

scenario, we believe any application using TCP as a mul-

tiplexing substrate can benefit from our approach.

Acknowledgments

We thank Nick Mathewson for his help integrating our

code in the Tor network, and the anonymous reviewers

for their valuable feedback. This research was conducted

with Government support under and awarded by DoD,

Air Force Office of Scientific Research, and National De-

fense Science and Engineering Graduate (NDSEG) Fel-

lowship, 32 CFR 168a. Additionally, this material is

based upon work supported by the Defense Advanced

Research Agency (DARPA) and SPAWAR Systems Cen-

ter Pacific, Contract No. N66001- 11-C-4018.

6



References
[1] ØMQ: The intelligent transport layer. http://

www.zeromq.org.
[2] SPDY: An experimental protocol for a faster

Web. http://www.chromium.org/spdy/

spdy-whitepaper.
[3] Mashael AlSabah, Kevin Bauer, Ian Goldberg, Dirk

Grunwald, Damon McCoy, Stefan Savage, and Ge-

offrey Voelker. DefenestraTor: Throwing out win-

dows in Tor. In 11th Privacy Enhancing Technolo-

gies (PETS). July 2011.
[4] Salman A. Baset and Henning Schulzrinne. An

analysis of the Skype peer-to-peer Internet tele-

phony protocol. In IEEE INFOCOM, April 2006.
[5] T. Berners-Lee, R. Fielding, and H. Frystyk. Hyper-

text transfer protocol – HTTP/1.0, May 1996. RFC

1945.
[6] Brian Carpenter and Scott Brim. Middleboxes:

Taxonomy and Issues, February 2002. RFC 3234.
[7] Stuart Cheshire and Mary Baker. Consistent Over-

head Byte Stuffing. In ACM SIGCOMM, Septem-

ber 1997.
[8] Al Danial. Counting Lines of Code, ver. 1.53.

http://cloc.sourceforge.net/.
[9] T. Dierks and E. Rescorla. The transport layer secu-

rity (TLS) protocol version 1.2, August 2008. RFC

5246.
[10] Roger Dingledine, Nick Mathewson, and Paul

Syverson. Tor: the second-generation onion router.

In USENIX Security Symposium, August 2004.
[11] K. Egevang and P. Francis. The IP network address

translator (NAT), May 1994. RFC 1631.
[12] R. Fielding et al. Hypertext transfer protocol –

HTTP/1.1, June 1999. RFC 2616.
[13] Bryan Ford. Structured streams: a new transport

abstraction. In ACM SIGCOMM, August 2007.
[14] Deepika Gopal and Nadia Heninger. Torchestra: re-

ducing interactive traffic delays over Tor. In Work-

shop on Privacy in the Electronic Society (WPES),

October 2012.
[15] Lei Guo, Enhua Tan, Songqing Chen, Zhen Xiao,

Oliver Spatscheck, and Xiaodong Zhang. Delving

into Internet streaming media delivery: a quality

and resource utilization perspective. In Internet

Measurement Conference (IMC), October 2006.
[16] Amir Houmansadr, Chad Brubaker, and Vitaly

Shmatikov. The parrot is dead: Observing unob-

servable network communications. In IEEE Secu-

rity and Privacy, May 2013.
[17] Internet protocol, September 1981. RFC 791.
[18] Hooman Mohajeri Moghaddam, Baiyu Li, Moham-

mad Derakhshani, and Ian Goldberg. SkypeMorph:

Protocol obfuscation for Tor bridges. In ACM Con-

ference on Computer and Communications Security

(CCS), October 2012.

[19] Steven J. Murdoch. Comparison of Tor datagram

designs. Technical Report 2011-11-001, The Tor

Project, November 2011.
[20] Michael F. Nowlan, Nabin Tiwari, Janardhan Iyen-

gar, Syed Obaid Amin, and Bryan Ford. Fitting

square pegs through round pipes: Unordered de-

livery wire-compatible with TCP and TLS. April

2012.
[21] Lucian Popa, Ali Ghodsi, and Ion Stoica. HTTP as

the narrow waist of the future Internet. In 9th ACM

Workshop on Hot Topics in Networks (HotNets-IX),

October 2010.
[22] J. Postel. User datagram protocol, August 1980.

RFC 768.
[23] Joel Reardon and Ian Goldberg. Improving tor us-

ing a TCP-over-DTLS tunnel. In 18th USENIX Se-

curity Symposium, August 2009.
[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Ja-

cobson. RTP: A transport protocol for real-time ap-

plications, July 2003. RFC 3550.
[25] R. Stewart, ed. Stream control transmission proto-

col, September 2007. RFC 4960.
[26] Can Tang and Ian Goldberg. An improved algo-

rithm for Tor circuit scheduling. In 17th ACM con-

ference on Computer and Communications Security

(CCS), October 2010.
[27] Transmission control protocol, September 1981.

RFC 793.
[28] Zachary Weinberg, Jeffrey Wang, Vinod Yeg-

neswaran, Linda Briesemeister, Steven Cheung,

Frank Wang, and Dan Boneh. StegoTorus: a cam-

ouflage proxy for the Tor anonymity system. In

19th ACM conference on Computer and Commu-

nications Security (CCS), October 2012.

7


