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Abstract—We present several extensions to the Nymble
framework for anonymous blacklisting systems. First, we show
how to distribute the Verinym Issuer as a threshold entity. This
provides liveness against a threshold Byzantine adversary and
protects against denial-of-service attacks. Second, we describe
how to revoke a user for a period spanning multiple linkability
windows. This gives service providers more flexibility in decid-
ing how long to block individual users. We also point out how
our solution enables efficient blacklist transferability among
service providers. Third, we augment the Verinym Acquisition
Protocol for Tor-aware systems (that utilize IP addresses as
a unique identifier) to handle two additional cases: 1) the
operator of a Tor exit node wishes to access services protected
by the system, and 2) a user’s access to the Verinym Issuer
(and the Tor network) is blocked by a firewall. Finally, we
revisit the objective blacklisting mechanism used in Jack, and
generalize this idea to enable objective blacklisting in other
Nymble-like systems. We illustrate the approach by showing
how to implement it in Nymble and Nymbler.
Keywords-privacy enhancing technologies; anonymity; authen-
tication; anonymous blacklisting; privacy-enhanced revocation.

I. INTRODUCTION

In [21], [35], Tsang et al. proposed Nymble as a so-
lution to the problem of allowing service providers on
the Internet—such as websites, IRC networks or mail
servers—to revoke access from individual misbehaving users
of anonymous communications networks. Nymble uses a
novel construction to build mutually unlinkable (and effi-
ciently verifiable) authentication tokens for users of anony-
mous communications networks, while empowering service
providers with access revocation capabilities comparable to
what they have with nonanonymous users. In particular,
the scheme implements a privacy-preserving analog of IP
address banning for users of anonymous communications
networks. Under some assumptions regarding noncollusion
of certain third parties, their approach is provably secure
(in the random oracle model); i.e., privacy and availability
for honest users are not adversely affected, and blacklisted
users remain anonymous. The construction used in Nymble
results in an extremely lightweight solution for all parties
involved (most notably, for the service provider). It does
this, however, by placing a lot of trust in third parties. Since
Nymble was first proposed in 2006, several schemes have
appeared in the literature to solve the same problem, or one
of several closely related problems. (For some examples,
see [6], [19], [20], [22], [23], [32]–[34].) Three of these
schemes operate within the same general framework as

Nymble; they change only low-level details to weaken trust
assumptions and to provide stronger privacy guarantees and
some new functionality. Moreover, further incarnations of
the idea seem likely to emerge in the future [18]. In this
paper, we present several extensions to the abstract Nymble
framework that can be used to improve the security, liveness
and functionality of Nymble-like systems; our extensions
solve several open problems identified in the future work
sections of [19]–[22].

We first review how the Nymble framework works.
Nymble makes use of two trusted third parties (TTPs) called
the Pseudonym Manager (PM) and the Nymble Manager
(NM). Together, the PM and the NM issue a user (U) with
a set of mutually unlinkable, use-once authentication tokens
(called nymbles). This enables U to access the services
offered by a Service Provider (SP), while preserving the
ability of the SP to block U in the event that U misbehaves.
Nymble divides time into fixed intervals called linkability
windows, which it further subdivides into smaller intervals
called time periods. When U wishes to use the system,
she first connects directly (i.e., not through an anonymous
communications network) to the PM; this proves to the PM
that U is in possession of a particular IP address. The PM
then issues U with a pseudonym (called a Nym), which is
computed by applying a one-way function (an HMAC with a
secret key) to U’s IP address. When U wishes to authenticate
with some SP, she connects anonymously (over Tor, for
example) to the NM and presents a copy of her pseudonym
and the canonical name of the SP. Based on these two
values (Nym and canonical name), the NM computes and
issues to U a set of nymbles. Each nymble is valid for
a particular place (an SP) and time (a time period within
the current linkability window). To be sure, nymbles are
not entirely unlinkable; instead, the nymble construction
places a trapdoor within each nymble that allows the NM
to, given a nymble, compute all subsequent nymbles in the
same linkability window. If U somehow abuses the services
offered by the SP, then the SP can transmit the nymble used
by U during that session to the NM. The NM will then use
knowledge of the trapdoor to compute all of U’s subsequent
nymbles for the remainder of the current linkability window.
For each remaining time period, the NM will then place
the corresponding nymble on a list called the linking list
(there is a different linking list for each time period) and
U’s SP-specific pseudonym (i.e., her last nymble of the
linkability window) on the SP’s blacklist. By consulting the
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Figure 1. The nymble construction procedure: In the original Nymble [21], black arrows (i.e., f(·)) are implemented with an HMAC
and grey arrows (i.e., g(·)) are implemented with symmetric key encryption.

blacklist, U can easily check her revocation status before she
attempts to authenticate. Similarly, by consulting the current
linking list and denying access to any user that attempts
to authenticate with a nymble on it, the SP can prevent
U from further abusing its services for the remainder of
the current linkability window. Figure 1 illustrates the basic
nymble construction.

In [18], we observed that the pseudonym issued by the
PM (or the Credential Manager (CM), as it was called in
the later Nymble-like systems Nymbler [19] and Jack [22])
in existing schemes is really a verinym.1 This observation
highlights the largest security risk in the original Nymble:
a malicious PM and NM can easily collude to learn which
users are connecting to which SPs. If an SP also colludes,
they can also determine what each user is doing when
she interacts with that SP. To ensure that the verinym and
nymble constructions in future Nymble-like systems are not
susceptible to this sort of attack, we proposed a set of two
new security properties called the ZK-verinym property
and the ZK-pseudonym property.2 In our formalization, an
entity called the Verinym Issuer (VI) replaces the PM; the
VI can satisfy the new properties by using a technique first
used by Henry et al. in [19]. First, a distributed VI issues
to U an anonymous credential that encodes U’s verinym.
To access an SP’s services, U computes her own nymbles
and uses zero-knowledge proofs (ZKPs) to convince the NM
of their correctness. (U reveals only a commitment to her
verinym.)

We further point out that the NM in existing schemes fills
two distinct roles. For this reason, we propose to replace
the NM with two separate entities: the Nymble Issuer (NI),
who issues nymbles to users, and the Pseudonym Extractor
(PE) who uses the trapdoor function to revoke misbehaving
users. Figure 2 illustrates the various parties involved in the
Nymble framework and the interactions among them.

We refer the reader to [18] for a more thorough description

1A verinym is any piece of identifying information that can single you
out of a crowd of potential candidates [16].

2The ZK-verinym property says that no party other than U (including the
PM and NM) learns the verinym associated with U. The ZK-pseudonym
property says that no party other than the NM is capable of recovering U’s
pseudonym for a given SP from one of U’s nymbles. We refer the reader
to [18] for formal definitions of these properties.

of the Nymble framework and Nymble-like systems.

A. Security requirements
A secure Nymble-like system must satisfy the following

security requirements [18]:
Correctness:

An honest SP will accept any well-formed nymble from
an unrevoked user.

Misauthentication resistance:
An honest SP will only accept nymbles that are output
by a correct execution of the system’s protocols; i.e., it
should be infeasible to

– forge a verinym without the VI’s secret key, or
– forge a nymble without the NI’s secret key.

Backward anonymity:
It is infeasible to associate a user’s nymbles with her
real identity, even if this user is, or later becomes,
revoked.

Unlinkability:
It is infeasible for anyone but the PE to determine if
two or more distinct nymbles come from the same user
or from different users. If these nymbles come from
different SPs or linkability windows, then even the PE
should not be able to determine if they come from the
same user or from different users.

Revocability:
With the assistance of the PE, an SP can blacklist any
user in such a way that no coalition of blacklisted users
can later authenticate.

Revocation auditability:
A user can check her revocation status prior to revealing
any nymbles to an SP.

Non-frameability:
No coalition of third parties can convince an honest
SP to blacklist a user for any action that user is not
responsible for.

We refer the reader to [18] for more rigorous formal defini-
tions of these security notions.

B. Performance requirements
In addition to the security requirements we have already

mentioned, a useful Nymble-like system must also satisfy
the following performance requirements [18]:
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Figure 2. Nymble framework architecture: This figure illustrates the various parties involved in the Nymble framework, and the
interactions among them.

Verifier efficiency:
The value of the system to an SP must be higher than
its cost. Many SPs place little value in the input of
anonymous users, so the cost of supporting them must
be extremely low. This includes storage, bandwidth and
computation, as well as hardware costs.

User efficiency:
The system should be available to all users, and it
should avoid adding noticeable latency to the user’s
interactions with an SP.

Again, we refer the reader to [18] for more rigorous formal
definitions of these performance notions.

C. Our contributions

The remainder of this paper proposes some useful ex-
tensions to the Nymble framework. These extensions im-
prove the liveness, security and functionality of Nymble-like
schemes built from the extended framework; they solve sev-
eral open problems identified in the future work sections of
existing literature on anonymous blacklisting systems [19]–
[22].

Our first contribution is to describe how to build a fully
distributed threshold VI; our construction satisfies the ZK-
verinym property and is ideally suited to a nymble format
that satisfies the ZK-pseudonym property. This modification
provides security and liveness against a threshold Byzantine
adversary.

The second contribution amends the Nymble Acquisition
Protocol of systems satisfying the ZK-verinym and ZK-
pseudonym properties and base verinyms deterministically
on a unique resource (e.g., Nymbler [19]) to support revo-
cation of a user for a duration that spans multiple linkability
windows. This gives service providers flexibility in deciding
how long to block an individual misbehaving user. We
point out how our solution enables blacklist transferability
among service providers and outline how this construction
is efficiently implemented using a generic nymble format.

Next, we augment the Verinym Acquisition Protocol for
Tor-aware Nymble-like systems (that utilize IP addresses as
a unique identifier) to handle two additional cases: 1) when
the operator of a Tor exit node wishes to access services
protected by the system, and 2) when a user’s access to
the Verinym Issuer (and the Tor network) is blocked by a
firewall. This latter solution leverages Tor’s existing bridge
infrastructure [10], and a similar idea of using a distributed
collection of simple entities, called Identity Verifiers, that
assist users by verifying their IP addresses.

Finally, we revisit the objective blacklisting mechanism
used by Lin and Hopper in Jack [22]. We generalize their
approach to enable similar objective blacklisting capabilities
in other Nymble-like system. We illustrate the approach
by showing how to implement it in Nymble [21] and
Nymbler [19].

II. DISTRIBUTED (t, s)-THRESHOLD VERINYM ISSUER

The key idea in our distributed VI is to have the VIs use
a distributed “unique” (t, s)-threshold signature scheme to
compute U’s verinym. The security of this approach relies
on two properties of the underlying threshold signatures: un-
forgeability and uniqueness.3 All secure signature schemes
provide unforgeability [17]; uniqueness, on the other hand,
is a property that is only possessed by certain signature
schemes.

Definition 1 (Unique Signature Scheme [24]). A signature
scheme is called unique if, for every (possibly maliciously
chosen) public key pk and every message msg, there exists
at most one signature σ such that Verpk(msg, σ) = true.

For completeness, we formally define a (t, s)-threshold
signature scheme before discussing our approach in detail.

3The uniqueness property is only required if verinyms are computed
deterministically from a user’s unique resource, as in Nymble [21] and
Nymbler [19]. Systems such as Jack [22] and BNymble [23] in which
verinyms are based on user-chosen randomness do not require such a
property.



Definition 2 ((t, s)-threshold Signature Scheme). A (t, s)-
threshold signature scheme is a digital signature scheme
with s signers and the property that any subset of at least t
signers can cooperate to sign a message msg. Conversely,
any subset of fewer than t signers should not be able to
compute any nontrivial information about a valid signature
on msg.

A unique (t, s)-threshold signature scheme is just a
(t, s)-threshold signature scheme with the uniqueness prop-
erty.

We use the non-interactive threshold RSA signature
scheme of Damgård and Koprowski [9] for a concrete
realization of this idea. Other choices of unique threshold
signature scheme may also work well. We choose Damgård
and Koprowski’s threshold RSA signatures because: 1) prov-
ing knowledge of an RSA signature in zero-knowledge is
easy, and 2) the scheme does not require a trusted dealer
who knows the factorization of the RSA modulus. This
latter point is particularly useful because some schemes (e.g.,
Nymbler [19]) already make use of an RSA modulus with
unknown factorization (and leave details of its generation
up to the implementer). Damgård and Koprowski’s scheme
makes use of a slightly modified form of the Robust Efficient
Distributed RSA-Key Generation protocol of Frankel et
al. [15]. In our case we will require that the public key n is
chosen such that N = 4n+1 is a prime;4 this can be accom-
plished by repeatedly executing the protocol of [15] until a
suitable n has been found. The prime number theorem [25,
Fact 2.95] tells us that, for example, the protocol will have
to be executed an average of 1536 · ln 2 ≈ 1064 times, for a
1536-bit modulus. Note, however, that key generation occurs
infrequently, since we have the distributed VI generate a
single n to use for a substantial number of future linkability
windows.

The use of signatures in our application presents an
interesting challenge; for security purposes, U must be able
to prove in zero-knowledge that one committed value is a
signature on a second committed value. This means that the
VI cannot just sign a hash of the message as is usually
done to ensure security and integrity of RSA signatures.
Instead, we use a modified version of Rabin’s function:
H(z, ξ) =

(
z2 + (z mod ξ)

)
mod n in place of a hash.

We choose this function to prevent U from exploiting the
homomorphic properties of RSA encryption. Full details of
our approach follow.

As in [18], we subdivide each linkability window into
smaller intervals called verinym validity periods (VVPs).
(The number of time periods in a linkability window will
be a multiple of the number of VVPs.) Thus, when the VI
issues the user a verinym, this verinym is only valid until
some future VVP; the NI will not issue any nymble to a user
for any time period in a VVP after her verinym expires.

4The protocol of [15] with the modification suggested in [9, §5]
produces an RSA modulus n = pnqn such that gcd((pn − 1)/2, s!) =
gcd((qn − 1)/2, s!) = 1; thus, it is easy to see that 2n + 1 is always
divisible by 3. 3n+ 1 is even, so we use N = 4n+ 1.

A. Threshold signature acquisition
Let VI = {VI1,VI2, . . . ,VIs} be a set of s VIs. Let `hash

be the bit length of the output of some secure cryptographic
hash function hash (say, `hash = 256). U’s unique identifier
is z and y = hash(z). There are Kmax VVPs per linkability
window and the current VVP is Kcur. A verinym is valid for
at most Klim VVPs but will expire earlier if Kcur +Klim ≥
Kmax.

The s VIs initialize the system by first jointly computing
an RSA modulus n = pnqn, such that pn, qn, and N = 4n+
1 are all prime, by using the ‘Distributed Computation of N ’
protocol from [15, §10] with the modification suggested in
[9, §5].

Choosing a set of public keys: Suppose the public
modulus n will be retired after Lmax linkability windows.
The VIs agree on a prime η > s such that dlog2 (η)e +
hamming weight(η) is the smallest possible. (If s <
17 then η = 17 is a good choice.) They also agree
on a product E of ηKmax−1 and Lmax distinct primes,
E = ηKmax−1 ·

∏Lmax−1
L=0 eL, such that eL > s for all

0 ≤ L < Lmax and dlog2(E)e < dlog2(n)e − 2 (so that
E < ϕ(n)). As with η, each eL should be chosen with
dlog2 (eL)e + hamming weight(eL) as low as possible.
The VIs also choose ξ, a publicly known (random) `hash-bit
integer.

Generating the set of private keys: Once E has been
chosen, the VIs use the ‘Robust Distributed Generation of
Public and Private Keys’ protocol of [15, §9] to find the
private key exponent D = E−1 mod ϕ(n). After executing
the protocol, the public key for linkability window L∗ is
then (n, eL∗ , v, η,Kmax), where v is a verification value; the
private key is dL∗ = D ·

∏
L 6=L∗ eL = D · E/(eL∗ · ηKmax−1).

Each VIi ∈ VI has a share si of D, and a public verification
key vi = vsi(s!)

2

mod n. For the remainder of this paper,
we shall assume that we are working in a fixed linkability
window Lcur, whose corresponding public and private keys
are simply denoted by e and d, respectively, instead of eLcur

and dLcur .
Deriving a public-private key pair: In the first VVP, the

public key is e and the private key is d; thus, VIi uses the
share si · (E/e) to compute signatures. In the next VVP, the
public key is e·η and the private key shares are si·(E/(e · η)).
In general, in VVP K, 0 ≤ K < Kmax, the public key is e ·
ηK and the private key shares are si ·(E/(e · ηK)). Note that,
if U obtains a signature that is valid in VVP K∗, then it can
easily be backdated; that is, turned into a signature that is
valid in any earlier VVP K ′ of the same linkability window
by raising it to the power ηK

∗−K′ and reducing modulo n: if
(x)

e·ηK
∗

≡ Y mod n then (xη
K∗−K′

)e·η
K′ ≡ Y mod n. On

the other hand, U is unable to produce a signature for a later
VVP since this requires the computation of η−1 mod ϕ(n).

We model the Verinym Acquisition Protocol after the
signing protocol from [9, §3]. However, we make two signif-
icant changes in our version: 1) the VIs produce a threshold
signature on the value Y =

(
y2 + (y mod ξ)

)
mod n in-

stead of on y directly, and 2) the VIs modify their key shares
as needed to produce the correct signature for a particular



linkability window and VVP. (The verification equations that
U uses to check the correctness of each share also change
slightly as a result.) The protocol is initiated by U and
executed with at least t different VIs.

Because U runs the Verinym Acquisition Protocol with
at least t different VIs, it is possible for two or more
VIs to compute their shares for different expiration VVPs.
(This might happen because the protocols execution spans
the boundary between two VVPs, or because two different
VIs have different policies about Klim.) Of course, U could
request a verinym with a particular expiration VVP from
each VI; however, we instead have each VI issue a share
for the latest VVP that their policy will allow. Once U has
obtained all verinym shares, she then backdates each share
(to the latest VVP in which all shares are valid) before
constructing her verinym.

U does the following:
1. U chooses a random size-t subset of VIs, say S =
{VIi1 , . . . ,VIit} ⊆R VI.

2. U connects (directly, if z is U’s IP address; anony-
mously, otherwise) to each VIij ∈ S and requests a
verinym. (If z is U’s IP address, then this step proves
to VIij that U possesses z; for other unique identifiers,
U issues some form of proof of possession to VIij .)

VIij does the following:
3. VIij receives the request for a verinym from U,

with identifier z. It notes the current VVP Kcur and
computes y = hash(z), Y = (y2+(y mod ξ)) mod n
and Kij = min{Kmax − 1,Kcur +Klim}.

4. VIij computes the signature share

Xij = Y 2(s!)2·sij ·(E/(e · η
Kij )) mod n.

5. VIij computes a proof of correctness for Xij by
choosing r ∈R {0, . . . , 4κ1 + (12s + 4) lg s}, where
κ1 is a security parameter (see [9], [14], [31]), and
computing

cij = hash(v, ỹ, vij , X
2
ij , v

r(s!)2 , ỹr),

and gij = sij ·(E/(e · ηKij ))·cij+r, where ỹ = Y 4(s!)2 .
The proof is (gij , cij ).

6. VIij sends (Xij , gij , cij ,Kij ) to U.
U does the following:

7. U receives (Xij , gij , cij ,Kij ) from each VIij .
8. U verifies each share by checking

cij
?
= hash(v, ỹ, vij , X

2
ij ,

vgij (s!)
2

· v
−cij ·(E/(e · η

Kij ))

ij
, ỹgij ·X

−2cij
ij

).

If verification fails for any ij , then U: 1) discards Xij ,
2) selects VIij′ ∈R VI−S, 3) sets S = (S∪{VIij′})−
{VIij}, and 4) executes from Step 2 for VIij′ .

9. Let Kexp = min{Kij | VIij ∈ S}. (So Kexp is the
latest VVP for which all verinym shares are valid.) For
each 1 ≤ j ≤ t, if Kij > Kexp, then U backdates Xij

to get X ′ij = Xη
(Kij

−Kexp)

ij
; otherwise, U sets X ′ij =

Xij . Each X ′ij is now a verinym share for VVP Kexp.
10. U recombines her shares as follows:

a) U computes

ω =
∏

VIij∈S
(X ′ij )

2λij = Y 4(s!)5·d/(ηKexp ) mod n

where λij is the integer

λij = (s!) ·
∏

{i|VIi∈S}−{ij}

i

i− ij
.

b) U uses the Extended Euclidean Algorithm to find
a and b such that

a · 4(s!)5 + b · e · ηKexp = 1.

c) U computes her verinym by first computing the
signature xKexp :

xKexp = ωaY b

= (Y 4(s!)5·d/(ηKexp ))aY b

= (Y 4(s!)5·d/(ηKexp ))a(Y e·d)b

= (Y 4(s!)5·d/(ηKexp ))a(Y (e·ηKexp )·d/(ηKexp ))b

= (Y a·4(s!)
5+b·e·ηKexp

)d/(η
Kexp )

= (Y )d/(η
Kexp )

= (y2 + (y mod ξ))d/(η
Kexp ) mod n.

At the conclusion of the Verinym Acquisition Protocol, U
outputs a signature xKexp ; given this value, she can compute
her verinym x0 by backdating this signature as follows: x0 =

xη
Kexp

Kexp
. More to the point, she can compute (and prove in

zero-knowledge to the NI that)(
y2 + (y mod ξ)

)
≡
(
xη

Kexp

Kexp

)e
mod n.

Figure 3 illustrates the Verinym Showing Protocol. In this
example, U is requesting J nymbles from the NI and her
current verinym expires in VVP Kexp. In the Nymble Show-
ing Protocol, U is required to prove that her verinym is valid
for VVP K∗ = min{b(Kmax · (Tcur + J))/Tmaxc,Kexp} (i.e., K∗

is the VVP containing the last time period associated with
her J th nymble). She backdates her verinym xKexp (locally)

as follows: xK∗ = xη
Kexp−K∗

Kexp
mod n. She then commits

to y, xK∗ and x0 = xη
K∗

K∗ mod n and produces a zero-

knowledge proof that x0 is indeed xη
K∗

K∗ mod n and that
(y2 + (y mod ξ)) ≡ xe0 mod n. Note that the exponent ηK

∗

in this proof is public. That U is able to compute this proof
with exponent ηK

∗
proves to the NI that U’s verinym is still

valid in VVP K∗. When the NI is convinced by U’s proof,
the Nymble Acquisition Protocol runs as usual using x0 as
U’s verinym.

Let αn, βn be known generators of the order-n subgroup
modulo N . U invokes the Verinym Showing Protocol to
prove to the NI that she has a valid verinym. The protocol
works as follows:



U does the following:
1. U computes K∗=min{b(Kmax · (Tcur + J))/Tmaxc,Kexp},

xK∗ = xη
Kexp−K∗

Kexp
mod n and x0 = xη

K∗

K∗ mod n;
VVP K∗ is the VVP that contains the last time period
for which she is requesting a nymble.

2. U chooses γ1, γ2, γ3 ∈R Zn and computes Peder-
sen [26] commitments ȳ = αynβ

γ1
n mod N , xK∗ =

αxK∗n βγ2n mod N and x0 = αx0
n β

γ3
n mod N and the

ZKP ΠxK∗ (using Camenisch-Stadler notation [8])

PK




γ1,
γ2,
γ3,
y,
x0,
xK∗

 :

ȳ = αynβ
γ1
n modN

∧xK∗ = αxK∗n βγ2n modN

∧x0 = αx0
n β

γ3
n modN

∧x0 = xη
K∗

K∗ modn

∧xe0 = y2 + (y mod ξ)mod n

∧0 ≤ y < 2`hash

∧0 ≤ xK∗ < n


.

3. Finally, U transmits ȳ, xK∗ and x0, along with ΠxK∗ ,
to the NI.

The NI does the following:
4. The NI receives and verifies ΠxK∗ . If verification fails,

it aborts; otherwise, it accepts the verinym x0 as valid.

The remainder of the protocol works just like the scheme
with a non-threshold VI. As Figure 3 illustrates, U computes
the seed value h0 for her nymbles with a one-way function
F (x0,SP). She iteratively applies a second one-way function
f to h0 a total of Tcur times to compute the first nymble seed
in her chain. From here (assuming the nymble format has the
ZK-pseudonym property), U computes each of her nymbles
according to the established protocols and issues ZKPs to
prove that she has done so.

B. Performance measurements

We implemented key components of the distributed (t, s)-
threshold Verinym Issuer construction in order to obtain per-
formance measurements. Our implementations were written
in C++ using NTL to handle multiprecision arithmetic. The
performance measurements were obtained on a 2.83 GHz
Intel Core 2 Quad Q9550 running Ubuntu 9.10 64-bit. All
code is single-threaded and all experiments used a single
core.

Table I summarizes performance measurements for U and
the VIs in the Verinym Acquisition Protocol. The protocol
was executed on a single machine using a (3, 7)-threshold
construction with η = 17 and each trial used a new
pseudorandomly generated 12-bit e with hamming weight
3. Thus, the performance measurements contained herein
represent the combined computational expense for all three
VIs (indeed, these could easily be run in parallel) and do
not account for the expected latency due to communication
between U and the VIs (no inter-VI communication is
required). Note, however, that such communication costs
will be low; in particular, each VI sends just four values
to U (the verinym share Xij , the verification values cij and
gij , and the expiration VVP Kij ). Both Xij and gij are about
the same size as n, while cij and Kij are (much) smaller.
Our implementation uses a value of κ1 = 30 for the security
parameter (as recommended by Fouque and Stern [14]). For
each bit length of n, we repeated the experiment 100 times
and report here the mean execution time (± the standard
deviation) in milliseconds.

Table II summarizes performance measurements for U
and the NI in the Verinym Showing Protocol. For each of
the 100 experiments of the Verinym Acquisition Protocol,
we used the resulting verinym to perform a trial of this
experiment. Thus, each measurement also used η = 17,
a pseudorandomly generated 12-bit e value with hamming

J︷ ︸︸ ︷

verinym valid

nymble requested

K0 K ′ Kcur K∗ Kexp Kmax

Tcur T ∗

xK∗ = xη
Kexp−K∗

Kexpx0 = xη
K∗

K∗

h0 = F (x0,SP)

hcur = fTcur(h0)

Figure 3. Verinym showing procedure: This figure outlines our threshold verinym construction. The upper timeline displays VVPs
while the lower displays time periods. The light grey bar is the range of VVPs for which the verinym is valid (K′ through Kexp). The

dark grey bar is the range of time periods for which U is requesting nymbles (Tcur through T ∗). U proceeds as follows: she first computes

xK∗ by raising xKexp to the power ηKexp−K∗ . Next, U computes x0 from xK∗ (together with a proof of correct computation) by raising
xK∗ to the power ηK

∗
; this convinces the NI that U’s verinym is valid for the required VVP. The seed value for nymble construction is

then computed via F (x0, SP), and the one-way function f is applied iteratively (Tcur times) to obtain the seed for time period Tcur. (The
functions F and f are part of the underlying scheme.)



Table I
PERFORMANCE MEASUREMENTS FOR U AND THE VI IN THE VERINYM ACQUISITION PROTOCOL.

Bit length Mean execution time ±
Operation Host of modulus standard deviation (ms)

Issue VI 1024 8.3 ms ± 0.34 ms
verinym 1280 14.3 ms ± 0.35 ms

1536 23.3 ms ± 0.43 ms
1792 35.3 ms ± 0.53 ms
2048 56.1 ms ± 0.60 ms

Obtain U 1024 19.5 ms ± 0.42 ms
verinym 1280 33.0 ms ± 0.64 ms

1536 53.4 ms ± 0.56 ms
1792 79.7 ms ± 0.89 ms
2048 118.0 ms ± 1.58 ms
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Computed using pseudorandomly chosen 12-bit e values with hamming weight 3, η = 17 and 12 VVPs in a (3, 7)-threshold scheme. Issuing times
represent combined computational expense for all three VIs. Each experiment was repeated 100 times; the mean execution time (± the standard deviation)
across all trials is reported here. Error bars are displayed but are so small as to be only barely visible.

Table II
PERFORMANCE MEASUREMENTS FOR U AND THE NI IN THE VERINYM SHOWING PROTOCOL.

Bit length Mean execution time ±
Operation Host of modulus standard deviation (ms)

Show U 1024 295.4 ms ± 25.91 ms
verinym 1280 495.7 ms ± 27.80 ms

1536 780.7 ms ± 24.28 ms
1792 1184.2 ms ± 28.68 ms
2048 1901.2 ms ± 28.97 ms

Validate NI 1024 196.6 ms ± 11.48 ms
verinym 1280 338.2 ms ± 12.09 ms

1536 546.4 ms ± 12.27 ms
1792 831.5 ms ± 19.71 ms
2048 1338.2 ms ± 15.33 ms
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R² = 0.9965

t = 0.0013b2 - 2.3327b + 1388.4 ms

t = 0.0009b2 - 1.6178b + 944.38 ms

R² = 0.9968

Computed using pseudorandomly chosen 12-bit e values with hamming weight 3, η = 17 and 12 VVPs. Each trial shows the verinym with a random
VVP between 1 and 12 (inclusive) as the expiration time. Each experiment was repeated 100 times; the mean execution time (± the standard deviation)
across all trials is reported here. Error bars are displayed but are so small as to be only barely visible.

weight 3, and at most 12 VVPs. For each trial, the client
chose a random VVP j between 1 and 12 (inclusive) to use
in the showing protocol.

Distributed key generation in our implementation has been
simulated using the dealer-based version of the protocol
from [9, §3]; we therefore omit timing measurements for
this portion of the protocol. We reiterate that distributed key
generation only needs to occur once (or, at the very worst,
infrequently), during the initial setup of the protocol. Thus,
performance measurements associated with this portion of
the protocol are not critical to the system’s overall perfor-
mance.

C. Improving efficiency

The exponentiation proofs (i.e., the fourth and fifth lines
of ΠxK∗ , in which U proves that she knows xK∗ such that
(xη

K∗

K∗ )e = Y ) dominate the cost of the Verinym Showing
Protocol. Our implementation uses the naive square-and-
multiply algorithm for this proof. It outputs commitments to,
and a ZKP of correct multiplication for, each intermediate
result in the computation. Of course, a more sophisticated
algorithm might be able to reduce the number of steps in

the exponentiation. Alternatively, because a small number of
exponents are reused a large number of times, the VI or the
NI could compute (and publish) short addition chains for
each exponent. Batch ZKPs of correct multiplication would
likely further reduce the cost. (This works just like the batch
proof of knowledge of discrete logarithms with common
exponent from [1], [27].)

The strategy that our implementation uses is to fix η = 17
and to choose each public exponent e with a short bit
length and low hamming weight.5 We then compute xe·η

j

j

in j + 1 stages: U computes xi−1 = xηi for 0 < i ≤ j,
then raises x0 to the eth power. This reduces the number
of multiplication steps in square-and-multiply to just j + 2.
(e is computed with two multiplies, and each power of
η uses one additional multiply, as the high-order bit does
not require a multiply.) The number of squaring steps is
j ·blg ηc+blg ec. Our measurements indicate that computing
xe·η

j

j in j + 1 stages reduces the cost of the Verinym
Showing Protocol by a factor of about two over a naive

5Of course, e must still satisfy gcd(e, ϕ(n)) = gcd(e, s!) = 1 and so
cannot be chosen to be arbitrarily small.



computation. We also sacrifice the unconditional hiding of
Pedersen commitments to further halve the cost of the
exponentiation proof for U (and reduce it by about one third
for the VI). The exponentiation algorithm therefore uses
discrete logarithm commitments [13] instead of Pedersen
commitments, to reduce the cost. To maintain unlinkability,
U chooses a random group element b modulo N , computes
B = b4 mod N , and sends (b, Bxj ) along with proof that xj
is the same value previously committed to. The remainder
of the algorithm then runs as usual.

Where Pedersen commitments are used, the NI’s cost may
be reduced by having δ = logαn(βn) mod N known to the
NI but kept secret from U. Then, multi-exponentiations of
the form αxnβ

γ
n can be reduced to single exponentiations of

the form αx+δγn by the NI.

III. LONG-TERM REVOCATION

Blacklisting U is intended to be preventative, not retribu-
tive; thus, the duration of the block should somehow reflect
the probability that, and cost to the SP if, the offensive
behaviour is repeated [36]. SPs typically forgive disruptive
behaviour after a brief time (say, around 24 hours); this is
usually sufficient to put an end to edit wars on Wikipedia or
flame wars on IRC, for example. Less frequently, U’s misbe-
haviour warrants a long-term revocation; we call revocation
that spans two or more linkability windows inter-window
revocation. Our method of providing this feature does not
increase the computational cost for the SP or adversely affect
user privacy.

Supporting inter-window revocations requires each SP to
maintain a blacklist for each prior linkability window from
which some user is still blocked. The VIs then issue U with
the verinym for the past few linkability windows.6,7 When
U wishes to obtain a set of nymbles for an SP, she uses the
appropriate verinym to prove that her SP-specific pseudonym
from a past linkability window is not on the associated black-
list. This is reminiscent of the BLAC [32]–[34] and EPID [6]
approach to blacklisting, which, as discussed elsewhere [19],
raises performance and scalability concerns. However, five
important distinctions with our approach warrant mention:

1) Since most IP address bans are short term, most
revoked users will not appear on a long-term blacklist.
This significantly reduces the expected size of the
blacklist against which a user must generate a proof.

2) U only forms a proof once, during the Nymble Acqui-
sition Protocol; the SP need not verify any expensive

6The number of linkability windows is a system parameter. It should be
carefully chosen to provide a good balance between privacy (if U learns a
verinym, she can recognize blacklist entries corresponding to past owners of
her unique resource) and functionality (the number of linkability windows
determines the maximum duration of an inter-window revocation).

7This is not possible in schemes like Jack [22] and BNymble [23]
that base verinyms on user-chosen randomness; this seems to be an
inherent limitation that comes with the unconditional unlinkability of such
verinyms. Of course, these schemes could be adapted to use the approach
of this section by sacrificing unconditional unlinkability in exchange for
computational unlinkability with an honest-majority assumption using, e.g.,
our (t, n)-threshold verinym construction.

ZKPs and the proof will not affect the observed
interaction latency between U and the SP.

3) The values that appear on the blacklist need not
contain the trapdoor information that is stored in a
nymble. All that is required is collision resistance
among users. Thus, we reduce the blacklist entries
modulo a sufficiently large prime to reduce compu-
tational costs in the protocols.8

4) An idea due to Brands et al. [4], [5] enables the user to
perform this non-membership proof using a number of
exponentiations proportional to

√
M , where M is the

size of the blacklist against which the user generates
a proof. For large blacklists, this method dramatically
outperforms the linear exponentiations approach used
in both BLAC [32]–[34] and EPID [6].

5) Finally, we can use blinded verification tokens to let
U prove that she already proved that her SP-specific
pseudonym is not on a blacklist, thus eliminating much
redundant computation. The largely static nature of
long-term blacklists makes this possible.

Considered together, these five observations make our ap-
proach highly practical.

A. Construction

We illustrate how the Non-membership Proof Protocol
works for a generic nymble format that satisfies the ZK-
pseudonym property; modifying this procedure to work
with any concrete construction satisfying the ZK-pseudonym
property with verinyms that are computed deterministically
is straightforward (only the proof that the nymble is cor-
rectly formed would change), although the exact procedure
depends on the nymble format used by the scheme.

Let `ρ be a parameter specifying the desired bit-length of
entries on the blacklist and let `P be a bit length for which
computing discrete logarithms modulo an `P -bit prime is
infeasible. Choose ρ and qρ prime such that:

1) dlog2(ρ)e = `ρ ,
2) dlog2(qρ)e = `P − `ρ − 1 , and
3) P = 2ρqρ + 1 is prime.

All entries on a blacklist are reduced modulo ρ and ZKPs
are in the order-ρ subgroup modulo P . We suggest `ρ = 256
(indeed, ρ = 2256 − 183 is a good choice) and `P = 1536.

Let B(SP,L∗) = {ν1 mod ρ, . . . , νM mod ρ} be the list of
nymbles (reduced modulo ρ) that still appear on SP’s black-
list from linkability window L∗. For ease of presentation,
we will assume that |B(SP,L∗)| = M is a perfect square and
let m =

√
M . Also, let αρ, βρ be generators of the order-

ρ subgroup modulo P ; αρ and βρ are publicly known and
δ = logαρ(βρ) mod P is known only to the NI.

Thus, to prove to the NI that she is not subject to a ban
from linkability window L∗, U proves that her pseudonym
from linkability window L∗ (reduced modulo ρ), which
we denote by νL∗ , does not appear on B(SP,L∗). We use

8This observation may also help to reduce the cost of downloading the
blacklist in other schemes.



the following technique, due to Brands et al. [4], [5], to
implement this proof.

For 1 ≤ i ≤ m, let j = (i − 1) · m and define the
polynomial

pi(τ) = (τ − νj+1)(τ − νj+2) · · · (τ − νj+m)

= ai,mτ
m + · · ·+ ai,1τ + ai,0 mod ρ

U does the following:
1. U computes a Pedersen commitment x0 = αx0

ρ β
γ1
ρ

to her verinym x0, and uses the Verinym Showing
Protocol to prove that it is valid. She also computes
her SP-specific pseudonym νL∗ for linkability window
L∗.

2. U chooses r1, . . . , rm ∈R Zρ and, for 1 ≤ i ≤ m,
computes

a) vi = pi (νL∗) mod ρ, the evaluation of pi at νL∗ ;
b) wi = ai,mrm + . . .+ ai,1r1 mod ρ;
c) Ci = α

(νL∗ )
i

ρ βriρ mod P , and
d) Cvi = αviρ β

wi
ρ mod P .

3. U transmits each commitment Ci and Cvi to the NI.
She also transmits Π1, which is a zero-knowledge
proof that C1 commits to the (correctly formed) SP-
specific pseudonym associated with x0 for L∗, and

Π2 = PK



νL,
ri,
wi,
vi

 :

Ci = α
νiL
ρ βriρ mod P,

∧Cvi = αviρ β
wi
ρ mod P,

∧ vi 6≡ 0 mod ρ,

for all 1 ≤ i ≤ m

 ,

(1)
which proves that: 1) the commitments Ci hide con-
secutive powers of νL, and 2) the commitments Cvi
each hide nonzero values. Note that, combined with
Equation 2, this proves to the NI that Cvi is a
commitment to pi(νL∗), and that this evaluation is
nonzero.

The NI does the following:
4. The NI verifies that, for each 1 ≤ i ≤ m,

Cvi
?≡ (Cm)ai,m(Cm−1)ai,m−1 · · · (C1)ai,1αai,0ρ mod P

(2)
If any of these equivalences fails, then the NI aborts.

5. The NI verifies the ZKPs Π1 and Π2. If either verifi-
cation fails, the VI aborts.

Note Step 5 seems to require m(m + 1) = M + m
modular exponentiations; however, collapsing all m of these
verifications into a single batch verification using techniques
of Bellare et al. [1] reduces this to just 2m + 1 mod-
ular exponentiations. To do this, the NI chooses random
s1, . . . , sm ∈R {1, . . . , κ2}, where κ2 is a security parame-
ter, and checks if

m∏
i=1

Csivi
?≡ α

∑m
i=1 ai,0·si

ρ ·
m∏
i=1

C
∑m
j=1 aj,i·sj

i mod P. (3)

If the verification fails, at least one Cvi is incorrect, and
the NI aborts; otherwise, all of the Cvi are correct with
probability at least 1− 1/κ2 and the NI accepts the proof.

B. Correctness

Let us briefly examine why this proof convinces the NI
that νL∗ is not on B(SP,L∗). First observe that, by way of
construction, for 1 ≤ i ≤ m, the zeros of pi(τ) are exactly
those values appearing on the sublist of B(SP,L∗) defined by
{νj+1, νj+2, · · · , νj+m}, where j = (i − 1) · m, and that
these sublists cover the entire blacklist. Combined with Π1,
the first line of Π2 proves that Ci hides the ith power of
νL∗ ; thus, if Equation 2 holds then it follows that Cvi is a
commitment to an evaluation of pi(τ) at the point νL∗ , since

Cvi ≡ (Cm)ai,m(Cm−1)ai,m−1 · · · (C1)ai,1αai,0ρ

≡ α(ai,mν
m
L∗+···+ai,1νL∗+ai,0)

ρ β(ai,mrm+···+ai,1r1)
ρ

≡ αpi(νL∗ )ρ βwiρ mod P.

The remainder of the proof convinces the verifier that no Cvi
hides the value zero, from which it concludes that νL∗ is not
a root of any pi(τ) and, consequently, that νL∗ /∈ B(SP,L∗).

C. Computational complexity

We now analyze the computational and communication
complexity of the Non-membership Proof Protocol. Let µρ
(resp. µP ) be the cost of multiplication modulo ρ (resp.
modulo P ), let ιρ (resp. ιP ) be the cost of a modular
inversion modulo ρ (resp. P ), and let χρ (resp. χκ2

) be
the cost of exponentiation modulo P with `ρ-bit (resp.
dlog2(κ2)e-bit) exponent.

Upon updating the blacklist, the PE computes each
pi(τ) mod ρ. Since each of these degree-m polynomials
is monic, there are only m coefficients modulo ρ to send
for each polynomial. Consequently, transmitting these poly-
nomials instead of the blacklist requires zero additional
bandwidth. Thus, we do not consider the computational cost
of this step in our analysis.

Evaluating each polynomial at the point νL∗ requires m ·
µρ work using Horner’s method; thus, the cost for this step is
m ·m ·µρ = M ·µρ. Similarly, computing wi requires m ·µρ
work; thus, the cost for this step is also m ·m ·µρ = M ·µρ.
So far, this is 2M · µρ work for U.

Computing the commitment Ci requires two exponentia-
tions with `ρ-bit exponents, plus one multiplication, all mod-
ulo P . The cost of computing all m such commitments is
then 2m(χρ+µP ). The same analysis applies to computing
each Cvi , thus yielding a total of 4m(χρ + µP ) + 2M · µρ
work for U.

The bandwidth cost for U to upload each commitment Ci
and Cvi to the NI is just 2m · `P bits. Together with the
cost of U downloading the blacklist from the NI, this yields
a total communications complexity of M · `ρ bits download
and 2m · `P bits upload for U (and vice-versa for the NI).

The left-hand side of the batch proof, Equation 3, requires
m exponentiations with small exponent and m− 1 multipli-
cations modulo P ; this is m ·χκ2 + (m− 1) ·µP work. The
right-hand side requires m(m+1) multiplications modulo ρ
to compute the exponents, followed by m+1 exponentiations
with exponents modulo ρ and m multiplications modulo P ;
this is m · χρ +M · µρ +m · µP work.



The costs of the Verinym Showing Protocol and of
the proof Π1 that the SP-specific pseudonym is computed
correctly are dependent on the details of the underlying
Nymble-like scheme, but are in any event independent of
the blacklist size M . Therefore, we omit them from our
detailed analysis of the dependence of the protocol’s cost
on M . All that is left to be considered, then, is the cost of
the large zero-knowledge proof, Π2, in Equation 1.

The first line of Π2 requires U to compute 4(m − 1)
exponentiations with `ρ-bit exponents, 2m multiplications
modulo P and 3m multiplications modulo ρ for a total cost
of 4(m− 1) ·χρ + 2m · µP + 3m · µρ. U is also required to
upload 2 ·(m−1) ·`P +3(m−1) ·`ρ bits. Here, U is proving
that each Ci, i > 1, is a commitment to the product of the
values committed to in Ci−1 and C1. Verifying this requires
2m ·χρ work by the NI, using knowledge of δ = logαρ(βρ)
to reduce the number of exponentiations.

The second and third lines of Π2 require U to compute m
multiplicative inverses modulo P , m multiplications modulo
P , m multiplicative inverses modulo ρ, 2m multiplications
modulo ρ and two exponentiations with `ρ-bit exponents.
Thus the cost for U is m(ιP+µP+ιρ+2µρ)+2χρ. Similarly,
the NI can verify these proofs with mχρ +mιP work. This
is done using Brands’ NOT proof [3, §3]: to prove

PK
{

(vi, wi) : Cvi = αviρ β
wi
ρ mod P ∧ (vi 6= 0)

}
,

U simply performs a proof of knowledge of a discrete log
representation of αρ with respect to Cvi and βρ. That is, U
proves that she knows γ and ζ such that αρ = Cγviβ

ζ
ρ mod

P ; in this case, γ = v−1i mod ρ and ζ = −wiγ mod ρ.
This convinces the NI that U knows vi and wi since they are
easily computable from γ and ζ, and that vi is nonzero (since
otherwise v−1i would be undefined). U transmits 2m group
elements modulo ρ for a total of 2m·`ρ bits communication.

Thus, the overall computational cost of this protocol
for U is 2(M + 5m) = O(M) multiplications modulo
ρ, 7m = O(m) multiplications modulo P , m = O(m)
multiplicative inverses modulo ρ, m = O(m) multiplicative
inverses modulo P , and 8m − 2 = O(m) exponentiations
modulo P with `ρ-bit exponents. The cost for the NI is
M = O(M) multiplications modulo ρ, 2m − 1 = O(m)
multiplications modulo P , m = O(m) multiplicative in-
verses modulo P , 4m = O(m) exponentiations modulo
P with `ρ-bit exponents, and m = O(m) exponentiations
modulo P with `κ2

-bit exponents. Communication costs are
M · `ρ bits download and ((7m− 3) · `ρ + 2(m− 1) · `P )
bits upload for U, and vice versa for the NI. As noted in [20],
Wikipedia currently blocks just under 7000 anonymous users
per month; this gives a reasonable estimate for the upper
bound on the size of a long-term blacklist for that site. With
our suggested parameters of `ρ = 256 and `P = 1536,
this means the blacklist will be 224 KB (assuming all
7000 SP-specific pseudonyms appear on the same long-term
blacklist), and U will upload less than 50 KB to the NI to
perform the non-membership proof.

As pointed out in [4], [5], much of this cost can be con-
verted to precomputation by using Brands’ error correction

factors technique. We refer the reader to [4] or [3, §5.4.2]
for details.

D. Performance measurements

We implemented key components of the long-term block-
ing construction in order to obtain performance measure-
ments. As with our implementation of the distributed (t, n)-
threshold VI, our long-term blacklisting construction is
written in C++ with NTL. All benchmarks were single-
threaded, and run on the same system described in §II-B.

Table III summarizes performance measurements for the
Non-membership Proof Protocol. We ran both U and the NI
on a single machine; thus, the performance measurements
contained herein represent computational expense only and
do not account for the expected latency due to communica-
tion between U and the NI. Moreover, we omit the necessary
call to the Verinym Showing Protocol in our experiments.
(Thus, these timings correspond precisely to the parts of
the protocol that we analyzed in §III-C.) Note, however,
that our implementation does not take advantage of the
VI’s knowledge of δ = logαρ(βρ) mod P to improve the
efficiency of the verification equation, nor have we imple-
mented Brands’ error correcting factors technique. Either
of these modifications could improve on the performance
measurements we report.

We took our performance measurements for BLAC [32]
and PEREA [33],9 found in Figures 4 and 5, directly
from those schemes’ respective papers. Thus, the compar-
ison between our approach to long-term revocation and
the authentication protocols of BLAC and PEREA is only
an approximation. Moreover, the cost of our scheme will
increase (by a constant additive factor) when one considers
the additional cost of the Verinym Showing Protocol (which
needs to be run whether or not the user computes a non-
membership proof). Nonetheless, our measurements indicate
that even our unoptimized implementation dramatically out-
performs the approach taken by BLAC, EPID, and PEREA
for even moderate-sized blacklists. Moreover, we reiterate
that, unlike in those schemes, our non-membership proof
only needs to be executed during the Nymble Acquisition
Protocol, and therefore does not place additional load on the
SP nor affect the observed interaction latency between the
user and the SP. Indeed, our approach is practical even for
extremely large SPs, such as Wikipedia and Slashdot, which
are two oft-cited examples motivating the development of
Nymble-like systems.

E. Improving efficiency

1) Hybrid algorithm: Observe that, for small blacklist
sizes, the naive linear-time non-membership proof employed
by BLAC outperforms the more sophisticated square-root-
time algorithm recommended in this section. In particular,
BLAC’s approach scales linearly in the size of the blacklist

9We omit direct comparison with EPID because we do not have access to
performance measurements for that scheme. However, EPID has the same
asymptotic complexity as BLAC; i.e., it scales linearly in the size of the
blacklist [33].



Table III
PERFORMANCE MEASUREMENTS FOR U AND THE NI IN THE BLACKLIST NON-MEMBERSHIP PROOF.

Mean execution time ±
Operation Host m M = m2 standard deviation (ms)

Non- U 100 10,000 1141.6 ms ± 30.57 ms
membership 200 40,000 2049.0 ms ± 53.22 ms
proof 300 90,000 3028.8 ms ± 76.94 ms

400 160,000 4076.6 ms ± 113.95 ms
500 250,000 5185.0 ms ± 137.46 ms

Non- NI 100 10,000 913.3 ms ± 16.46 ms
membership 200 40,000 1718.9 ms ± 34.81 ms
verify 300 90,000 2599.1 ms ± 55.80 ms

400 160,000 3615.5 ms ± 107.93 ms
500 250,000 4626.2 ms ± 181.07 ms
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All experiments used a 256-bit subgroup modulo a 1536-bit prime; thus, in all experiments the blacklist consists of M pseudorandom 256-bit integers.
Each experiment was repeated 100 times; the mean execution time (± the standard deviation) across all trials is reported here. We omit error bars from the
graph because the error range is too small for them to be visible. Note that, while linear in m with respect to the number of exponentiations performed, the
computational complexity of the non-membership proof protocol is quadratic in m (linear in M ) with respect to the number of multiplications performed.
Thus, by the time m = 500 the algorithm performs around k·250000 additional multiplications, which is the same as about (k · 250000)/(3/2 · 256) ≈ k·147
extra exponentiations. (k ≈ 2 for U and k ≈ 1 for the NI.) This is why the trend lines for these curves are quadratic in m, albeit with a very small
quadratic coefficient.

with about 1.8 ms per entry at the client and 1.6 ms per
entry at the server [32]; our proposed algorithm scales
with the square root of the size of the blacklist but has
a larger additive constant term. Our measurements indicate
that for blacklists of fewer than about 250 entries BLAC’s
linear approach outperforms our own. For this reason, we
propose a hybrid approach wherein a naive linear time non-
membership proof is employed for small blacklist sizes
(smaller than 250, in this case) and the above square root
time non-membership proof is employed for larger blacklist
sizes. Figures 4 and 5 compare the relative complexities of
the different non-membership proofs for various blacklist
sizes.
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Figure 4. Non-membership proof comparison for small blacklists: This
figure compares the performance of our proposed non-membership proof
against that of BLAC [32]–[34]. We took our timing measurements for
BLAC directly from the paper in which it first appeared, while we have
measured the timing information for our approach empirically; hence, the
coefficients on each line are only an approximation to the schemes’ actual
performance. All experiments used a 256-bit subgroup modulo a 1536-bit
prime; thus, in all experiments the blacklist consists of M pseudorandom
256-bit integers. We omit error bars from the graph for two reasons: 1) the
error range for our approach is too small for them to be visible, and 2)
we computed the measurements for BLAC from data in the original BLAC
paper instead of measuring it experimentally.

2) Verification tokens: Since long-term blacklists are ex-
pected to be relatively static, both U and the NI can avoid
much redundant computation by—upon successful comple-
tion of the Non-membership Proof Protocol—negotiating an
efficiently verifiable token that certifies that U has already
proved that her SP-specific pseudonym is not on a list. In
other words, once U proves that her pseudonym νL∗ is not on
B(SP,L∗), she and the NI negotiate a blinded token certifying
that the NI has verified this proof. Of course, these lists are
not entirely static; indeed, the SP will add and remove entries
as it detects and forgives misbehaviour. We thus associate
a version number ver with each blacklist. When the PE
adds an entry, the version number gets incremented; when
the PE removes an entry, the version number is not changed.
If U has a verification token for blacklist version ver, she
engages in one of the following two procedures: if ver is
the version of the current blacklist, she shows the token.
If the blacklist version has been incremented since her last
authentication, U finds the sublist of SP-specific pseudonyms
added since version ver. She then shows her token and a
proof for the smaller sublist.

Of course, this approach leaks some information to the
VI about U. In particular, the VI learns: 1) that some user
is requesting nymbles for a particular SP, 2) that this same
user has previously obtained nymbles for this same SP, and
3) the approximate time (i.e., the blacklist version) that this
user last requested nymbles for this SP. While we feel that
this information leakage is acceptable for most users, we
point out that this is an opt-in feature and U is free to make
her own choice about whether this information leakage is
acceptable. If U chooses not to use verification tokens, then
she is indistinguishable from any user that has not recently
engaged in a non-membership proof for this SP.

In what follows, B(SP,L∗,ver) will denote version ver
of the SP’s long-term blacklist for linkability window L∗.
That is, B(SP,L∗,ver) contains pseudonyms of users that were



blocked in linkability window L∗ and whose misbehaviour
has not yet been forgiven. U and the NI run the follow-
ing protocol after the NI has accepted a proof from U.
Such a proof may consist of U: 1) proving directly that
νL∗ /∈ B(SP,L∗,ver), 2) presenting a valid verification token
for B(SP,L∗,ver) from a previous session, or 3) presenting a
valid token for B(SP,L∗,ver′) and then proving that νL∗ /∈
B(SP,L∗,ver) − B(SP,L∗,ver′).

Once U has successfully convinced the NI that her
nymble is not on a blacklist B(SP,L∗,ver), she obtains an
anonymous credential from the NI encoding the attributes
(SP, νL∗ ,ver′), where ver′ is the current blacklist version
number for SP. This anonymous credential is U’s verification
token. The choice of anonymous credential scheme used
here is unimportant, although we remark that the user
shows a credential only once; thus, unlinkability between
different showings of the credential is not required. For this
reason, we recommend using Brands credentials [2], [3],
as they outperform the other well-known schemes in the
literature [4], [5].

In order to use a verification token to convince the NI
that U does not appear on B(SP,L∗,ver), U reveals ver′

and SP, then proves in zero-knowledge that the value νL∗
encoded in the credential is indeed associated with her
unique identifier. If ver′ < ver, then U additionally proves
that νL∗ /∈ B(SP,L∗,ver) − B(SP,L∗,ver′) using the proof
technique presented in §III-A. Note that U already proves
that the verification token encodes the correct nymble in
the proof in §III-A (and, thus, she does not repeat it). Also
note that, rather than issuing one authentication token per
blacklist (i.e., one for each linkability window), a single
verification token could include information pertaining to all
blacklists (i.e., for each linkability window) against which
U has just proven that her pseudonym is not present; this
modification is straightforward and will not be discussed
further.

F. Blacklist sharing

It is common on the Internet for a single organization to
operate several different websites. For example, the Wikime-
dia foundation hosts several popular websites: Wikipedia,
Wiktionary, Wikiquote, etc. Using a single canonical SP
name (and a common blacklist) would let Wikimedia revoke
U from all of their services simultaneously; however, from a
privacy standpoint, U should be able to access all Wikimedia
services concurrently and unlinkably, and this would not be
the case in such a setup.

Our approach to long-term revocation makes it possible
for an SP to block users that engage in serious misbe-
haviour from multiple services while preserving the ability
of honest users to access each of these services concurrently
and unlinkably; we call this blacklist transferability [18].
More precisely, it provides blacklist transferability for inter-
window revocations. In particular, SP1 can choose some
subset of entries from SP2’s long-term blacklist, and require
U to prove during the Nymble Acquisition Protocol that
none of these entries are hers. In fact, SPs can implement
more sophisticated access structures (which we will not
describe in detail) to gain extremely fine-grained control
over which sites a misbehaving user is able to access;
e.g., Wikimedia may revoke U from all of their services
for 7 days, and just Wikipedia itself for an additional 7
days. This would have essentially zero additional impact on
U’s privacy and would introduce minimal overhead to the
Nymble Acquisition Protocol.

IV. INCREASING AVAILABILITY

Nymble-like systems help to increase availability of cer-
tain web services for users of anonymous communications
networks. However, there are two important (and often
overlooked) cases where existing approaches fail. First,
the operators of Tor exit relays are unable to participate
in Nymble-like systems that use IP address as a unique
resource; this case is particularly important since one side
effect of SPs blocking access from Tor is that they also
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Figure 5. Non-membership proof comparison for large blacklists: This figure compares the performance of our proposed non-membership proof
against two existing approaches in the literature: BLAC [32]–[34] and PEREA [33]. We took the timing measurements for these two schemes directly
from their original papers, while we have measured the timing information for our approach empirically; hence, the coefficients on each line are only an
approximation to the schemes’ actual performance. Nonetheless, the graphs do capture the impact of the asymptotic behaviour of each approach. We omit
error bars from these graphs for two reasons: 1) the error range for our approach is too small for them to be visible, and 2) the measurements for BLAC
and PEREA are computed from data in their respective papers instead of being measured experimentally.



prevent exit node operators from using their services even
when when they do not route their connections through Tor.
Second, users located behind a firewall that censors access
to Tor and the VIs are unable to obtain a verinym and are
therefore unable to use the system. This section presents
solutions to each of these issues.

A. Verinym acquisition for Tor exit relays

SPs cannot distinguish connections originating at a Tor
exit relay from connections made over Tor and routed
through that exit relay. One consequence of this is that
SPs that block access from Tor also block access from Tor
exit relay operators, even when their connections are not
coming through Tor. Previous Nymble-like systems provided
a viable solution to the availability problem for Tor’s regular
users, but neglected to show how their systems could support
operators of Tor exit relays.

Fortunately, Tor implements a public key infrastructure
(PKI) among its relays. In particular, each Tor relay has
a long-term public signing key called an identity key [11].
Thus, the VIs can demand a ZKP of knowledge of the secret
portion of an exit relay’s identity key at the start of the
Verinym Acquisition Protocol. In this way, the VIs prevent
U from obtaining nymbles under the guise of an exit relay,
while permitting the operator of that exit relay to obtain
nymbles for his own use.

Suppose E is an exit node operator who wishes to connect
to an SP using a Nymble-like system for anonymous au-
thentication. We outline the additional proof required from
E below. Recall that S is a set of t VIs and z is E’s IP
address.

E does the following:
1. E connects directly to each VIij ∈ S.

VIij does the following:
2. VIij checks z against the directory list of Tor exit

relays.
3. If z not on the list, VIij proceeds as usual for

the Verinym Acquisition Protocol; otherwise, VIij
chooses a random challenge c and sends it to E.

E does the following:
4. E receives the challenge c and prepares the standard

request R for a verinym.
5. E computes a signature ψR on (c‖R) using his private

identity key.
6. E transmits the tuple (R,ψR) to VIij .

VIij does the following:
7. VIij receives the ψR and verifies the signature. If ψR

is incorrect, VIij aborts; otherwise, VIij proceeds as
usual for the Verinym Acquisition Protocol.

B. Verinym acquisition for censored users

Access to Tor is restricted in several countries due to
government censorship (for example, the ‘Great Firewall
of China’). To solve this problem, the Tor network uses
bridges [10]. A bridge is essentially just a regular Tor relay

that the directory does not list. Using a variety of different
techniques, censored users can obtain portions of the list of
bridge relays, and thereby find an entry point into the Tor
network. Obtaining the entire list, however, is intentionally
a very difficult task. The goal is to make it infeasible for an
adversary to block all of the bridge relays.

This solves the availability problem for Tor; i.e., censored
users can still access the Tor network by using bridges.
However, it seems prudent to expect that when the entire Tor
network is blocked, then so too will be the VIs. This will
prevent censored users from obtaining a verinym in the usual
way. What we need, it appears, is a Nymble-like system
analog of bridges.

In particular, we envision a set of simple volunteer-run
entities, which we call Identity Verifiers (IVs). The IVs
are simple servers (perhaps an Apache module running
on volunteer machines) distributed throughout the Internet.
Each IV possesses a public-private key pair for signature
generation. The list of IP addresses and public keys for all
available IVs is known to the VIs. Ideally, no single VI will
possess the entire list, lest that VI be compromised; instead,
each VI may have approximately (1/s)th of the list.

It should be difficult for an attacker to gain access to large
portions of the IV list. In fact, bridge relays could double
as IVs, making the problem of obtaining the lists of bridges
and IVs equivalent. Alternatively, the list of bridge relays
and IVs could be linked in such a way as to make the task of
obtaining large portions of each list equivalent. However, we
leave further development of these considerations to future
work.

The IVs offer the following functionality: upon receiving
a challenge bit string c from a user U with IP address z, an
IV responds with a signature on hash(c‖z). The additional
part of the protocol works as follows:

U does the following:
1. U connects to an arbitrary bridge relay B and builds

a circuit and SSL connection to VIij through B; U
sends her claimed IP address z to VIij through this
connection.

VIij does the following:
2. VIij receives z from U and replies with a random

challenge c and the IP address of an IV selected
by VIij . (The method of selection can be arbitrary:
random, the IV most trusted by the VI, etc.)

U does the following:
3. U receives the challenge c and IP address of an IV

from VIij ; she connects to the IV and sends c.
The IV does the following:

4. The IV receives c and determines z empirically from
the IP connection header. It replies by sending ψz ,
which is a signature on hash(c‖z).

U does the following:
5. U receives ψz from the IV and forwards it to VIij .

VIij does the following:



6. VIij receives ψz and checks the signature. If ψz is
incorrect, VIij aborts; otherwise, VIij proceeds as
usual for the Verinym Acquisition Protocol.

The naive protocol just described is susceptible to the
following attack: a malicious U chooses a random IP address
and initiates the protocol with that as its self-reported
address. In the (unlikely) event that U receives the address
of a colluding IV, she obtains a signature on the fake IP
address, thereby convincing the VI to issue a share of a
verinym. Otherwise, U chooses a new random IP address
and tries again. To protect against this attack, we can require
that: a) the VIs somehow trust the IVs, b) the VIs choose
multiple IVs and require U to obtain a signature from each,
or c) a combination of these approaches.

V. OBJECTIVE BLACKLISTING

Schwartz et al. proposed contract-based revocation [18]
in their Contractual Anonymity papers [28]–[30], whereby
U enters into an anonymity contract with the SP. This
contract assures U of her anonymity as long as she does
not violate the contract; if, on the other hand, she violates
the contract, then a Group Manager (GM) can revoke her
anonymity. Schwartz et al. use ideas from trusted computing
to construct a contract-based revocation system based on
group signatures. In their scheme, U uses remote attestation
to verify that the software running on the GM will only
deanonymize her if she does indeed violate the contract.

In [22], Lin and Hopper describe an objective blacklisting
extension for Jack. Their approach uses the label field in
Camenisch and Shoup’s verifiable encryption scheme [7] to
force the PE to include a contract in its trapdoor computa-
tion. The idea here is that if the provided contract is incor-
rect, then the trapdoor computation will fail. It is reasonable
to argue that any added security offered by this approach
is illusional (see the discussion regarding additional trust
assumptions below); nonetheless, one can easily incorporate
a similar mechanism into the nymble constructions of other
Nymble-like systems as outlined below. Because different
Nymble-like systems do not necessarily share a common
trapdoor function, we propose to use a hash c of the
contract as an input parameter to the one-way function used
to compute the subsequent nymbles in a sequence. When
incorporated into Nymble and Nymbler, this idea works as
follows:
• Nymble: use c as the HMAC key for the ‘top’ chain

(see Figure 1).
• Nymbler: replace Rabin’s function f(z) = z2 mod n

with f ′(z, c) = c · z2 mod n.
In order to have U blacklisted, the SP transmits her nymble,
a copy of the contract, and proof of her misbehaviour to
the PE. The PE verifies that the behaviour does indeed
violate the contract before computing the remainder of U’s
nymbles (the computation of which requires c). If the SP
then provides U’s nymble to the PE with an incorrect
contract, then any nymbles output by the PE will not be
linkable back to U. Note that, unlike in [22], this approach
does not leak information to the PE or SP about whether the

given contract is enforced on U. This means, for example,
that with our approach different users may have different
rights in their contracts, without partitioning the anonymity
set.

As in [22] (though the authors of [22] never explicitly
stated it), this solution requires the following additional trust
assumptions:
• U must trust the PE to verify that she did indeed violate

the contract.
• The PE must trust the SP to not forge proofs of contract

violations.10

• The SP must trust the PE not to divulge any potentially
sensitive information it witnesses while verifying that
misbehaviour has occurred.

To construct an objective blacklisting solution that does not
require additional trust assumptions or reliance on trusted
computing remains an interesting open problem.

VI. CONCLUSION

We have presented several extensions to the Nymble
framework. In particular, we proposed a new threshold
Verinym Issuer construction, an efficient way to achieve
inter-window revocation and blacklist transferability, alter-
native verinym acquisition techniques for Tor exit relays
and censored users, and contract-based revocation. These
extensions improve the liveness, security and functionality
of Nymble-like schemes built from the extended framework,
and solve a number of open problems identified in the
future work sections of papers on particular Nymble-like
systems [19]–[22]. Nonetheless, there are still several open
problems identified in those papers that constitute exciting
directions for future research. For example, system-wide
banning of cheaters [20], NAT-aware IP blocking [20], and
banning of entire subnets without reducing privacy [20],
[21]; please see the respective papers for more details
on these problems. Moreover, another worthwhile direction
for future work is to investigate the use of other unique
identifiers to use in place of IP addresses; such work would
likely have broader implications with respect to protecting
against Sybil attacks [12]. Finally, as stated in §V, the design
of an objective blacklisting mechanisms that does not require
trusted hardware remains an open problem.
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