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Several anonymous authentication schemes allow servers to revoke a misbehaving user’s future accesses.
Traditionally, these schemes have relied on powerful Trusted Third Parties (TTPs) capable of deanonymizing
(or linking) users’ connections. Such TTPs are undesirable because users’ anonymity is not guaranteed,
and users must trust them to judge ‘misbehavior’ fairly. Recent schemes such as Blacklistable Anonymous
Credentials (BLAC) and Enhanced Privacy ID (EPID) support “privacy-enhanced revocation” — servers can
revoke misbehaving users without a TTP’s involvement, and without learning the revoked users’ identities.

In BLAC and EPID, however, the computation required for authentication at the server is linear in the
size (L) of the revocation list, which is impractical as the size approaches thousands of entries. We propose
PEREA, a new anonymous authentication scheme for which this bottleneck of computation is independent of
the size of the revocation list. Instead, the time complexity of authentication is linear in the size of a revoca-
tion window K ⌧ L, the number of subsequent authentications before which a user’s misbehavior must be
recognized if the user is to be revoked. We extend PEREA to support more complex revocation policies that
take the severity of misbehaviors into account. Users can authenticate anonymously if their naughtiness,
i.e., the sum of the severities of their blacklisted misbehaviors, is below a certain naughtiness threshold.
We call our extension PEREA-Naughtiness. We prove the security of our constructions, and validate their
efficiency as compared to BLAC both analytically and quantitatively.

1. INTRODUCTION
Anonymous access to services can be desirable in many situations such as posting
content related to whistle blowing, journalism in oppressive regimes, and activism.
Fully anonymous access to services, however, can give users the license to misbe-
have since they cannot be held culpable for their actions. For example, a website
such as Wikipedia may allow anonymous postings, but then could not hold users who
deface webpages accountable. For this reason, many services (including Wikipedia)
have entirely blocked anonymizing networks such as Tor [Dingledine et al. 2004].1
Given the advantages of anonymous access, denying anonymity to all users is a dras-
tic measure. To provide a balance between the two extremes of full anonymity and no
anonymity, various anonymous authentication schemes provide some form of account-
able anonymity. Recognizing the importance and impact of research in the space of
accountable anonymity, the Tor Project lists the integration of such systems as an im-
portant part of their roadmap,2 and in 2009 the PET award committee recognized our
recent work for improving such systems.3 Research on accountable anonymity is thus
of both practical and theoretical significance. We now describe the space of existing
schemes and provide an overview of our contributions.

Anonymous authentication schemes allow users to authenticate to service providers
(SPs) as some anonymous member of a group. For accountability several schemes

1The Abuse FAQ for Tor Server Operators lists examples at https://www.torproject.org/docs/

faq-abuse.html.en.
2Tor Development Roadmap, 2008–2011. Section 7.3 lists our prior work on Nymble [Johnson et al. 2007;
Tsang et al. 2011] as a priority for further development. https://www.torproject.org/press/presskit/
2008-12-19-roadmap-full.pdf

3Our conference papers on BLAC [Tsang et al. 2007] and PEREA [Tsang et al. 2008] were recognized as Run-
ners up for the Award for Outstanding Research in Privacy Enhancing Technologies http://petsymposium.
org/award/. This article extends on our initial work on PEREA.
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support the revocation of these anonymous users, where a trusted third party (TTP)
can take action against misbehaving users. At a high level, authentication in these
schemes requires users to send SPs their identities (or pseudonyms4) encrypted with
the TTP’s key; SPs can present a misbehaving user’s escrowed identity to the TTP as
part of a complaint procedure. For example, schemes based on group signatures [Ate-
niese et al. 2000; Boneh et al. 2004; Chaum and van Heyst 1991; Kiayias et al. 2004]
feature an Open Authority (OA), which uses privileged information in combination
with the offending user’s authentication transcript to revoke users. Optionally, the
OA can provide the SP with a linking token to recognize the offending user’s connec-
tions. Other classes of schemes based on dynamic accumulators [Ateniese et al. 2002;
Boneh and Shacham 2004; Camenisch and Lysyanskaya 2002a; Li et al. 2007; Nguyen
2005] and hash chains [Johnson et al. 2007; Tsang et al. 2011] also rely on TTPs.
Nymbler [Henry et al. 2010] and Jack [Lin and Hopper 2010] are two recent improve-
ments on the hash chains-based Nymble system [Johnson et al. 2007; Tsang et al.
2011] that also require TTPs. We omit details on the subtleties of the various schemes,
and simply emphasize that all these schemes feature a TTP (or a set of TTPs) that can
deanonymize users or link5 their accesses.

Having a TTP with such power is undesirable as users are never guaranteed the
anonymity of their connections. Users must trust the TTP to judge their ‘misbehav-
ior’ fairly and not be susceptible to bribery or coercion by powerful adversaries. This
potential for reduced privacy may be unacceptable for users such as whistleblowers,
activists, and journalists in countries with restricted freedom of the press.

1.1. Eliminating TTPs, but at a cost
Enhanced Privacy ID (EPID) [Brickell and Li 2007], and our own Blacklistable Anony-
mous Credentials (BLAC) [Tsang et al. 2007] are two recently proposed schemes that
for the first time eliminate the reliance on TTPs for revocation, thus providing privacy-
enhanced revocation [Tsang et al. 2007].6 In BLAC and EPID, SPs can add an entry
from an anonymous user’s authentication transcript to a blacklist, following which
the user is revoked and cannot authenticate. No TTP is needed to perform these ac-
tions, and revoked users remain anonymous. Privacy-enhanced revocation also allows
for subjective judging [Tsang et al. 2007], where SPs can revoke users at their dis-
cretion since the privacy of users is not at risk. In contrast, TTP-free schemes such
as e-cash [Chaum 1982] and k-Times Anonymous Authentication (k-TAA) [Teranishi
et al. 2004] support accountability in only narrowly defined applications where mis-
behaviors can be mapped to ‘too many authentications’ (such as ‘double spending’ a
digital coin, which deanonymizes the offending user).

While BLAC and EPID eliminate the reliance on TTPs, the amount of computation
at the SP required for authentication is linear in the size of the blacklist, i.e., O(L)
where L is the number of entries in the blacklist. At a high level, the client has to
prove in zero knowledge that each entry in the blacklist was not produced by him/her,
resulting in L such proofs. A blacklist with thousands of entries (several entries may
correspond to the same user) would make the costs of authentication prohibitive and
pose a severe bottleneck at the SP. For example, for a blacklist with 10,000 entries,

4Some systems may allow users to establish accounts under a fake name. These fake names are commonly
known as handles or pseudonyms. For accountability, systems may ensure in some way that it is difficult for
a single person to establish multiple pseudonyms in the system.
5We say that an entity X can link a user’s connections if X can infer that the connections belong to a single
user with probability non-negligibly greater than random guessing.
6Brickell and Li [2007] refer to this concept as “enhanced revocation” in the context of EPID, and we called
this concept “anonymous blacklisting” in the context of BLAC. As will become clear, we now distinguish
between the action of blacklisting and the end result of revocation.
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BLAC requires around 68 seconds of computation at the SP for a single authentication
on commodity hardware (see analysis in Section 8.2). These numbers would double (to
approximately 136 seconds at the SP) for 20,000 entries.7 In our paper on BLAC, we
acknowledged this limitation and listed “more efficient blacklist checking” as an open
problem. As described next, PEREA is designed to address this problem.

1.2. PEREA, an efficient alternative
This article revises and extends the PEREA scheme first published by the ACM Con-
ference on Computer and Communication Security (CCS) [Tsang et al. 2008]. We start
by describing this scheme, and in Section 1.3 we describe our new extension PEREA-
Naughtiness and our additional contributions.

PEREA (Privacy-Enhanced Revocation with Efficient Authentication) is an anony-
mous authentication scheme without TTPs in which the time complexity of authenti-
cation at the SP (the bottleneck operation) is independent of the size of the blacklist. In-
stead, the amount of computation is linear in the size K of the revocation window, the
number of authentications before which a misbehavior must be recognized and black-
listed for a user to be revoked. This relaxed semantics of revocation allows for a more
efficient solution with the tradeoff that it is possible for a misbehaving user to escape
revocation if not caught in time. For example, if K = 10, then the SP must blacklist
a user’s misbehavior before that user has made 10 subsequent authentications. Note
that a blacklisted user is not revoked if he or she has already made K subsequent
authentications, and therefore we differentiate between the action of blacklisting and
the end result of whether the user is actually revoked.

Since the SP may take some time to recognize misbehaviors (e.g., malicious edits
on Wikipedia may not be detected immediately), these K authentications can be rate
limited to K authentications every T minutes. Combined with rate limiting, SPs have
enough time (T ) to recognize misbehaviors, and honest users can authenticate anony-
mously at an acceptable rate (one authentication every T

K minutes on average). For
example, for K = 10, T = 60, SPs must judge misbehaviors within 60 minutes, and
users can authenticate once every 6 minutes on average. In many cases where users
are not expected to authenticate more than a few times a day, K = 10, T = 2880 would
allow SPs 2 days to catch misbehaviors and allow 5 authentications per day on average.
In practice, SPs would want to keep K low to rate limit anonymous authentications.
Without such a rate limit, accountable anonymity is not very useful if users can per-
form, say, 10,000 misbehaviors before being blacklisted. In our paper on BLAC [Tsang
et al. 2007], we suggested that the rate of authentication should be limited for this
reason. Thus we argue “at most K authentications in the time it takes to identify
misbehaviors” would be a natural requirement in other schemes as well.

In practice we expect K to be in the range of 5–15 (which will be much smaller
than L in practice), leading to much better performance than BLAC or EPID in which
the computational complexity depends linearly on the number of blacklist entries. For
example, L can grow to thousands of entries in an application such as Wikipedia, while
K is limited to a constant as small as 5 or 15 (see concrete performance numbers at
the end of Section 1.3).

7As a rough baseline we looked at PhishTank, a community based service that tracks phishing sites’ IP
addresses. In April 2011, 15,872 “valid” phishing IP addresses were identified. Thus for comparison we
use 10,000–20,000 blacklist entries as a reasonable number to expect for a large service trying to keep
anonymous misbehaving users at bay. http://www.phishtank.com/stats/2011/04/
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1.3. PEREA-Naughtiness: Supporting flexible revocation policies
Before we describe how our extension PEREA-Naughtiness supports ‘naughtiness poli-
cies,’ it is helpful to discuss the d-strikes-out policy first introduced as an extension to
BLAC in our recent TISSEC ’10 article [Tsang et al. 2010]. Existing anonymous revo-
cation schemes (including EPID, BLAC, and the original PEREA) implement ‘1-strike-
out’ policies—a single blacklisted misbehavior implicates the user for revocation. As
a natural extension, the d-strikes-out policy attempts to block a misbehaving user if
he/she has misbehaved d or more times. For example, an SP may want to revoke users
that have misbehaved 3 or more times and continue to grant access to users who have
been blacklisted only once or twice. (Note that unlike other schemes such as k-TAA,
the d-strikes-out policy decouples the notion of misbehaviors from authentications. A
user may have authenticated a 1,000 times but misbehaved only 3 times. Thus k-TAA
schemes cannot implement such policies.)

The drawback of a d-strikes-out policy is it doesn’t differentiate between misbehav-
iors and treats them all equally. For example, an SP might consider a copyright vio-
lation to be more egregious than an inappropriate comment and might want to give
more weight to certain misbehaviors. With PEREA-Naughtiness, we generalize the
d-strikes-out policy to a weighted version called the naughtiness policy. Each misbe-
havior can be scored with a severity, and the naughtiness of a user is the sum of
severities of his/her blacklisted misbehaviors (within the revocation window). If the
user’s naughtiness is beyond the specified naughtiness threshold, the user will not be
able to authenticate. For example, Wikipedia could blacklist inappropriate comments
with a severity of 1, and copyright violations with a severity of 3. A threshold naugh-
tiness of 5 would deny authentication to Alice who has made 5 inappropriate com-
ments or Bob who has made one copyright violation and 2 inappropriate comments.
Thus with PEREA-Naughtiness, SPs have the option for more flexible blacklisting,
in a way that is natural—misbehaviors are scored based on their severity, and users
that have been ’too naughty’ in the recent past (as dictated by the revocation window)
are revoked. Providing constructions, models and proofs for naughtiness policies in
the context of PEREA-Naughtiness thus provides a significant contribution over the
work on d-strikes-out policies as presented in the TISSEC ’10 article on BLAC [Tsang
et al. 2010] (we also point out that BLAC uses a completely different construction from
PEREA).

We note the d-strikes-out policy is a special case of PEREA-Naughtiness with sever-
ity of 1 for all misbehaviors and a naughtiness threshold of d. Since the construction
of this special case for PEREA-Naughtiness can be made more efficient, we refer to
this efficient construction as PEREA-d-strikes-out. We will use the term PEREA-based
schemes when we refer to these three constructions collectively. In Section 8.2 we will
show the performance for PEREA-based schemes as compared to BLAC. Again, one
must keep in mind that PEREA-based schemes address misbehaviors only within the
revocation window, whereas BLAC can address misbehaviors made at any point in the
past. Thus the added performance comes with the tradeoff of not being able to penalize
users for misbehaviors beyond the revocation window.

Our other significant contribution is that we formally define a model that captures
the notion of security (and privacy) for PEREA-Naughtiness and prove the security
of our new construction under the proposed model. As opposed to high-level sketches
provided in our conference paper [Tsang et al. 2008], this article presents detailed
models and proofs. Finally, we complement the complexity analysis of our scheme with
empirical measurements that demonstrate their practicality in realistic settings. For
a revocation window of size K = 10, on commodity hardware our constructions would
result in authentication times at the SP of about 4 seconds for PEREA and 14 seconds
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for PEREA-Naughtiness regardless of blacklist size (recall this number was about 136
seconds for BLAC with L = 20, 000 and would continue to grow linearly with blacklist
size). The amount of computation at the user is potentially increased (as compared
to BLAC and EPID) because the users’ credentials need to be refreshed when new
entries are added to the blacklist. If users periodically (e.g., once a day) refresh their
credentials, then the performance is comparable to BLAC during an authentication
(see Section 8.2).

Finally, we note authentications in BLAC and PEREA-based schemes would be tied
to particular ‘write’ actions such as page edits or comment posting where there is
the potential for posting unwanted content, and not the more numerous ‘read’ actions
such as webpage downloads. With a single server dedicated to authentication, PEREA-
Naughtiness could support 6,000 anonymous actions per day and extra servers could
be used to improve this number. For a popular site such as Wikipedia, if up to 5% of the
total edits to English webpages were anonymous, a single server’s throughput would
be acceptable.8 We also note that for authenticated actions a user does not have to wait
to perform the action, as the authentication can be performed after the action, as part
of the process of accepting updates from the SP.

1.4. Summary of our contributions
— We present PEREA, an anonymous authentication scheme without TTPs that sup-

ports privacy-enhanced revocation. PEREA is the first such scheme with computation
at the service provider independent of the size of the blacklist.

— We present an extension PEREA-Naughtiness to support naughtiness policies, where
individual misbehaviors can be treated with different severities, and users with
naughtiness levels over a threshold can be revoked. Furthermore, naughtiness poli-
cies generalize d-strikes-out policies that were introduced as an extension to BLAC
(although a completely different construction is needed in the context of PEREA).

— We evaluate the performance of PEREA-based schemes both analytically and quan-
titatively as compared to BLAC. We demonstrate that PEREA-based schemes out-
perform BLAC in server computation at the expense of increased computation at the
user. We show that the computation at the user is reasonable, and even better than
BLAC if one assumes the blacklist is relatively stable (e.g., the blacklist has grown
by only 5% since the user’s last authentication).

— We formally define our security model for PEREA-based schemes, and prove the se-
curity of our construction under this model without random oracles.

1.5. Paper outline
We present the security goals for PEREA-based schemes and provide an overview of
our solution in Section 2. After introducing cryptographic building blocks in Section 3,
we present our construction of PEREA in Section 4. In Section 5 we present our ex-
tended constructions for PEREA-d-strikes-out and PEREA-Naughtiness. Next, we for-
malize the security definitions in Section 6, and in Section 7 we prove the security
of our constructions. We present a detailed analytical and quantitative evaluation in
Section 8. When any system is realized as a practical implementation, some issues
(such as timing attacks) outside the scope of the security model must be considered.
We discuss these issues in Section 9, and conclude in Section 10.

2. OVERVIEW OF PEREA-BASED SCHEMES
Before diving into the technical details of our solution in the following sections, we
now provide an accessible overview of our constructions. PEREA-based schemes use

8 Wikipedia Statistics, Edits per day: http://stats.wikimedia.org/EN/PlotsPngDatabaseEdits.htm
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a cryptographic accumulator (described in Section 2.2) to represent a blacklist, but
because PEREA-based schemes have no TTP, the application is not straightforward.
We start by describing our security goals, and then describe the limitations of existing
accumulator-based schemes, followed by a high-level overview of both PEREA and our
extension PEREA-Naughtiness.

2.1. Security Goals for PEREA-based schemes
We now describe the security properties needed by PEREA-based schemes. Here we
give informal descriptions of these properties and refer the interested reader to Sec-
tion 6 for a formal definition of these properties.

PEREA-based schemes must have the basic property of misauthentication resis-
tance, i.e., no unregistered user should be able to authenticate. PEREA-based schemes
must also support revocability, i.e., users blacklisted within the revocation window
should not be able to authenticate successfully. Furthermore, any coalition of revoked
and/or unregistered users should not be able to authenticate successfully.

The anonymity property requires that SPs should not be able to identify authen-
ticating users within the anonymity set of registered users and their authenticated
connections should be unlinkable. The SP should be able to infer only whether the
authenticating user is revoked or not. We also require identity-escrow freeness, i.e.,
there should exist no TTP that can infer the identity or pseudonym of a user behind
an authentication.

Backward unlinkability [Ateniese and Tsudik 1999] requires that upon revocation,
all the user’s past authentications should remain anonymous and unlinkable. Revo-
cation auditability requires that users should be able to check their revocation status
before performing any actions at the SP. This property avoids the situation in which a
malicious SP recognizes a user as being revoked without the user being aware of his
or her reduced privacy.

2.2. Accumulators
A dynamic accumulator (going forward, we will call it an accumulator), is a constant-
size cryptographic construct that represents set membership. Elements may be added
to (i.e., accumulated) or removed from the accumulator. Furthermore, anyone (with-
out the secret key to the accumulator) can prove in zero knowledge that a certain
element is ‘in’ the accumulator if and only if the element has indeed been accumu-
lated. There seem to be two relatively straightforward ways to apply accumulators to
anonymous authentication. In the whitelisting approach each user is associated with
a unique pseudonym and authenticates himself/herself by proving in zero knowledge
that his/her pseudonym is in the accumulator [Camenisch and Lysyanskaya 2002a].
Offending users could be removed from this whitelist. On the other hand, in the black-
listing approach, offending users are added to the accumulator, and the authenticating
user proves his/her pseudonym is not in the accumulator [Li et al. 2007]. In both of
these approaches, authentication is performed in constant time at the server.

Why current approaches fail. The limitation of current accumulator-based ap-
proaches is that someone must add or remove pseudonyms from the accumulator. In
existing schemes the user must provide the SP with his/her pseudonym encrypted
with a TTP’s key. The SP can revoke that user’s access by providing the user’s en-
crypted pseudonym to the TTP, which then decrypts and adds or removes (depending
on whether the accumulator is a blacklist or whitelist) the pseudonym from the accu-
mulator. Optionally, the TTP can announce the pseudonym to the SP, who then updates
the accumulator itself. As mentioned earlier, we seek to eliminate TTPs that can iden-
tify (or link the individual actions of) a user, and therefore current accumulator-based
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Fig. 1. (1) User Alice obtains the SP’s blacklist and (2) updates her list of witnesses (w0, . . . , w
K�1) for the

tickets (t0, . . . , t
K�1) in her queue. (3) Alice generates ticket t

K+1 for use in the next authentication and
constructs the new queue (t1, . . . , t

K+1). (4) Alice generates a commitment C of the new queue, and sends
C and t

K

to the SP. (5) Alice proves the integrity of her datastructures in zero knowledge, and that C and
t
K

are well formed. If the proof succeeds, (6) the SP generates a new signature � for C, and computes a
witness w

K

for ticket t
K

, and (7) sends these items to the user, who (8) refreshes her list of witnesses and
stores the new queue for subsequent authentication.

solutions do not suffice. We need a solution in which pseudonyms are not added to or
removed from the accumulators.

Our use of accumulators. PEREA uses accumulators as a blacklist in a novel way. In-
stead of presenting an encrypted pseudonym during authentication, the user presents
a ticket, which is an unlinkable ‘one-show’ token generated by the user. These tickets
give users the desired unlinkability across authentications. Simply putting a ticket
into the accumulator, however, does not revoke users because users can produce any
number of new tickets (unlike systems in which users have unique pseudonyms).
PEREA solves this problem by making the user also prove in zero knowledge that
the last K tickets he/she presented are not in the accumulator. PEREA-Naughtiness
adds the extra functionality of proving that the sum of the severity of those tickets are
within a specified threshold. What follows is a high-level description of how PEREA
and PEREA-Naughtiness implement this functionality.

2.3. Overview of our construction for PEREA
In PEREA, users register with a service provider (SP) and obtain a credential for
anonymous authentication at that SP. The credential consists of various initialized
elements and data structures. Figure 1 is a pictorial representation of how these datas-
tructures are used in authentication as described in this section. All elements within
the dashed box belong to the user and are proved in zero knowledge to the SP. Ar-
rows represent the flow of information during the current authentication, and dashed
arrows represent the flow of information in preparation for the next authentication.

Authentication. As part of the authentication process, users provide the SP with a
ticket tK . Users maintain a queue of the past K authentication tickets t

0

, . . . , tK�1

in
addition to the current ticket tK , and the SP maintains a blacklist of tickets belonging
to misbehaving users. The user proves to the SP that the current ticket tK is valid, and
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that none of the previous tickets in the queue are on the SP’s blacklist. If authentica-
tion succeeds, the user generates a new blind ticket tK+1

for the next authentication,
and constructs a new queue by dropping t

0

and appending tK+1

. Once a user’s ticket
has been added to the blacklist within the revocation window, the user can no longer
authenticate and acquire new tickets for subsequent authentications.

Proving that the user is not revoked. The SP stores its blacklist in the form of an
accumulator V (as will be explained later, the blacklist is also stored and communicated
as a list). Since the SP should not be able to link any of the user’s previous transactions,
the user must prove that his/her queue of previous tickets t

0

, . . . , tK�1

has not been
blacklisted without disclosing those tickets. This proof is done in zero knowledge, in
which the user generates for each ticket ti a witness wi, which attests that ticket ti has
not been accumulated in the accumulator (representing the blacklist). While the user
must download the blacklist (O(L)) to generate these witnesses9, the accumulator-
based proof sent to the SP is of size O(K) and verification takes time O(K).

Proving the integrity of the queue. The SP needs the user to prove that none of the
user’s most recent K tickets has been revoked. A user could circumvent revocation by
fabricating a queue with an incorrect set of K tickets. The SP therefore needs to verify
the integrity of the queue; i.e., that the queue contains the correct sequence of the
most recently used K tickets. Again, this proof must be performed in zero knowledge
because disclosing a queue (of tickets) to the SP immediately links the user’s previous
actions. To prove the integrity of the queue, the user makes use of a signature obtained
from the SP in the previous authentication. Likewise, the user must now obtain a
new signature for use in the next authentication. The user provides the SP with a
commitment (a blinded queue) of the new queue, along with the current authentication
ticket tK . If authentication succeeds, the SP generates a signature of this commitment
and sends it back to the user. During the user’s subsequent authentication, the user
can prove the integrity of the new queue in zero knowledge by using the new signature
as part of the zero knowledge protocol.

Now that we have described the various aspects of our construction, we refer the
reader to Figure 1 for the actual sequence of actions during authentication.

2.4. Overview of our extension for PEREA-Naughtiness
In PEREA-Naughtiness each misbehavior on the blacklist is associated with a non-
negative integer called “severity” indicating the extent or gravity of the misbehavior.
A user is authenticated if and only if the sum of severities of his blacklisted misbe-
haviors, called “naughtiness” is less than a threshold; i.e., naughtiness is tolerated up
to a limit. An entry in the blacklist is now of the form (t, &,�t,&), where t is the ticket
associated with the misbehavior, while & is the corresponding severity, and �t,& is a sig-
nature on (t, &). The SP additionally declares a threshold naughtiness value n where
authentication succeeds only if the naughtiness of Alice is less than or equal to n.

We extend the original scheme to support naughtiness policies by making use of
commitments [Pedersen 1991]. Alice prepares commitments C

(&0)
0

, C
(&1)
1

, . . . , C
(&

K�1)

K�1

for
the severity of all tickets in her queue Q. A ticket has a severity of 0 if it is not put
in the blacklist. During the authentication protocol, Alice proves to the SP that these
commitments are correctly formed by demonstrating in zero-knowledge that exactly
one of the following is true:

— C
(&

i

)

i is a commitment of 0, Q[i] is indeed the i-th ticket in her queue and Q[i] has not
been accumulated in the accumulator that represents the blacklist;

9As we note in Section 8, blacklists in PEREA are approximately 14% the size of blacklists in BLAC.
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— C
(&

i

)

i is a commitment of severity &, Q[i] is indeed the i-th ticket in her queue, and the
blacklist contains the signature of the tuple (Q[i], &). Knowledge of a signature �t,& on
the tuple (t, &) assures the SP that a ticket t of severity & is indeed on the blacklist
and not a severity fabricated by Alice.

Thus Alice cannot lie about the severity associated with each of her tickets. If a
ticket is blacklisted, she must commit the actual severity value, and if a ticket is not
blacklisted, she commits a 0. Next, due to the homomorphic property of the commit-
ment scheme, the SP can compute

Q

C
(&)
i , which is a commitment to the naughtiness

of Alice. Finally, Alice proves to the SP in zero knowledge that the value committed in
Q

C
(&)
i is less than the threshold n.

3. BUILDING BLOCKS
We now outline the various cryptographic primitives that we use to realize PEREA-
based schemes. Readers who are not interested in the details of our cryptographic
construction and proof of security may choose to skip Sections 3–7.

3.1. Preliminaries
3.1.1. Notation and intractability assumptions. If S is a finite set, then |S| denotes its car-

dinality and a 2R S means that a is an element picked from S uniformly at random. If
`, � are integers, we denote by [`, �] the set {`, `+1, . . . , �}, by ⇤` the set [0, 2`+1

�1], i.e.,
the set of integers of size at most ` + 1 bits, by ⇧` the set {e 2 ⇤`|e is prime}, and by
�(`, �) the set [2`�1, 2`�1

+2

�
�1]. A safe prime is a prime p such that p�1

2

is also prime.
An integer N = pq is called a safe-prime product if p and q are safe primes. If N is an
integer, then QRN is the set of quadratic residues modulo N and �(N) is the Euler’s
totient of N . If A(·) is a (possibly probabilistic) algorithm, then we write a  A(·) or
A(·)! a to mean a is the output of an execution of A(·). Finally, a .

= b defines a to be b.
The security of PEREA-based schemes relies on the Strong RSA Assumption [Bari

and Pfitzmann 1997; Fujisaki and Okamoto 1997] and the Decisional Diffie-Hellman
(DDH) Assumption [Boneh 1998] over the quadratic residues modulo a safe-prime
product. Let N be a random �-bit safe prime product. The Strong RSA Assumption says
that there exists no PPT algorithm, which, on input N and u 2 Z⇤

N , returns e > 1 and
v such that ve = u mod N , with non-negligible probability (in �). The DDH Assump-
tion over QRN says that there exists no PPT algorithm which, on input of a quadruple
(g, ga, gb, gc) 2 QR4

N , where a, b 2R Z|QR
N

|, and c 2R Z|QR
N

| or c = ab with equal prob-
ability, correctly distinguishes which is the case with probability non-negligibly (in �)
greater than 1/2.

3.1.2. ZKPoK protocols. In a Zero-Knowledge Proof-of-Knowledge (ZKPoK) proto-
col [Goldwasser et al. 1989], a prover convinces a verifier that some statement is true
without the verifier learning anything except the truth of the statement. In many ex-
isting anonymous credential systems, a client uses some variants of ZKPoK protocols
to prove to a server her possession of a credential during an authentication without
revealing the credential. PEREA-based schemes make use of ZKPoK protocols.

We follow the notation introduced by Camenisch and Stadler [1997]. For example,
PK {(x) : y = gx} denotes a ZKPoK protocol that proves the knowledge of an integer x
such that y = gx holds. Symbols appearing on the left of the colon denote values whose
knowledge is being proved while symbols appearing on the right, but not the left, of
the colon denote public values.
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A:10 PEREA: Practical TTP-Free Revocation of Repeatedly Misbehaving Anonymous Users

3.2. Tickets and queues
In PEREA-based schemes, a user picks a ticket uniformly at random from the set ⇧`

t

,
where `t is a security parameter. For example, there are at least 2224 tickets in this set
when `t = 230

10.
For a reasonably large number, say 2

40, of randomly picked tickets from the set of
size 2

224, the probability that two of them collide is approximately 2

�112 due to the
birthday paradox. We set the ticket domain to be T

.
= [�2

`
T

+ 1, 2`T � 1], where `T > `t
is another security parameter. 11

A queue of size k is a sequence of k tickets. The domain of all k-sized queues is thus
Qk

.
= T

k. A queue supports the enqueuing (Enq) and dequeuing (Deq) operations in
the usual sense. We denote by Q[i] the i-th least recently enqueued ticket in Q, with
i = 0 being the least recent (oldest). In PEREA-based schemes, all queues are of size
(K+1), where K is the revocation window as explained before. We therefore sometimes
abbreviate their domain QK+1

as simply Q.

3.3. Proving that a user is not revoked
3.3.1. An accumulator scheme for tickets. PEREA-based schemes make use of universal

dynamic accumulators (UDAs) recently introduced by Li et al. [2007]. Compared to
conventional dynamic accumulators (DAs), UDAs additionally allow for an efficient
zero-knowledge proof of non-membership. Specifically, for any input x (within some
domain) that has not been accumulated into an accumulator value V, anyone can prove
to anyone else that this is indeed the case without revealing x in such a way that
the time for the verifier to check the proof is independent of the number of inputs
already accumulated into V.12 In PEREA-based schemes, the SPs blacklist users by
accumulating their tickets into UDAs.

The following describes a construction of UDAs we adapted from the one due to Li et
al. The differences are mostly at the presentation level; we make notational changes
and retain only the functionality needed by PEREA-based schemes. We call the modi-
fied scheme TicketAcc.

Key generation. On input security parameter paramacc = `N, choose an `N-bit safe-
prime product N = pq uniformly at random, pick g 2R QRN, and output the accumu-
lator private key skacc = �(N) and public key pkacc = (`N,N, g). pkacc is an implicit
input to all the algorithms below.
The accumulator allows any input in the domain X

.
= {x 2 X

0
|x is prime} to be

accumulated, where X

0
= [0, 2`x) with `x = b`N/2c � 2. The choice of `N, `t should

ensure ⇧`
t

⇢ X .
Accumulating tickets. Accumulating ticket t 2 T to an accumulator value V can be
computed as:

Accumulate(V, t)! V0 .
= Vt

mod N. (1)

Let ST = {t
1

, t
2

, . . . , tL} ⇢ T . We overload

Accumulate(V,ST ) (2)

to mean the repetitive invocation of Accumulate to accumulate tickets t
1

, t
2

, . . . , tL,
one at a time. An accumulator value is initially g. The accumulator value V resulting

10This follows from a result due to Dusart [Dusart 1999]: if ⇡(x) is the number of distinct primes less than
x, then ⇡(x) > x

ln x

�
1 + 0.992

ln x

�
for all x > 598.

11Note that T ) ⇧
`

t

. This allows a user in PEREA to employ the more efficient range proof, which is not
tight, to prove in zero knowledge to the SP that she knows some ticket in T .
12The time required for the prover depends on the number of inputs already accumulated though.
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from accumulating ST is thus:

Accumulate(g, ST )! V .
= gt1t2···tL

mod N. (3)

We abbreviate the above as Accumulate(ST ).
Non-membership witnesses. If V = Accumulate(ST ) for some ST ⇢ T and t 2 T \ST ,
then there exists a non-membership witness w in the form (a, d) 2 Zb N

4 c
⇥QRN for t

with respect to V such that 1 = IsNonMember(t,V, w), where

IsNonMember(t,V, (a, d)) .
=

⇢

1, if Va
⌘ dtg,

0, otherwise. (4)

As we will see soon (in Section 3.3.2), the witness w for a ticket t with respect to an
accumulated value V allows a prover to convince a verifier that t was not accumu-
lated in V, without revealing t or w.
We sometimes simply call non-membership witnesses “witnesses”.
Computation of non-membership witnesses. If V = Accumulate(ST ) for some ST ⇢

T , then for any t 2 T \ST , one can compute, using knowledge of skacc, a witness
w = (a, d) for t with respect to V:

ComputeWitness(t,V, skacc, ST )! w (5)

so that 1 = IsNonMember(t,V, w). The non-membership witness w can be computed
with or without the accumulator private key skacc = �(N). The former, which is more
efficient, is employed by PEREA-based schemes and is reviewed below. On input of
a value t, one first checks whether t /2 ST . Let u =

Q

t2S
T

t and u0
= u mod �(N). If

gcd(t, u0
) = 1, one finds a and b such that au0

+ bt = 1, and sets the non-membership
witness w for t as (a, g�b

mod N). If gcd(t, u0
) 6= 1, one finds a and b such that

au+bt = 1, and sets the non-membership witness w for t as (a, g(�b mod �(N))

) mod N).
The value u0 can be stored to speed up future computation. Note that with the
knowledge of skacc, it is possible to create a false non-membership witness, that
is, a non-membership witness for t can be computed even if t 2 ST .
Update of non-membership witnesses. Given a witness w such that 1 =

IsNonMember(t,V, w), when V gets updated to V0 via the accumulation of a
new ticket t0 2 T \{t} into it (i.e., V0

= Accumulate(V, t0)), anyone can compute,
without the knowledge of skacc, a witness w0 for the same ticket t with respect to the
updated accumulated value V0 (i.e., 1 = IsNonMember(t,V0, w0

)) as:

UpdateWitness(w, t,V, t0)! w0 (6)

Let w = (a, d) be the non-membership witness for t with respect to V. The new non-
membership witness ŵ = (â, ˆd) for t with respect to V0 can be computed as follows.
One finds a

0

, r
0

such that a
0

t0+ r
0

t = 1. This is possible since the tickets are distinct
primes. This implies a

0

at0 + r
0

at = a. One then sets â = a
0

a mod t and finds r such
that ât0 = a + rt. Finally, one computes ˆd = dVr and sets ŵ = (â, ˆd). To see ŵ is the
new non-membership witness, it is true that

V0â
= Vât0

= Va+rt
= dtgVrt

= (dVr
)

tg =

ˆdtg

If t 2 T \ST for some ST ⇢ T , we overload

UpdateWitness(w, t,V, ST ) (7)

to denote the repetitive invocation of UpdateWitness to update w for t when tickets
in ST are accumulated into V, one at a time.
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A:12 PEREA: Practical TTP-Free Revocation of Repeatedly Misbehaving Anonymous Users

The complexity of the operations in Equations 1, 4, and 6 is O(1), i.e., independent of
the number of tickets accumulated into V. The complexity of those in Equations 2, 3, 5,
and 7 is thus O(|ST |).

3.3.2. Proof that a ticket is not accumulated. To prove in zero knowledge that a ticket Q[i]
in queue Q is not accumulated in an accumulator value V, one can conduct

PK {(Q[i], w) : 1 = IsNonMember(Q[i],V, w)} (8)
using the knowledge of the corresponding witness w. The construction of the above
protocol and its security proof have been given by Li et al. [2007, §5]. The construction
has a complexity of O(1), i.e., independent of the number of inputs that have been
accumulated into V. Note that the above proof only convinces the verifier that the
prover knows a value, denoted as Q[i], that is not accumulated in an accumulator. The
proof that Q[i] is the i-th least recently enqueued ticket is addressed in Section 3.4.

3.4. Proving the integrity of the queue
3.4.1. A protocol for queue signing. In PEREA-based schemes, the SP signs user Alice’s

queue during an authentication so that the next time Alice tries to authenticate, the
server can be convinced of the queue’s integrity.

PEREA-based schemes must use a signature scheme in which Alice can request a
signature on the queue from the SP and also later prove to the SP her possession of
a valid signature on a queue without revealing the queue and the signature. Hence, a
conventional digital-signature scheme would not work.

For this purpose, we construct QueueSig, which is an adaptation of the signature
scheme for blocks of messages [Camenisch and Lysyanskaya 2002b, §4] and the proto-
col for signing blocks of committed values [Camenisch and Lysyanskaya 2002b, §6.3],
both due to Camenisch and Lysyanskaya. Our adaptation is again at the presentation
level: we think of blocks of messages as queues of tickets, and present, with notational
changes, only those parts that are relevant to PEREA-based schemes.

As will become clear, QueueSig provides the skeleton for both the Registration pro-
tocol and the Authentication protocol in PEREA-based schemes. We now describe
QueueSig.

Key generation. On input security parameters paramsig = (`N , `s, `e, `T , `, �r), the
SP chooses an `N -bit safe-prime product N = pq uniformly at random, and
b, c, g

0

, g
1

, . . . , gK 2R QRN , and then outputs the signature private key sksig = �(N)

and public key pksig = (paramsig, N, b, c, (gi)
K
i=0

).13 The SP keeps sksig private and
publishes pksig to the public. pksig is an implicit input to the algorithms below.
Request for signature. To request a signature on a committed queue Q = (ti)

K
i=0

2

Q, Alice picks r 2R �(`N , �r), commits Q:

Commit(Q, r)! C
.
= cr

K
Y

i=0

gtii mod N, (9)

and then sends the commitment C to the SP.
Proof of correctness. Alice (as the prover) then conducts the following protocol with
the SP (as the verifier) to prove that the commitment was constructed correctly:

PK {(Q, r) : C = Commit(Q, r) ^ Q 2 Q ^ r 2 R} , (10)
where R

.
= [0, 2`N ). The SP proceeds only if the protocol succeeds.

13We use N, N to denote the RSA moduli for the accumulator and the signature respectively. They can be
the same or different in PEREA-based schemes.
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Signing. The SP signs and returns to Alice a signature �̃ on C using its private key
sksig:

Sign(C, sksig)! �̃
.
= (r0, e, v), (11)

where r0 2R ⇤`
s

, e > 2

`
T

+1 is a random prime of length `e and v =

⇣

bcr
0
C
⌘

1/e mod �(N)

mod N .
Finalizing. Alice finalizes the signature �̃ = (r0, e, v) on the commitment C into a
signature � on her queue Q:

Finalize(�̃, r)! �
.
= (s := r + r0, e, v). (12)

She proceeds only if the signature verifies, i.e., Verify(Q,�) = 1, where

Verify(Q,�) =

⇢

1, if ve ⌘ bcs
QK

i=0

gtii ^ e > 2

`
e

�1,
0, otherwise. (13)

This construction of the protocol has an O(K) computational complexity at — and
an O(K) communication complexity between — Alice and the SP. The security of the
protocol requires that (1) the signatures are unforgeable and (2) the SP learns nothing
(e.g., its content, and who owns it) about the queue that it is signing. When `e > `T +2,
`s = `N + `T + ` and �r = b

`
N

�1

✏ � `c for some 1 < ✏ 2 R, these properties can be proved
to hold for sufficiently large `N , ` under the Strong RSA Assumption in virtually the
same way as Camenisch and Lysyanskaya proved theirs [Camenisch and Lysyanskaya
2002b].

3.4.2. Proof of knowledge of a signed queue. As alluded to earlier, Alice must prove to
the SP the possession of a valid signature issued by the SP for her queue, without
revealing the queue and the signature themselves. The following protocol does exactly
that:

PK {(Q,�) : 1 = Verify(Q,�) ^ Q 2 Q} (14)
A construction for the above protocol and its security proof closely follow the one for
the ZKPoK protocol for proving the knowledge of a signature on blocks of committed
values [Camenisch and Lysyanskaya 2002b, §6.3] and its security proof, respectively.
We thus omit the details. The construction has an O(K) computational complexity at
— and an O(K) communication complexity between — Alice and the SP.

3.4.3. Proof of relation between two queues. During authentication in PEREA-based
schemes, Alice updates her current queue from Q0 to Q = Q0.Enq(t⇤).Deq() for her use
during the next authentication, where t⇤ is a new random ticket. Alice must obtain the
SP’s signature on this new queue to convince the SP of its integrity during her next
authentication. On the other hand, the SP should only sign Q if it is indeed correctly
updated from Q0. The following protocol allows Alice to convince the SP that this is
indeed the case without revealing the contents of either queue:

PK

⇢

(Q0, Q, t⇤) :
Q = Q0.Enq(t⇤).Deq() ^

Q0
2 Q ^ t⇤ 2 T

�

(15)

This protocol can be constructed as follows. Alice first picks r
0

, r
1

2R �(`N , �r) and
commits both Q0 and Q according to Equation 9 and conducts the following protocol
with the SP (ranges omitted):

PK

8

<

:

(r
0

, r
1

, (ti)
K+1

i=0

) :

^

b=0,1

Cb ⌘ crb
K
Y

i=0

g
t
i+b

i

9

=

;

, (16)
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which can in turn be constructed using standard protocols for proving relations among
components of a DL representation of a group of elements [Camenisch 1998]. The con-
struction has an O(K) computational complexity at — and an O(K) communication
complexity between — Alice and the SP.

3.5. Range Proof
Two types of range proofs are employed in our constructions. Proofs that a commit-
ted value lies in a given integer interval (“interval proof” for short) [Camenisch and
Lysyanskaya 2002b, §5.2], where the prover who knows a number x in an interval I,
convinces a verifier that x lies in a larger interval J , is employed for a user to prove
to an SP that his/her ticket t 2 ⇧`

t

belongs to the larger ticket domain T . This proof
is essential for security reasons since QueueSig is unforgeable if t lies within the in-
tended message space T . On the other hand, an exact range proof is not necessary
since the goal is to guarantee the values for the SP to sign are within the designated
range. Interval proof is based on the observation that the range of a valid response in
the discrete-logarithm-based, zero-knowledge proof is related to the range of the wit-
ness given the space of the randomness and the challenge. If the randomness and the
challenge space employed in the proof is carefully chosen, then a valid response falls
within a designated range if and only if the witness is within a related interval.

Interval proof, while efficient, are insufficient in situations where a proof for an
exact range is required. In PEREA-Naughtiness, a user is required to prove to an SP
that his/her naughtiness is below a particular threshold. In this case, an exact range
proof is necessary. We employ the signature-based range proof in [Camenisch et al.
2008] since it is particularly suitable for small intervals. In a nutshell, the verifier
provides a set of “digital signatures” on the elements of the required range under a
verification key. We consider this set of digital signatures as the public parameter. For
the prover to demonstrate that a certain value committed in a commitment is within
the range, the prover proves in zero-knowledge that he/she knows a signature under
the verification key for the element committed. As the threshold of naughtiness in
PEREA-Naughtiness is rather small, this proof, which has a constant complexity, is
specifically useful. When instantiated using the signature scheme of [Camenisch and
Lysyanskaya 2002b], the protocol is secure under the Strong RSA Assumption. The
factorization-based range proof in [Boudot 2000] can also be used, but is less efficient.

4. CONSTRUCTION OF PEREA
We now provide a concise description of our construction of PEREA, making use of the
building blocks presented in Section 3. We show how this construction is extended for
PEREA-d-strikes-out and PEREA-Naughtiness in Section 5.

4.1. Server setup
The SP first decides on the size of the revocation window K based on system require-
ments. As discussed in Section 1, K will depend on how many misbehaviors from a
particular user an SP is willing to tolerate before the SP can blacklist that user. We
expect K to be small, e.g., K = 5 or K = 15.

On input parameters paramacc and paramsig as defined in Section 3, the SP then gen-
erates a key pair (skacc, pkacc) for TicketAcc and a key pair (sksig, pksig) for QueueSig

according to Section 3.3.1 and 3.4.1, respectively. The SP also picks a prime ˆt 2 ⇧`
t

,
which is used to fill a user’s queue as the default value during registration. The SP
creates a server private key serversk = (sksig, skacc), and then creates and publishes
a server public key serverpk = (K, pksig, pkacc, ˆt).
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Initially the SP’s blacklist BL is empty, i.e., BL = ;. The corresponding accumulator
value is thus V = g. Additionally, the SP maintains a ticket list TL to record tickets
that it has seen for checking the freshness of tickets.

4.2. Registration
User Alice registers with the SP to obtain a credential for PEREA authentication. Alice
must be authenticated by the SP to register.14 The registration protocol goes as follows.

(1) (Request for credential.) Alice picks t⇤ 2R ⇧`
t

and initializes her queue Q0 as
Q0

= (

ˆt, ˆt, . . . , ˆt, ˆt, t⇤) 2 Q. (17)
Next, she picks r 2R �(`N , �r) and commits Q0 as C = Commit(Q0, r). She then
sends commitment C to the SP.

(2) (Proof of correctness.) Alice (as the prover) conducts the following protocol with the
SP (as the verifier).

PK

8

<

:

(Q0, r) :

VK�1

i=0

ˆt = Q0
[i] ^

C = Commit(Q0, r) ^
Q0
2 Q ^ r 2 R

9

=

;

(18)

This protocol and hence its construction are similar to the one in Equation 10, ex-
cept that Alice has to prove additionally that the K least recent tickets in the queue
correspond to the default ticket ˆt. The SP proceeds only if this protocol terminates
successfully.

(3) (Credential issuing.) The SP creates a signature �̃ on C and computes a non-
membership witness ŵ for ˆt with respect to its current blacklist BL

0, i.e., it ex-
ecutes �̃  Sign(C, sksig) and ŵ  ComputeWitness(

ˆt,V0, skacc, BL
0
), where V0

=

Accumulate(BL

0
). The SP returns (�̃, ŵ, BL0,V0

) to Alice.
(4) (Credential finalizing.) Alice computes �0

 Finalize(�̃, r) and proceeds only if
V0

= Accumulate(BL

0
), 1 = Verify(Q0,�0

) and 1 = IsNonMember(

ˆt,V0, ŵ). She stores
her credential cred as:

cred (Q0,�0, (w0
i)

K�1

i=0

, BL0,V0
),

where wi = ŵ for all i = 0 to K � 1.

4.3. Authentication
We now describe the authentication protocol executed between user Alice and the SP.
Alice has previously registered with the SP and has hence obtained a credential, al-
though she may or may not have PEREA-authenticated to the SP before. The protocol
is executed over an SP-authenticated channel, which can be established using, e.g.,
SSL/TLS based on the SP’s certificate. We assume some out-of-band mechanism to
obtain the correct public key of the SP. We hope to eliminate the requirement of a
server-authenticated channel in the future but one must handle situations such as
session hijacking (which could result in framing), relay attacks, and so on. Schemes
such as EPID and BLAC also need to assume they can create a server-authenticated
channel in their protocols and thus they need some mechanism to obtain the server’s
public key as well.

4.3.1. Blacklist examination. Alice first obtains from the SP the current version of its
blacklist BL. This is the version of the SP’s blacklist from which the SP wants to be

14How this authentication happens is application-dependent. The SP may ask Alice to, e.g., present her
driver’s license in person, or register via a client-authenticated TLS session.
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convinced that the connecting user is absent, despite the fact that the blacklist might
get updated in the course of authentication. Alice then checks if she is revoked, i.e., if
one or more tickets in her ticket queue appear in BL. She proceeds if she is not revoked.
She drops the connection otherwise.

Denote by �

BL

.
= BL\BL

0, where BL

0 is the SP’s blacklist she last saw and saved in her
credential. �

BL

is thus the set of newly blacklisted tickets.15

4.3.2. Request for authentication. Now that Alice knows that she has not been revoked
and thus WitnessUpdate will return the updated witnesses for her queue, she requests
to authenticate. Alice picks t⇤ 2R ⇧`

t

and r 2R �(`N , �r), and computes

tK  Q0
[K]

Q  Q0.Enq(t⇤).Deq()
C  Commit(Q, r)
V  Accumulate(V0,�

BL

)

and, for i 2 [0,K),

wi  WitnessUpdate(w0
i, Q

0
[i],V0,�

BL

). (19)

She sends (tK , C) to the SP. The SP proceeds only if tK is fresh, i.e., tK 62 TL, and is
a prime in ⇧`

t

. The SP then adds tK to TL.

4.3.3. Proof of correctness. Alice (as the prover) conducts the following ZKPoK protocol
with the SP (as the verifier):

PK

8

>

>

>

>

>

<

>

>

>

>

>

:

✓

Q0,�0, (wi)
K�1

i=0

,
t⇤, Q, r

◆

:

tK = Q0
[K] ^

1 = Verify(Q0,�0
) ^

VK�1

i=0

1 = IsNonMember(Q0
[i],V, wi) ^

Q = Q0.Enq(t⇤).Deq() ^
C = Commit(Q0, r) ^

Q0
2 Q ^

˜t 2 T ^ r 2 R

9

>

>

>

>

>

=

>

>

>

>

>

;

(20)

The SP proceeds only if the ZKPoK verifies.
As explained earlier, the above protocol aims to convince the SP that (1) the connect-

ing user’s past K connections have not been blacklisted, (2) tK is a well-formed ticket
that the SP can later use to blacklist the user, and (3) C is a well-formed commitment
of the user’s next queue, a signature which allows the user to authenticate in her next
connection.

We have described in Section 3 how to construct protocols for proving individual
statements that appear in the above protocol. Constructing the above protocol is thus
fairly straightforward: we put together all the individual proofs, and make sure that
the common secrets in them are indeed the same by using a suitable commitment
scheme such as the one we used to commit a queue, and standard techniques for prov-
ing relations among components of DL representations of group elements [Camenisch
1998].

4.3.4. Credential refreshing: server actions. The SP helps Alice refresh her credential as
follows. The SP first creates a signature �̃ on the commitment C, and computes a non-
membership witness wK for tK with respect to V, i.e., it executes �̃  Sign(Q, sksig)
and wK  ComputeWitness(tK ,V, skacc, BL). The SP then sends (�̃, wK) to Alice.

15We assume for now that SPs only add entries to their blacklists, so that BL

0 ✓ BL always. We address
“unblacklisting” and blacklist manipulation in Section 9.
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4.3.5. Credential refreshing: user actions. Alice finalizes the signature �, i.e., � =

Finalize(�̃, Q, r), and checks for correctness:

1

?

= Verify(Q,�)

1

?

= IsNonMember(tK ,V, wK)

She updates cred = h(Q0,�0
), (w0

i)
K�1

i=0

, (BL0,V0
)i for her next authentication as follows.

(Q0,�0
)  (Q,�)

(w0
0

, w0
1

, . . . , w0
K�2

)  (w0
1

, w0
2

, . . . , w0
K�1

),
w0

K�1

 wK

(BL

0,V0
)  (BL,V)

4.3.6. Service Provision. Following a successful authentication, the SP serves the user
and audits the user’s behavior. The SP stores tK along with the auditing information
for potential blacklisting in the future.

4.4. Revocation
To attempt to revoke the user who provided tK , the SP updates its blacklist as BL  

BL [ {tK} and the corresponding accumulated value as V AccumulatorAdd(V, tK).

4.5. Rate limiting
Standard techniques exist to enforce rate limiting in PEREA without eroding its
guarantee on user privacy. For instance, in k-Times Anonymous Authentication (k-
TAA) [Teranishi et al. 2004], users remain anonymous and unlinkable (in an identity-
escrow-free way) so long as they authenticate within the allowable rate, i.e., at most
k times per time period. On the other hand, the SP can recognize and thus refuse
connections made by a user who has exceeded that rate limit, because authentication
attempts by the same user who has exceeded the rate limit are now linkable by the SP.
The main drawback is that a new k-TAA token is required for each time period. Alter-
natively, one can use Periodic n-Times Anonymous Authentication [Camenisch et al.
2006]. The main difference with k-TAA is that now the token can be reused in the next
time period anew. Consequently, the user is allowed to authenticate up to n times per
time period without having to obtain a new credential in each time period.

With rate limiting enforced, user Alice first authenticates to the SP using one of
the schemes suggested above, over an SP-authenticated channel. If the authentication
succeeds, then Alice then carries out a PEREA authentication over the same channel.
If this authentication also succeeds, the SP serves Alice over the same channel. Alice
should never try to connect if she has reached the allowable authentication rate.

5. SUPPORTING D-STRIKES-OUT AND NAUGHTINESS POLICIES
Extending PEREA to support d-strikes-out policies can be easily achieved by the par-
tial proof of knowledge technique due to [Cramer et al. 1994]. Briefly, in PEREA-d-
strikes-out, the user computes, additionally, commitments of his/her K tickets, and
proves to the SP in zero knowledge that at least d out of K of the commitments opens
to a ticket that has not been accumulated. Additional work at the user’s side is the
construction of K commitments as well as the proof of their correctness, which re-
quires 2K multi-based exponentiations (EXPs). The additional work at the SP side is
the verification of the correctness of the K commitments, which requires K EXPs.

Extending PEREA-d-strikes-out to support naughtiness policies is non-trivial, and
so we focus on the construction of PEREA-Naughtiness in this section. We compare
the performance of PEREA-d-strikes-out and PEREA-Naughtiness in Section 8.2. Our
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extension does not alter the asymptotic time and communication complexities of the
authentication protocol.

5.1. Blacklist examination
Alice first obtains from the SP the current version of its blacklist BL and the threshold
n. Recall, an entry in the blacklist is now of the form (t, &,�t,&), where t is the ticket
associated with the misbehavior, while & is the corresponding severity and �t,& is a
signature on (t, &). The SP additionally declares a threshold naughtiness value n where
authentication succeeds only if the naughtiness of Alice is less than or equal to n.
Alice then checks if she is revoked, and proceeds if she is not revoked. She drops the
connection otherwise.

5.2. Request for authentication
Now that Alice knows that she has not been revoked, she requests to authenticate.
Alice picks t⇤ 2R ⇧`

t

and r, r
1

, . . . , rK ,2R �(`N , �r), and then computes

tK  Q0
[K]

Q  Q0.Enq(t⇤).Deq()
C  Commit(Q, r)
V  Accumulate(V0,�

BL

)

and, for i 2 [0,K),

C
(&

i

)

i =

⇢

Commit(&i, ri), if (Q0
[i], &i, ·) 2 BL,

Commit(0, ri), otherwise. (21)

wi  UpdateWitness(w0
i, Q

0
[i],V0,�

BL

). (22)

The superscript (&i) in C
(&

i

)

i is 0 if (Q0
[i], ·, ·) is not in BL.

She sends (tK , C, C
(&0)
0

, . . . , C
(&

K�1)

K�1

) to the SP. The SP proceeds only if tK is fresh, i.e.,
tK 62 TL, and is a prime in ⇧`

t

. The SP then adds tK to TL.

5.3. Proof of correctness
Alice (as the prover) conducts the following ZKPoK protocol with the SP (as the veri-
fier):16

PK

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

✓

Q0,�0, t⇤, Q, r,
(wi, ri,�Q0

[i],&
i

, &i)
K�1

i=0

◆

:

tK = Q0
[K] ^

1 = Verify(Q0,�0
) ^

Q = Q0.Enq(t⇤).Deq() ^
C = Commit(Q, r) ^

Q0
2 Q ^

˜t 2 T ^ r 2 R ^

0

B

B

@

✓

1 = IsNonMember(Q0
[i],V, wi) ^

C
(&

i

)

i = Commit(0, ri)

◆

_

✓

1 = Verify(�Q0
[i],&

i

, Q0
[i], &i) ^

C
(&

i

)

i = Commit(&i, ri)

◆

1

C

C

A

K�1

i=0

^

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

(23)

16We abuse the notation and use Verify(·, ·) to denote the verification equation for QueueSig as well as the
signature used to sign the tickets and their corresponding severities in the blacklist.
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PK
n

(⇠, r⇤) :

K�1

Y

i=0

C
(&

i

)

i = Commit(⇠, r⇤) ^ 0  ⇠  n
o

(24)

The SP proceeds only if the ZKPoK verifies.
The above protocol aims to convince the SP that (1) C

(&
i

)

i is the severity of misbe-
havior of the connecting user’s past K connections (a connection that is not blacklisted
has a severity of 0), (2) tK is a well-formed ticket that the SP can later use to blacklist
the user, (3) C is a well-formed commitment of the user’s next queue, a signature on
which allows the user to authenticate in her next connection, and (4)

QK�1

i=0

C
(&

i

)

i is a
commitment to the sum of the severities of the user’s past K connections, which is less
than n.

6. FORMAL SECURITY DEFINITIONS
We now give formal definitions of security for PEREA-Naughtiness (recall PEREA and
PEREA-d-strikes-out are special cases), and then prove the security of our construc-
tions in Section 7. We use a simulation-based approach to define the security notions.17

First we summarize the ideas of the model.
In the real world there are a number of players who communicate via cryptographic

protocols. Then there is an adversary, A, who controls the dishonest players in the
system. We also have an environment, E , that provides the inputs to the honest players
and receives their outputs. E also interacts freely with the adversary A.

In the ideal world, we have the same players. However, they do not communicate di-
rectly. Rather, there exists a trusted party T who is responsible for handling all inputs
and outputs for all players. Specifically, T computes the outputs of the players from
their inputs by applying the functionality the cryptographic protocols are supposed
to realize. The environment E again provides the inputs to, and receives the outputs
from, the honest players, and interacts arbitrarily with A who controls the dishonest
players.

Next, we describe the functionalities of PEREA-Naughtiness in the real world as
well as the ideal world. We consider a static model in which the number of honest and
dishonest users, together with SP, have been fixed earlier. We use UHU , UAU to denote
the set of honest users and dishonest users respectively. Let UU = UHU [ UAU denote
the set of all users. We assume all the dishonest parties are under the control of a
single PPT algorithm A. The environment, E , provides the input to, and receives the
outputs from, all the players (users and SP). E can also interact with A freely. The
following functionalities are supported. We use the word event to denote the execu-
tion of a functionality. We remark that all communications with T are not anonymous,
meaning that T knows the identity of the communicating party. It is also assumed
that communication between honest parties is not observed by the real-world adver-
sary and that when the real-world adversary receives a message, it does not learn the
origin of the message. E can freely schedule any of the events, with the restriction that
the first event must be INIT and it can only be run once. The communicating players
receive a unique transaction identifier tid, generated by the environment E . Players
controlled by A can deviate from the specification of the functionalities freely.

17Note: The definition we give does not entail all formalities necessary to fit into the universal composability
(UC) framework [Canetti 2001]; our goal here is to prove the security of our construction. The UC framework
allows proving the security of schemes that remain secure when composed with other schemes, which we do
not attempt to prove here.
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— INIT(tid(INIT),UHU ,UAU , bSP ). The system begins when E specifies the number of
honest and dishonest users in the system. The bit bSP indicates whether the SP in
the system is honest or not.

Real World. The SP generates a key pair (spk, ssk). The public key spk is made
available to all players in the system.
Ideal World. The trusted party T initializes a set U , which is used to record the
registration status as well as the past K authentications of users in UU .

— REG(tid(REG), i). E instructs a user i 2 UU to register with the SP. Note that this
procedure is not anonymous in the view of the SP.

Real World. User i sends a request for registration tid

(REG) to the SP. The
user, as well as the SP, outputs individually the outcome of this transaction
(tid

(REG), success/failure) to E . If user i has obtained a credential in previous
registration event, an honest SP would reject the request. Note that since this
procedure is not anonymous in the view of the SP, the SP can identify duplicated
requests from the same user. On the other hand, an honest user would discard
the second credential it obtains from the SP if it has successfully registered in a
previous registration event.
Ideal World. User i sends a registration request, tid(REG), to T , T sends tid(REG)

to the SP and informs him/her that user i would like to register for a credential,
together with a bit to indicate if user i has successfully obtained a credential
before. The SP returns (accept/reject) to T , who forwards it back to the user.
Note that an honest SP will always output reject if T ’s bit indicates user i
has obtained a credential before. If the SP returns accept and no tuple (i, ·, ·)
exists in the set U , T appends (i, tid(REG), Qi) to the set U , where Qi is a queue
of size K whose elements are all ? initially. Otherwise, T does not alter U .
The user, as well as the SP, output individually the outcome of this transaction
(tid

(REG), success/failure) to E .
— AUTH(tid

(AUTH), i, n). E instructs user i 2 UU to authenticate to the SP and instructs
the SP to use a threshold n. (For PEREA, n = 1. For PEREA-d-strikes-out, n = d.)

Real World. User i sends a request for authentication tid

(AUTH) to the SP. In
the first step, the SP sends the current version of the blacklist BL to user i.
The user, as well as the SP, output individually the outcome of this transaction
(tid

(AUTH), success/failure) to E .
Ideal World. User i sends an authentication request tid

(AUTH) to T , T in-
forms the SP that an anonymous user would like to authenticate, the cor-
responding transaction identifier being tid

(AUTH). The SP returns BL =

(tid

(AUTH)

1

, s
1

), (tid
(AUTH)

2

, s
2

), . . . to T . T checks his set U and locates an en-
try (i, tid(REG), Qi). T computes the naughtiness N of user i, where N =

P

t=tid

(AUTH)
j

^t2Q
i

sj . If no (i, tid(REG), Qi) exists (user i has not registered) or
N > n (user i does not satisfy the authentication policy), T returns (BL,?) to
user i and (BL,>) otherwise. The user replies with a bit to indicate if he/she
chooses to proceed. The SP and user do not output anything if the user chooses
not to proceed in this case. If user i chooses to proceed, T sends a bit to the
SP indicating whether the underlying authenticating user satisfies the au-
thentication policy or not. The SP replies with success/failure to T , and
T forwards the result to user i. If the SP replies with success, T invokes
Qi.Enq(tid

(AUTH)

).Deq() if an entry (i, tidREG, Qi) exists in U and does nothing
otherwise. The user, as well as the SP, output individually the outcome of this
transaction (tid

(AUTH), success/failure) to E .
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— REV(tid(REV), tid(AUTH), s). E instructs the SP to add the authentication identified
in tid

(AUTH) to its blacklist with severity s. (For PEREA and PEREA-d-strikes-out,
s = 1.)

Real World. If tid

(AUTH) corresponds to an authentication event such that the
SP outputs success, the SP obtains the corresponding ticket t. If (t, ·) does not
exist in BL, the SP appends (t, s) to it. Otherwise, the request is ignored. The
SP outputs (tid

(REV), success/failure) to E upon completion of the algorithm
to indicate whether (t, ·) is added to BL successfully.
Ideal World. T checks if tid(AUTH) corresponds to an AUTH event such that the
SP outputs success. If yes, it checks if there is already an event REV(tid(AUTH), ·)
where SP returns accept. T informs the SP of the results of the check and for-
wards (tid

(AUTH), s) to the SP. The SP returns accept/reject to T to indicate
if the request is accepted. The SP also outputs (tid

(REV), success/failure) to E ,
indicating if the ticket is added successfully or not.

Ideal world PEREA-Naughtiness provides all the desired security properties. Firstly,
all the transactions, in the view of the SP, are anonymous. T only informs the SP some
anonymous user would like to authenticate and thus anonymity and backward un-
linkability is guaranteed. Secondly, T verifies if the authenticating user has registered
successfully and checks if the naughtiness of the user is below the threshold specified
by the SP and thus misauthentication resistance and revocability are assured. Finally,
T informs the user if he/she satisfies the authentication policy before proceeding to the
authentication and thus revocation auditability is achieved.

We now formally define the security of PEREA-Naughtiness through comparison
of the behavior of PEREA-Naughtiness with the ideal world specification. PEREA-
Naughtiness is secure if for every real world adversary, A, and every environment,
E , there exists an ideal world adversary, S, controlling the same players in the ideal
world as A does in the real world such that, E cannot tell whether it is running in the
real world interacting with A or it is running in the ideal world interacting with S,
which has black-box access to A as stated in Definition 6.1.

Let � be a security parameter. We say a function negl(�) is a negligible function in �,
if for all polynomials f(�) and for all sufficiently large �, negl(�) < 1/f(�). If A and B
are functions of �, we say A(�) is non-negligibly larger (in �) than a B(�) if A � B is
not negligible as a function of �.

Definition 6.1 (Security). Let RealE,A(�) (resp. IdealE,S(�) ) be the probability that
E outputs 1 when run in the real world (resp. ideal world) with adversary A (resp. S
having black-box access to A). PEREA-Naughtiness is secure if for all PPT algorithms
E , A, the following expression holds:

|RealE,A(�)� IdealE,S(�)| = negl(�)

7. PROOFS OF SECURITY
We analyze the security of our construction for PEREA-Naughtiness (presented in Sec-
tion 5) since PEREA and PEREA-d-strikes-out are special cases of this construction.
PEREA-Naughtiness has misauthentication resistance, revocability, anonymity, back-
ward unlinkability and revocation auditability. We state the following theorem first
and then sketch its proof.

THEOREM 7.1. Our construction for PEREA-Naughtiness is secure under the
Strong RSA Assumption and the DDH Assumption over quadratic residues modulo
a safe-prime product.
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The security of our PEREA-Naughtiness construction is analyzed by proving indis-
tinguishability between an adversary’s actions in the real world and the ideal world.
The idea of the proof is that given a real world adversary A, we show how to construct
an ideal world adversary S such that no PPT environment E can distinguish whether it
is interacting with A or S. The proof is divided into two cases according to the subset of
players controlled by A. In the first case, A controls the SP and a subset of users while
in the second case, only a subset of users is dishonest. The first case covers the security
requirements identified in Section 2.1 of anonymity, backward unlinkability and revo-
cation auditability, while the second case covers the properties of misauthentication
resistance and revocability. For instance, the properties of anonymity and backward
unlinkability should continue to hold in the presence of a malicious SP.

We prove the theorem by proving the following lemmas handling the relevant com-
binations of parties controlled by the adversary.

LEMMA 7.2. For all PPT environments E and all real world adversaries A control-
ling a subset of users, there exists an ideal world simulator S such that

|RealE,A(�)� IdealE,S(�)| = negl(�).

PROOF. We define a simulator S which interacts with E as an adversary, and at the
same time having black-box access to a real world adversary A. S represents E , the
honest SP and honest users to A. Note that S will be maintaining a list of ‘current’
credentials issued to A during the lifespan of the system. On the other hand, S acts as
an ideal world adversary to the trusted party T . We restate the goal of S here: for any
PPT A and E , S ’s goal is to provide a view to E such that E cannot distinguish whether
it is interacting with S or A. Firstly, S simply forwards any messages between E and
A. Next, we specify how S responds to each possible event.

— INIT(tid(INIT),UHU ,UAU , 0). The system begins when E specifies the number of hon-
est and dishonest users in the system. The bit 0 indicates that the SP in the system
is honest.

Representing Honest SP to A. S generates a key pair (spk, ssk). The public key
spk is given to A.
Representing Dishonest Users to T . In this event, T gives no output to S.

— REG(tid(REG), i). E instructs a user i 2 UU to register with the SP.
Representing honest user i to the honest SP. If i 2 UHU , S does not need to do
anything.
Representing dishonest user i to T / the honest SP to A. Upon receiving tid

(REG)

from A on behalf of user i such that i 2 UAU , S rejects if user i has obtained a
credential from previous transactions. Otherwise, S extracts from A the val-
ues (Q0, r) in Equation 18. If the extraction fails, S aborts. Otherwise, S sends
tid

(REG) for an registration request to T on behalf of user i. Upon receiving
accept from T , S issues a credential cred to A according to the protocol. Since
S has extracted (Q0, r), it can compute the finalized credential cred as well. S
stores credi as the current credential of user i. S forwards the protocol outcome
(tid

(REG), success/failure) from A on behalf of user i to E .
— AUTH(tid

(AUTH), i, n). E instructs user i 2 UU to authenticate to the SP and instructs
the SP to use a threshold n.

Representing honest user i to the honest SP. If i 2 UHU , S does not need to do
anything.
Representing dishonest user i to T / the honest SP to A. If i 2 UAU , S does not
know which credential A is using for the authentication. For instance, while
E specifies user i to perform the authentication, it is entirely possible for A to
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use the credential from another dishonest user say, ˆi, to perform the authenti-
cation. Nonetheless, upon receiving tid

(AUTH) from A, S submits tid

(AUTH) to T

on behalf of user i. Upon receiving the reply from T (BL,? />), S reconstructs
the blacklist based on BL = {(tid

(AUTH)

1

, s
1

), (tid
(AUTH)

2

, s
2

), . . .}. Specifically, for
any (tid

(AUTH)

i , si) 2 BL such that tid

(AUTH) corresponds to an authentication
event of a dishonest user, S appends (ti, si) to the re-constructed blacklist BL

0,
where ti is the ticket during the authentication identified by tid

(AUTH). For any
tid

(AUTH)

i involving an honest user, S appends (ti, si) to BL

0 where ti is a random
value generated from the ticket domain. S sends the reconstructed blacklist
BL

0 as the blacklist to A. If A chooses not to proceed, S replies to T on behalf
of user i that he/she will not proceed. If A chooses to proceed, then S has to
locate the ‘actual’ user index, ˆi, for which A is using, so as to perform the corre-
sponding action on behalf of user ˆi to T . To achieve this, S extracts the values
(Q0,�0, (wi, ri, &i)

K�1

i=0

, t⇤, Q, r, ⇠, r⇤) in Equation 23 and 24 from A and uses them
to locate the index ˆi of the user. Note that this requires S to store the creden-
tials cred of all users and searching for a credential cred

ˆi that contains �0. If
the extraction fails, or S cannot locate the index ˆi, S aborts. Otherwise, S sends
tid

(AUTH) to T for an authentication request on behalf of the dishonest user ˆi. S
forwards the protocol outcome (tid

(AUTH), success/failure) from A on behalf of
user i to E . Denote by FAIL the event that the output of an honest SP interacting
with A is different to the outcome of the honest SP interacting with S through
T in the ideal world.

— REV(tid(REV), tid(AUTH), s). E instructs the SP to add the authentication identified
in tid

(AUTH) to its blacklist with severity s. S does not need to do anything in this
event.

If S does not abort and the event FAIL never occurs, the output of the honest users
and the SP, as well as the dishonest users represented by S in the ideal world, is the
same as those output by the honest users and the SP, together with the dishonest users
represented by A in the real world. That is,

RealE,A(�) = IdealE,S(�)

It remains to be shown that the probability that S aborts or the event FAIL oc-
curs is negligible. The following are all the possible cases when S aborts or event
FAIL occurs. Recall that the security parameter � consists of the following lengths
(`N , `s, `e, `T , `, �r). Suppose there are qR and qA registration and authentication
events. Further suppose the maximum advantage in breaking the soundness of the
ZKPoK protocol is AdvPK

(�) for any PPT adversary. In our construction, we take
{0, 1}` as the challenge space for our ZKPoK protocols and AdvPK

(`) = 2

�`.

(1) During a REG event from A, S fails to extract from A the tuple (Q0, r) in the proof
of knowledge in Equation 18. This happens with probability AdvPK

(`). Probability
that none of these extractions fail in all qR REG events is bounded by qR · 2

�`.
(2) During a successful AUTH event from A, S fails to extract from A the values

(Q0,�0, (wi, ri, &i)
K�1

i=0

, t⇤, Q, r, ⇠, r⇤) in the proof of knowledge in Equation 23 and 24.
This happens with probability AdvPK

(`). Likewise, probability that none of these
extractions fail in all qA AUTH events is bounded by qA · 2

�`.
(3) Let FORGE denote the event that there exists a successful AUTH event from A

such that the extracted values (Q0,�0, (wi, ri, &i)
K�1

i=0

, t⇤, Q, r, ⇠, r⇤) involve a queue
Q0 that has never appeared as an extracted value in a previous REG event as
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(Q0, ·) or AUTH event as (·, ·, (·, ·, ·)K�1

i=0

, ·, Q0, ·, ·, ·). This happens the case when A

has forged a signature �0 on the queue Q0 (which also includes the case when
A has been able to open the committed value in two different ways). The simu-
lator S could setup a reduction to break the unforgeability of the CL signature
if event FORGE happens. Specifically, S is given the signing oracle of the CL
signature, and shall use the oracle to responds to the REG and AUTH events.
If event FORGE happens, S obtains a new signature on message that has not
been submitted to the signing oracle. Thus, the probability of success is equiva-
lent to the probability that FORGE happens. S has made at most qR + qA queries
to the signing oracle and thus event FORGE happens with probability at most
AdvCL

(qR + qA,K + 1,�), where AdvCL
(q,K + 1,�) denotes the maximum ad-

vantage of any PPT adversary in forging a CL signature after making q signa-
ture queries on a block of K + 1 messages. It has been proven in [Lysyanskaya
2002] AdvCL

(qR + qA,K + 1,�)  (2(K + 1))(8(qR + qA)) · AdvSRSA
(`N ) where

AdvSRSA
(`N ) denotes the maximum advantage of any PPT algorithm in solving

the strong RSA problem of modulus N of length `N . Thus, event FORGE happens
with probability less than (16(K + 1)(qR + qA)) ·AdvSRSA

(`N ).
(4) During a successful AUTH event from A, the extracted values

(Q0,�0, (wi, ri, &i)
K�1

i=0

, t⇤, Q, r, ⇠, r⇤) do not satisfy the relationship: 0  ⇠  n;
or for i = 0 to K � 1, neither of the following two relationships is satisfied:

1 = IsNonMember(Q0
[i], V, wi)

or the relationship:
1 = Verify(�t,&

i

, Q0
[i], &i).

In this case event FAIL occurs. This represents the case when A has been able to
do any of the following: (1) fake the signature-based range proof of ⇠ described in
Section 3.5 in Equation 24, (2) generate a non-membership witness of a member,
or (3) existentially forge a signature �t,&

i

on a tuple (Q0
[i], &i) chosen by A. Case (1)

happens with probability AdvCL
(nmax,�), where AdvCL

(q,�) denotes the max-
imum advantage of any PPT adversary in forging a CL signature after making
q signature queries of messages. It has been proven in [Camenisch and Lysyan-
skaya 2002b] that AdvCL

(q,�)  (8q) ·AdvSRSA
(`N ). Thus, Case (1) happens with

probability less than 8(nmax) ·AdvSRSA
(`N ), where nmax is the maximum thresh-

old value for naughtiness. Case (2) happens with probability AdvAcc
(`N ), where

AdvAcc
(`N ) denotes the maximum advantage of any PPT adversary in breaking

the security of the universal accumulator (creating a non-membership witness for
a member). It has been shown in [Li et al. 2007] AdvAcc

(`N )  AdvSRSA
(`N ).

Case (3) happens with probability AdvCL
(qA, 2,�)  (32qA) · AdvSRSA

(`N ). Note
that the value qA appears because it is the upper bound of |BL|. Thus, event FAIL
happens with probability less than [8(nmax) + 1 + 32qA] ·AdvSRSA

(`N ).
(5) During an AUTH event, the re-constructed blacklist of entries (ti, si) involving an

honest user, ti appears in some other AUTH event. This represents the case the
random value ti generated by S collides with some tickets that has been used be-
fore. This happens with negligible probability if the ticket domain is large enough
and the probability is bounded by |BL|2

�`
t where |BL| is the size of that AUTH event.

Since tickets can only be added to the blacklist in PEREA-based schemes and each
ticket corresponds to an authentication event, an upper bound for this in all AUTH
events is qA2

�`
t , assuming S uses the same random entry for the same tid.

Summing up the probability for the above cases gives us the desired bound:
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(qR + qA) · 2
�`

+ qA · 2

�`
t

+ {16(K + 1)(qR + qA) + 8nmax + 1 + 32qA}AdvSRSA
(`N )

which is negligible under the Strong RSA assumption for large enough security param-
eters under the condition that the naughtiness threshold is polynomial in the security
parameter.

Thus, the simulator S aborts or the event FAIL occurs with negligible probability.
This completes our proof of Lemma 7.2.

LEMMA 7.3. For all PPT environments E and all real world adversaries A control-
ling the SP and a subset of users, there exists an ideal world simulator S such that

|RealE,A(�)� IdealE,S(�)| = negl(�).

PROOF. We define a simulator S which interacts with E as an adversary, and at the
same time having black-box access to a real world adversary A. S represents E and the
honest users to A. On the other hand, S acts as an ideal world adversary to the trusted
party T . We re-state the goal of S here: for any PPT A and E , S ’s goal is to provide the
view to E such that E cannot distinguish whether it is interacting with S or A. Firstly,
S simply forwards any messages between E and A. Next, we specify how S responds to
each possible event.
— INIT(tid(INIT),UHU ,UAU , 1). The system begins when E specifies the number of hon-

est and dishonest users in the system. The bit 1 indicates that the SP in the system
is controlled by A.

Representing Honest Users to A. S receives the public key spk from A.
Representing Dishonest SP to T . In this event, T gives no output to S.

— REG(tid(REG), i). E instructs a user i 2 UU to register with the SP.
Representing dishonest user i to the dishonest SP. If i 2 UAU , S acts on behalf of
the dishonest user and the dishonest SP to T . After that, S forwards the protocol
outcome from A on behalf of user i as well as SP to E . Note that the protocol
outcome from A is possibly different from the supposed outcome following the
protocol specification. Nonetheless, S would use A’s outcome in case there is a
difference.
Representing the dishonest SP to T / the honest user i to A. Upon receiving a
registration request (tid

(REG)
) from T on behalf of user i such that i 2 UHU ,

S engages A in the registration protocol, using the zero-knowledge simulator to
simulate the ZKPoK in Equation 18. If S fails to obtain a valid credential from
A, S replies reject to T upon receiving (tid

(REG), i) from T . S forwards the pro-
tocol outcome (tid

(REG), success/failure) from A on behalf of the dishonest SP
to E .

— AUTH(tid

(AUTH), i, n). E instructs user i 2 UU to authenticate to the SP and instructs
the SP to use a threshold n.

Representing dishonest user i to the dishonest SP. If i 2 UAU , S acts on behalf
of the dishonest user and the dishonest SP to T . After that, S forwards the
protocol outcome from A on behalf of user i as well as the SP to E . Note that the
protocol outcome from A is possibly different to the supposed outcome following
the protocol specification. Nonetheless, S would use A’s outcome in case there is
a difference.
Representing the dishonest SP to T / the honest user to A. Upon receiving an au-
thentication request (tid

(AUTH)

) from T on behalf of an anonymous user such
that i 2 UHU , S engages A in the authentication protocol and receives from A

a blacklist BL = {(t
1

, s
1

), (t
2

, s
2

), . . . , }. For all (t, ·) 2 BL, S appends (tid

(AUTH), s)
to a re-constructed blacklist BL0, where t is the ticket used in the authentication
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identified by tid

(AUTH). Upon receiving the authentication request on behalf of
an honest user from T , S replies to T with the blacklist BL

0. Note that BL

0 is
different from BL but it would not affect the authentication result for the anony-
mous user i because BL

0 contains all entries from honest users’ past authentica-
tions. If T replies with a bit indicating that the underlying user would proceed
and satisfies the authentication policy, S uses the zero-knowledge simulator to
simulate the ZKPoK in Equations 23 and 24 with a random ticket t. If A re-
jects the authentication, S replies reject to T . S forwards the protocol outcome
(tid

(AUTH), success/failure) from A on behalf of the dishonest SP to E .
— REV(tid(REV), tid(AUTH), s). E instructs the SP to add the authentication identified in

tid

(AUTH) to its blacklist with severity s. S simply forwards this to A and forwards
the protocol outcomes from A back to E on behalf of the dishonest SP.
The simulation to A is perfect due to the statistical zero-knowledgeness of the

ZKPoK protocols. Specifically, given the current choice of security parameter � such
that �r = b

`
N

�1

✏ � `c for some ✏ > 1, the statistical zero-knowledgeness of the ZKPoK
protocol we employed is bounded by 2

2

(`
N

+`)(✏�1) for each response in the proof, which
is bounded by qA · 27K ·

1

2

(`
N

+`)(✏�1)�1 and is negligible for sufficiently large security
parameter `N , ` and suitably chosen ✏.

Thus, the output of the honest users, as well as the dishonest SP and users repre-
sented by S in the ideal world is the same as those output by the honest users, together
with the dishonest SP and users represented by A in the real world. That is,

RealE,A(�) = IdealE,S(�).

This completes the proof of Lemma 7.3.

7.1. Concrete Choice of Parameter
Given the reduction, we could now suggest concrete choice of parameters.

Our goal is to provide a guarantee of security equivalent to 80-bit, 112-bit and 128-
bit respectively. We made the following assumptions.

— We assume AdvSRSA
(`N ) = 2

�118, 2�150 and 2

�166 when `N = 2734, 4592 and 5749

respectively.
— We assume qR = 2

20, qA = 2

30, |BL| < qA, K = 10, nmax = 2

12.
— Details of the tightness of reduction in BLAC is not given. Nonetheless, the key

building block, BBS+ signature, is secure if the q-SDH assumption holds where q
is the number of signatures obtained by the adversary. A closer look in the security
proof of BBS+ signature reveals that it suffers from a security loss of 1/q. Namely,
the maximum advantage in forging a BBS+ signature, after making q queries, is
bounded by O(q) · AdvqSDH

(`p), where AdvqSDH
(`p) denotes the maximum advan-

tage of any PPT algorithm that solves the q-SDH assumption in group of order p
of length `p. In terms of BLAC, q represents the number of successful registration
queries. Thus, a rough estimate states that BLAC is secure if qR · AdvqSDH

(`p) is
negligible.

— We assume AdvqSDH
(`p) = 2

�100, 2

�132, and 2

�148 when `p = 186, 249, and 281

respectively.
Table I summarizes the choice of parameters for different levels of security.

8. PERFORMANCE EVALUATION
We now evaluate the performance of PEREA-based schemes in comparison with BLAC
both analytically and quantitatively.
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Table I. Concrete Security Parameter and their Security Levels taking security
loss into account

Schemes
Security Level PEREA-based schemes (`

N

, `
s

, `
e

, `
T

, `
t

, `, �
r

) BLAC (`
p

)

80-bit (2734, 3224, 333, 330, 166, 160, 2324) (186)

112-bit (4592, 5274, 461, 458, 230, 224, 3949) (249)

128-bit (5749, 6527, 525, 522, 262, 256, 4969) (281)

Table II. Comparison of Communication and Computation Complexities

Schemes
Authentication Efficiency

Communication Computation
Downlink Uplink User (Check+Prove) Server

Accumulator-based? O(L) O(1) O(L) + O(�
L

) O(1)
BLAC/EPID O(L) O(L) O(L) + O(L) O(L)

PEREA-based schemes (this paper) O(L) O(K) O(L) + O(K�
L

) O(K)

PEREA-based schemes provide enhanced privacy like BLAC and EPID do, but the server’s com-
putation does not grow with the blacklist size; ?We use the term accumulator-based schemes to
denote schemes in which unrevoked users’ pseudonyms are placed in an dynamic accumulator. We
remark that PEREA-based schemes are less efficient than accumulator-based schemes, but they
have better privacy, since accumulators do not support privacy-enhanced revocation like the other
schemes listed here.

8.1. Complexity analysis
Table II summarizes the asymptotic complexities of PEREA-based schemes and
BLAC/EPID. The asymptotic complexity is unchanged for all PEREA-based schemes.
In both PEREA-based schemes and BLAC/EPID, the number of entries in the blacklist
grows with the number of misbehaviors, L, which can be much larger than the number
of registered users. In PEREA-based schemes users can compute witnesses efficiently
in O(�L), where �L is the size of �

BL

= BL\BL

0, i.e., the difference between the current
blacklist and the previously observed blacklist (we discuss timing attacks in Section 9).

During an authentication, PEREA-based schemes require only O(K) computation
at the server, as compared to O(L) in BLAC/EPID. This computation at the SP is the
main bottleneck in the system, and is therefore the most relevant metric for comparing
the schemes. In all schemes, the computational complexity at the user to check (via
simple bit-string comparison) if the user has been blacklisted is the same — O(L)
time. Generating the proofs takes O(L) time in BLAC/EPID, and O(K�L) in PEREA
as each of the K witnesses must be updated �L times.

Setup time at the SP and the registration between the SP and a user grow from
O(1) in BLAC/EPID to O(K) in PEREA-based schemes, but these computations are
infrequent. Revocation for all schemes requires O(1) computation at the server.

Downlink communication is linear in the size of the blacklist in all schemes, O(L).
The uplink communication complexities are the same as the computational complexi-
ties at the server: O(K) for PEREA-based schemes, O(L) for BLAC/EPID.

8.2. Quantitative analysis
Table III outlines the number of multi-based exponentiations (EXPs) in PEREA-based
schemes, where we assume each EXP multiplies up to three bases. Thus, comput-
ing

QK
i=1

geii requires dK/3e EXPs. At the user’s side, an authentication requires
(K + 1)�L + 5K + 2 · d

K+1

3

e + d

K�1

3

e + 3 and (A + 1)�L + 16K + d

K�1

3

e + 12 EXPs
respectively for PEREA and PEREA-Naughtiness, where A is the number of tickets
that do not appear in the blacklist (for our analysis we assume the worst case, i.e.,
A = K). At the SP’s side, the figures are 4K + 2 · d

K+1

3

e + 3 and 15K + d

K
3

e + 8 EXPs,
respectively.
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Table III. Quantitative Comparison of Computational Complexities
Schemes Computation

User (Check+Prove) Server
BLAC 7E1 + 2ET + (2L + 1)EG+ 1P 4E1 + 2ET + (L + 1)EG + 2P

PEREA [(K + 1)�

L

]EN1 + [5K + 2dK+1
3 e + dK�1

3 e + 3]EN2 [4K + 2dK+1
3 e + 3]EN2

PEREA-d-strikes-out [(K + 1)�

L

]EN1 + [7K + 2dK+1
3 e + dK�1

3 e + 3]EN2 [5K + 2dK+1
3 e + 3]EN2

PEREA-Naughtiness [(A + 1)�

L

]EN1 + [16K + dK�1
3 e + 12]EN2 [15K + dK

3 e + 8]EN2

Analysis of the computational complexity of BLAC, PEREA, PEREA-d-strikes-out, and PEREA-
Naughtiness.

Benchmark of the various operations given the choice of security parameters are
given below.

Table IV. Benchmark of Operations Given the Required Security levels (in ms)
Security Level EN1 EN2 E1 ET P EG

80-bit (`
N

= 2736, `
p

= 186) 11.54 20.58 3.04 6.76 22 same as E1
112-bit (`

N

= 4593, `
p

= 249) 40.64 89.63 6.77 13.24 42.61 same as E1
128-bit (`

N

= 5749, `
p

= 281) 69.96 169.97 6.99 15.12 50.46 same as E1

Due to the nature of curve generation, one cannot specify the group order. Rather,
a random curve is generated and the number of points (group order) is computed
afterwards. Thus, in the above, `

p

= 185, 247 and 289 is used for 80-bit, 112-bit and
128-bit security respectively. An element in the group can be represented by `

p

+ 1-
bit at the optimal case when the group order and the base field of the curve is of the
same size. As for `

N

, after generation of two `
N

/2-bit primes, their product is not
always of `

N

bits and thus in our experiment `
N

= 2376, 4593 and 5749 respectively.

8.2.1. Benchmarking various operations. The constants E1, ET, and EG are the times of
multi-exponentiations in G

1

, GT , and G, respectively, and P is that of pairing opera-
tions, assuming a bilinear map ê : G

1

⇥ G
2

! GT . G is an arbitrary group such that
the DDH Problem is hard in G. The benchmarks shown in Table IV are obtained on
a Lenovo X200s with an Intel Core 2 Duo CPU L9400 and 4GB RAM running Win-
dows Vista as the host. We used Oracle VirtualBox 4.0.4 to emulate a guest machine of
512MB RAM running Ubuntu 10.10. Timings of E1, ET, EG, and P are obtained using
test code based on the Pairing-Based Cryptography (PBC) library18 (version 0.5.11)
based on type D pairing. G could be an arbitrary group. For simplicity, we assume
G = G

1

, so that EG = E1. This implicitly assumes the DDH problem is hard in group
G

1

and is known as the XDH assumption. EN1 is the exponentiation of a random base
with relatively small exponent modulo N and EN2 is the multi-exponentiation of fixed
bases with full range exponent modulo N . EN1 and EN2 are the major operations in
PEREA-based schemes in which EN1 is mainly used in the update of non-membership
witnesses while EN2 is used in the normal operations for proof generation and verifica-
tion. The test code for EN1 and EN2 is written based on the MIRACL library19 (version
5.4.2) and runs directly on the Windows platform. The bases in EN2 are assumed to be
known in advance and pre-processing based on the known bases has been done, using
a storage of 35.875 MB.

8.2.2. Analysis of computation. For our quantitative analysis we use a security level of
112 bits for a fair comparison between BLAC and PEREA-based schemes. Figure 2(a)
shows the estimated authentication time at the SP for BLAC and PEREA-based
schemes for various blacklist sizes L. The time required for authentication increases
linearly for BLAC and remains constant for PEREA-based schemes. For PEREA, when

18
http://crypto.stanford.edu/pbc/

19
http://www.shamus.ie/
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K = 5, the SP takes 2.4 sec per authentication on average; when K = 10, it takes
4.4 sec. For PEREA-Naughtiness, the SP takes 7.5 sec per authentication when K = 5

and 14.4 sec when K = 10. Contrast these numbers with 67.8 sec for BLAC when
L = 10, 000 and grows to 135.5 sec when L = 20, 000. We note that if the simpler d-
strikes-out policy is implemented instead of the naughtiness policy, the computational
cost will be reduced as no zero-knowledge proof-of-knowledge of the SP’s signature on
each severity is required. For only d-strikes-out policies, therefore, the SP takes 3.4 sec
per authentication when K = 5 and 6.5 sec when K = 10. Figure 2(b) illustrates the
authentication times at the SP for PEREA-based schemes as K increases.

Figure 2(c) shows the authentication time at the user. In PEREA-based schemes,
when a new entry is added to the blacklist, users must refresh their credential
(WitnessUpdate) to take that accumulator update into account. If users wait to re-
fresh their credential until their next authentication, a large amount of time will be
spent processing all the updates. The ‘(No Updates)’ curve corresponds to this situa-
tion. In practice we expect a mode of operation where users refresh their credentials
once a day or once a week for example (note, these updates can be downloaded anony-
mously so as not to reveal when the user may have authenticated last). Thus during
an actual authentication we expect very few witness updates will be needed to accom-
modate blacklist updates since the last refreshing. We show results for “(2% New)”,
which corresponds to the situation where only 2% of the entries on the blacklist are
new since the last refreshing. BLAC is more efficient where no updates are performed,
but PEREA-Naughtiness is slightly better when only 2% of the entries have changed.

For BLAC, authentication times at the user for L = 10, 000 and L = 20, 000 are
135.5 sec and 270.9 sec respectively. The values for all PEREA-based schemes are
similar so we present the values for PEREA-Naughtiness at the user. For L = 10, 000,
with no prior witness updates, authentication at the user takes 2446.7 sec for K = 5

and 4486.1 sec for K = 10. For L = 20, 000, authentication at the user takes 4885.1 sec
for K = 5 and 8956.5 sec for K = 10. Now, if only 400 users have been blacklisted
since the user last authenticated, then for K = 5, authentication at the user takes
only 105.9 sec for K = 5 and 194.5 sec for K = 10, which are both better than BLAC.
BLAC/EPID and PEREA-based schemes in general therefore require the user to wait
for ‘a couple of minutes’ before an authenticated action takes effect at the SP. The
user can be offline during the period when the SP completes the authentication. Note
that if entries are removed from the blacklist (SPs might forgive certain misbehaviors)
periodically, users must compute their witnesses for the entire blacklist getting worst
case performance at the next credential refresh after a forgiveness cycle.

Figure 2(d) illustrates the authentication times at the SP for PEREA-based schemes
as K increases and shows the performance is the same for all PEREA-based schemes.

8.2.3. Analysis of communication. For downlink communication, in PEREA and PEREA-
d-strikes-out each entry is 230 bits, as compared to 472 bits (taking G = G

1

) in BLAC
and 10569 bits for PEREA-Naughtiness. For example, for a blacklist of size 10,000,
users would need to download 280.76 KB in PEREA, 576.17 KB in BLAC, and 12.6 MB
in PEREA-Naughtiness. For a blacklist of size 20,000, users would need to download
561.52 KB in PEREA, 1.125 MB in BLAC, and 25.2 MB in PEREA-Naughtiness. As
mentioned earlier, the time taken for all the witness updates can be amortized, and
we expect a client side process that updates blacklists periodically, downloading only
the new portion of the blacklist since the daily update. For example, if only 400 new
entries have been added to the blacklist since the last update, the size of download for
PEREA-Naughtiness is only 504 KB.

One reason for the larger download in PEREA-Naughtiness is that the extended
blacklist now contains the ticket of the misbehavior, its severity, and the SP’s signa-
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Fig. 2. PEREA-based schemes are more efficient with authentication at the SP, and outperform BLAC.
Authentication at the user is slower than BLAC, but comparable to BLAC when users periodically refresh
their credentials, and e.g., only 5% of the blacklist entries have changed since the last refreshing.

ture on each severity. Thus the functionality of naughtiness policies comes with the
overhead of larger blacklists. In today’s web, we feel that downloading a blacklist of a
few MB for an authentication (such as anonymous edits to Wikipedia pages) is within
reason, although we hope to reduce such overheads in future work. We would like to
remark that, if a simple d-strikes-out policy is to be implemented, the communication
overhead of the extension is roughly the same as that of PEREA, as each misbehavior
is now of the same severity and it is not necessary to include the SP’s signature to bind
the ticket of misbehavior and its severity. Commitments of the severities of each ticket
in the user’s queue is also unnecessary, since we would simply construct a threshold
proof, using the technique in [Cramer et al. 1994], to demonstrate fewer than d tickets
in the user’s queue are on the server’s blacklist.

9. DISCUSSION
Timing attacks. Our protocol includes an optimization in which users need to perform
computation only for the new entries in the blacklist (See Equation 19). An SP there-
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fore could link users’ connections if they were recent enough by observing low latency
during authentication. To counter this attack, we require that users add a delay to
make up for the difference. Our protocol therefore does not improve the delay per-
ceived at the user, but spares users from performing unnecessary computation. We
also note that this delay does not affect authentication throughput at the SP.

Choice of K. Based on our performance analysis, we believe setting K between 5–
15 represents a reasonable tradeoff between authentication latency for the user, and
the size of the revocation window. For K = 10, if it takes a site like Wikipedia an
hour (T = 60) to identify misbehaviors, users would be able to make an anonymous
connection once every six minutes, a reasonable amount of time to accommodate small
edits. If, however, it takes a site like Wikipedia a day to identify misbehaviors, K =

10 would limit users to only 10 anonymous connections per day. Whatever the time
window for recognizing misbehaviors, we argue websites would not want more than 10
or so misbehaviors before a user is caught anyway. If SPs want higher authentication
rates (KT ), it is more prudent to shorten the time T it takes to recognize misbehaviors
rather than increase K, which allows more misbehaviors before revocation and also
comes with decreased performance.

Concurrency. The instantiation of ZKPoK protocol in Equation 20 is not secure
against concurrent attacks [Goldreich and Krawczyk 1996] and must be executed se-
quentially. Our presented constructions therefore contain a critical section, in which
the SP must wait until it has received an authenticating user’s response before it
challenges another authenticating user, potentially limiting the SP’s authentication
throughput. The time spent in this critical section is dominated by network latency
(the computation at the user in the critical section is estimated at less than 1 ms
based on our experimentation). The SP can include a timeout for unresponsive clients
to maintain a high authentication throughput. While it is possible to utilize a generic
UC-secure ZKPoK to eliminate this constraint, the construction would be impractical.
A possible denial of service attack would be for a user or a set of users to keep trying
to authenticate and reduce authentication throughput because of this critical section.
We point out that users must first authenticate via a rate-limiting scheme first, and so
individual users will be limited in this attack. Furthermore, this requires users to be
legitimate, enrolled users in the system. Nevertheless, a group of malicious enrolled
users could slow down the authentication rate. In cases where the SP realizes it is
under DoS attack, it can issue client puzzles of increasing complexity to users before
entering the critical section to mitigate such attacks. Nevertheless, we hope to elimi-
nate this critical section in the future.

Gaming the blacklist. Since SPs can construct arbitrary blacklists at any time (by
adding and removing entries), an SP can game the system by presenting crafted ver-
sions of the blacklist to authenticating users. For example, an SP may try to link two
transactions by presenting different versions of the blacklist with and without these
entries and compare authentication rates. Since the blacklist is publicly available, we
assume such behavior will be noticed by users. In particular, users can refuse to au-
thenticate if they notice a particular entry disappearing and then reappearing. This
scenario would signal a gaming attack. An honest SP is expected to add entries to
a blacklist, possibly remove entries, and never add removed entries again. In any
case, these attacks are hard to perform on PEREA-based schemes (as compared to
BLAC/EPID) because with revocation windows of K = 5 or K = 15, SPs will not be
able collect enough statistical data about two previous authentications after the user
has authenticated that many times.

Forgiving misbehaviors. To forgive the blacklisted user who provided ticket tK ,
the SP removes tK from BL and updates the current accumulator value from V to

ACM Transactions on Information and System Security, Vol. V, No. N, Article A, Publication date: January YYYY.



A:32 PEREA: Practical TTP-Free Revocation of Repeatedly Misbehaving Anonymous Users

V1/t
K

mod �(N)

mod N. If such “unblacklisting” is allowed in PEREA-based schemes,
however, users must update their witnesses in O(L) time (rather than the optimized
O(�L) time) during an authentication (Equation 19), even if only one ticket has been
removed since their last authentication.

10. SUMMARY
We present PEREA, an anonymous authentication scheme that supports privacy-
enhanced revocation, where anonymous users can be revoked without relying on
trusted third parties. Previous schemes supporting privacy-enhanced revocation have
required computation at the server that is linear in the size of the blacklist. We in-
troduce the concept of a revocation window and show how the server computation is
reduced to be linear in the size of the revocation window, and more importantly inde-
pendent of the size of the blacklist. We extend PEREA to support more complex revo-
cation policies such as the d-strikes-out policy (PEREA-d-strikes-out) and a weighted
version called the naughtiness policy (PEREA-Naughtiness). Through analytical and
experimental validation, we show that for realistic parameters, PEREA-based schemes
provide more efficient authentication at the server than existing schemes.
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