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Abstract. Encrypting traffic does not prevent an attacker from per-
forming some types of traffic analysis. We present a straightforward traf-
fic analysis attack against encrypted HTTP streams that is surprisingly
effective in identifying the source of the traffic. An attacker starts by
creating a profile of the statistical characteristics of web requests from
interesting sites, including distributions of packet sizes and inter-arrival
times. Later, candidate encrypted streams are compared against these
profiles. In our evaluations using real traffic, we find that many web sites
are subject to this attack. With a training period of 24 hours and a 1
hour delay afterwards, the attack achieves only 23% accuracy. However,
an attacker can easily pre-determine which of trained sites are easily
identifiable. Accordingly, against 25 such sites, the attack achieves 40%
accuracy; with three guesses, the attack achieves 100% accuracy for our
data. Longer delays after training decrease accuracy, but not substan-
tially. We also propose some countermeasures and improvements to our
current method. Previous work analyzed SSL traffic to a proxy, taking
advantage of a known flaw in SSL that reveals the length of each web ob-
ject. In contrast, we exploit the statistical characteristics of web streams
that are encrypted as a single flow, which is the case with WEP/WPA,
IPsec, and SSH tunnels.

1 Introduction

The problem of keeping Internet communication private is remarkably hard. One
method of protecting the privacy of a network connection is to use an encrypted
link to a proxy or server. Encrypted links are possible at the link layer using
WEP/WPA to a wireless base station, at the network layer using IPSec ESP
mode to a VPN concentrator, or at the transport layer using an SSH tunnel to
an anonymizing proxy. In all cases, the identity of the final destination is kept
confidential from an eavesdropper by encrypting IP packet headers.

Maintaining user privacy is not such a simple matter. In this paper, we show
that an encrypted connection is not sufficient for removing traffic patterns that
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often reveal the web site that a user is visiting. Specifically, we examine the
success rate of traffic analysis attacks used by an eavesdropper that test against
learned profiles of web site traffic inter-arrival times and packet sizes.

We examine real traces of encrypted, proxied HTTP traffic, and our attacks
attempt to discern the responder to each web request. The method of our attack
is straightforward. In advance, the attacker gathers a profile of specific websites
according to some criteria, which may be their popularity or level of interest
to the attacker. The profile is composed of two features from the encrypted
HTTP response stream: the packet size and inter-arrival time distributions. The
attacker then monitors the traffic of a wireless link or a wired link to which he
has access. When a burst of traffic occurs, the attacker tests the trace against a
library of profiled web sites looking for a good match.

We tested our method by taking traces for three months of hourly retrievals
of 100 popular web sites. Our evaluations show that many web sites are subject
to this attack. With a training period of 24 hours and a 1 hour delay after-
wards, the attack achieves only 23% accuracy. However, an attacker can easily
pre-determine which of trained sites are easily identifiable. Accordingly, against
25 such sites, the attack achieves 40% accuracy; with three guesses, the attack
achieves 100% accuracy for our data. Longer delays after training decrease ac-
curacy, but not substantially. Note that with random guessing, this attack can
expect to be correct only 1/nth of the time among n profiles, and k/nth of the
time with k guesses. While previous work exists on similar attacks, ours is the
first to consider an encrypted web connection that does not reveal individual
web objects, which is the realistic case for WEP/WPA, VPNs, and SSH tunnels.

The remainder of this paper is organized as follows. Section 2 describes recent
related work. In Section 3 we present our data collection methodology, and in
Section 4 we describe how we identify encrypted traffic. Section 5 is a summary
of our future research goals, and Section 6 concludes.

2 Related Work

There is a large body of work on the topic of general traffic analysis and informa-
tion hiding. We do not provide an extensive overview here; consult Raymond [1]
for an informal overview. Instead, we present an overview of recent develop-
ments in theoretical and experimental traffic analysis and countermeasures. We
include work that examines HTTP and secure HTTP and the vulnerabilities and
exposures inherent in those protocols.

Hintz [2] describes a fingerprinting attack similar to ours. It is limited in
several ways. First, it considers only the total amount of data sent over each
SSL-encrypted connection. When the client is using more sophisticated tunneling
software that re-uses connections (as we assume in this paper), this attack would
degrade. Additionally, Hintz’s work is a very preliminary proof-of-concept and
does not provide a significant evaluation.

Sun, et al. [3] investigate the use of statistical techniques to identify en-
crypted web traffic. They assume an SSL encrypted link between a browser
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Fig. 1. Measurement setup.

and an anonymizing proxy, and focus on attacking this first and weakest link.
They make the strong simplifying assumption that web objects can be differen-
tiated by examining the TCP connections between the browser and the proxy.
This assumption is not valid for WEP/WPA links, VPN connections, and SSH
tunnels, and in the presence of widely-available, unencrypted, pipelined HTTP
connections. They use the patterns of object sizes to classify web sites and their
technique cannot function without these object sizes. Privacy-aware users are
likely to know that SSL/TLS alone is not sufficient to hide traffic patterns, as is
mentioned in the protocol specifications [4, 5].

Fu, et al. have produced at least two related papers. In the first [6], they
describe the use of active probes to determine traffic payload rate and the use
of statistical pattern recognition to evaluate traffic analysis attacks and corre-
sponding countermeasures. This differs from our work in at least two key areas.
First, they determine payload rate, a much simpler problem than the more exact
classification we are attempting. Second, they require the ability to inject packets
into the network, in the form of active pings. This active measurement is required
during both the “off-line” data collection and training and “on-line” classifica-
tion. In contrast, our technique only performs active measurements during the
training phase, and is entirely passive during the classification phase.

In their second paper [7], they examine link padding as a means of defeating
traffic analysis attacks. In particular, the authors establish a formal theoretical
framework for link padding systems and derive closed-form formulas for estima-
tion of detection rates. Additionally, they compare two methods of introducing
padding, and conclude that variable intervals between padding are superior to
constant. This result may prove useful in defending against our technique; we
intend to investigate this technique in the future.

3 Data Collection

To begin our study, we collected data from January 01, 2004 until March 31,
2004. In this section, we describe the procedure we used to collect our data. We
used the results of a prior user study by Wright, et al. [8] to determine the sites
most visited by users of the computers in our department. The study tracked
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Fig. 2. A sample size profile for www.amazon.com.

the web traffic of 24 volunteers for 214 days. We examined the proxy logs from
Wright’s study and used the 100 most-visited sites for experiments in our study.

To retrieve a baseline version of each site, we scripted an instance of Mozilla
Firefox 1.0 to retrieve a site’s main page and all graphics or other objects. Fig. 1
illustrates our measurement setup. We configured Firefox to connect through an
instance of tinyproxy 1.6.3 bound on a local port via an SSH tunnel (OpenSSH
3.5p1 with compression and encryption enabled). All processes involved in the
collection were running on the same machine. Our script retrieved the main page
of each of the 100 sites every hour. We used tcpdump 3.7.2 to sniff and record
the encrypted traffic over the SSH tunnel.

For each HTTP trace, we recorded two features: the inter-arrival time of each
packet and the size of each packet. Each is a chronological data sequence that
we call a time trace and size trace, respectively. No other features are available
to an attacker; we did not perform any cryptanalysis.

For each day over a three month period, we collected inter-arrival and size
traces once per hour, for a total of over 200,000 distinct data points.

4 Identifying Encrypted Traffic

The main goal of our study is to answer the following question: does a trace of
web traffic, sent through an encrypted tunnel to a proxy, leak sufficient infor-
mation to allow us to determine the site being accessed? As this section details,
we have found that many popular web sites are reasonably identifiable even
with relatively old training data (see Figure 4), and that some are extremely
distinctive.
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Fig. 3. Accuracy per number of guesses with a one hour gap and different classification
methods. In all figures, the gap refers to the time between a 24 hour training period
and a single test.

4.1 Performing the Attack

For our study, our attacker model is as follows. A client desiring privacy is
connected to a server over an encrypted link. This link could be a VPN, an
SSH tunnel, or a WEP-enabled access point. Before the attack, the attacker sets
up a link with similar network characteristics and gathers packet traces. We
believe this to be a reasonable assumption — the attacker could gather traces
from the same ISP, or at the site of the victim’s accesses, such as an Internet
café. From these sets of packet traces, the attacker constructs a set of profiles, as
described below. Then, the attacker monitors the encrypted link and attempts to
match the profile of activity detected on the link with the set of known profiles,
returning a ranked list of matching candidates. We assume that think times
dominate network delay and that the attacker can easily distinguish separate
sets of requests to a server.

Since we contacted each site many times over the course of months during our
data collection, our data set is comprised of numerous traces from every site. For
each site, there is an associated set of packet traces. We restrict our attention to
two particular characteristics of each such packet trace: the inter-arrival time and
the packet size. We organize our data as a set of tuples: (N, D, I, S), where N is
a unique identifier for each site, D is the timestamp of the particular collection,
and I and S represent inter-arrival time and packet size traces, respectively.

We define an inter-arrival time trace, I, as the sequence of n inter-arrival
times, {t1, t2, . . . , tn}, between packets for a given trace. To construct a time

profile, we coalesce a set of inter-arrival times, each corresponding to the same
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Fig. 4. Accuracy per number of guesses. The random line is the result of choosing
site labels uniformly at random. In this and all following figures, we are using the
combination of both the size and time profiles.

site, N , but a different time, D, into a single, new inter-arrival time trace. We
take the arithmetic mean of each ti in the set for each 1 < i < n, and use this as
the new ti in the time profile. A corresponding trace and profile exist for packet
sizes, which we denote as the size trace and size profile, respectively. Figure 2
shows, as an example, a profile of www.amazon.com.

To compare an individual trace to a profile, we use the cross correlation of
the two sequences of values. In general, the cross correlation, r, between two
sequences of real numbers {x1, x2, . . . , xn} and {y1, y2, . . . , yn} is defined as:

r =

n
∑

i=1

[(xi − x̄)(yi − ȳ)]

√

√

√

√

n
∑

i=1

(xi − x̄)

√

√

√

√

n
∑

i=1

(yi − ȳ)

(1)

where x̄ and ȳ are the means of the corresponding series. Intuitively, the cross
correlation estimates the degree to which two series are correlated. It is a sum-
mary statistic indicating whether the individual numbers in two sequences have
similar magnitude. We call the cross correlation of a trace and a profile, the
similarity of the trace to the profile. When attempting to classify an unknown
data set, we compute its similarity to each of the profiles we have previously
created. A sequence of guesses is returned, each corresponding to a particular
site and ordered by the magnitude of the similarity.
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Fig. 5. Accuracy per number of guesses with a one hour gap.

To evaluate our classifier, we built profiles from each contiguous 24 hour span
of traces of each site. Some sites were missing data, but no 24 hour training
period contained more than one missing trace. When a trace was missing from
the training data, we omitted it from the profile. We then tested the performance
of the classifier (as described above) on single traces from some time in the future.
We call the amount of time between the last trace in the profile until the tested
trace the gap. We evaluated the classifer with gaps of one hour, 24 hours, and
168 hours (one week). We constructed the two profile types for each training set,
and we analyzed three methods of classifying data for the attacker:

– Size profile only;
– Time profile only;
– Size and time profile: the product of the size and time profile similarities.

We found the third method, shown in Figure 3, to be most effective overall, and
utilized that method in all further results presented here. As shown in Figure 4,
accuracy decreases as the gap between training and testing grows, but the trend
remains consistent. The implications for the attacker are clear: training immedi-
ately before the attack is best, but even old data allows for some identification.

4.2 Predicting Identifiability

Some sites may be more identifiable than others. There is an obvious way to
evaluate identifiability based on our classification methodology. By examining
the rank of the correct site in the list our classifier returns, we have a metric
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Fig. 6. Per-site rank in the ordered list of guesses.

describing how identifiable a site is. We show in Figure 6 this metric for each of
the 100 sites and various gap sizes. As one would expect, smaller gap sizes result
in high identifiability. Some sites are surprisingly and consistently identifiable,
while others are quite difficult to differentiate. This trend is shown more explic-
itly in Figure 7. The accuracy of the most identifiable sites is much higher. In
Figure 8, we show the accuracy for the top 25 sites. Accuracy with one guess is
40%, and increases to above 70% with two guesses.

This is of profound importance to the attacker, as she is able to tell a priori

which sites will have such identifiability by examining the ranking data for that
site. In general, an attacker would like to know which sites are most recognizable,
and a defender would like to know how to make a site less distinguishable. We
believe that a metric such as this ranking metric can guide both attackers and
defenders in determining the relative identifiability of sites. However, further
study is needed to discover the specific sources of identifiability.

5 Future Work

We intend to extend this work in a variety of ways. What follows is a short list
of the improvements and extensions we are currently considering.

We expect the time profile to be highly dependent on the specific path be-
tween the server and client. However, we believe that packet sizes are not strongly
dependent on that path, as the Internet has a fairly standard MTU size of 1500
bytes. Thus, it may be possible to train a size profile from one location on the
Internet, and test against that profile elsewhere. Further experiments are needed
to confirm this conjecture.
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Fig. 7. Per-site rank in the ordered list of guesses with a one hour gap.

It is unclear what affect the specific web browser has on the profile. There
are only a handful of web browsers currently in wide use, and they tend to use
one of several rendering engines: Microsoft Corporation’s Internet Explorer, the
Mozilla Foundation’s Gecko (used in all recent versions of Netscape, AOL, and
Firefox browsers), and the KDE project’s khtml (used in Apple’s Safari browser).
A separate profile may be needed for each of these engines, or it may be the case
that they perform server requests in the same order.

Examining more sites would help show the robustness of this attack. An
argument can be made that there are billions of web pages and it may be im-
possible to distinguish among all of them. But for a targeted attack, an attacker
might only need to be able to identify a few hundred or thousand with a low
false positive rate. Similarly, it would be of great value for a site operator to
know what characteristics of their site or network account for identifiability, and
if it is possible to obfuscate these characteristics.

The technique we used for identification is not particularly insightful, and yet
we are able to achieve an 20% accuracy rate with a single guess, and over 40%
if we limit ourselves to a small set of possible sites and a single guess. Multiple
guesses on this small set quickly drive our accuracy toward 100%. A more sophis-
ticated approach, such as density estimation of a profile, would likely yield better
results that are more robust to small fluctuations in network conditions or site
changes. A more careful characterization of the identifiable characteristics of the
traffic would likely also lead to a higher identification rate. Similarly, examining
actual user behavior may yield further insights: users typically navigate from
page to page, and we may be able to leverage some form of Bayesian inference
to improve our results. It would also be enlightening to attempt to discern how
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Fig. 8. Accuracy per number of guesses for the 25 most identifiable sites with a one
hour gap.

much of each portion of delay, packet fragmentation, or packet size is due to
server or browser configuration and network path effects.

Also interesting would be an examination of how multiple proxies, each on
separate networks on the Internet, affect our attack. Some of our previous results
suggest the attack will work. Wright, et al. [9] examined a traffic analysis attack
to link a single network flow routed through multiple anonymizing proxies, where
the measurements are taken simultaneously at different points in the stream. In
contrast, our attack creates a profile that remains effective over a long period
of time (i.e., on the order of days) but has no intermediate proxies to add new
statistical characteristics to the stream. We believe it would be possible, under
some circumstances, to compose the two attacks if mixing is not performed by
the intermediate proxies. Experiments are needed to confirm this conjecture.

Finally, an exploration of defenses is needed. The effects of delay or link
padding and other traffic shaping must be quantified to help future designers of
privacy-preserving protocols in avoiding this type of attack.

6 Conclusion

We have presented a straightforward, real-world, successful attack against sup-
posedly private HTTP transactions. This attack is based upon forming profiles
of possible sites being visited, and matching traffic against these profiles. It re-
quires some preliminary work on the part of the attacker, but thereafter yields
surprisingly effective and results. We have also shown a simple way of determin-



ing in advance the efficacy of the attack. Finally, we have pointed out interesting
ways in which this attack could be extended, and possible methods of defense.
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