
An Analysis of Parallel Mixing with
Attacker-Controlled Inputs

Nikita Borisov

UC Berkeley

Abstract. Parallel mixing [7] is a technique for optimizing the latency
of a synchronous re-encryption mix network. We analyze the anonymity
of this technique when an adversary can learn the output positions of
some of the inputs to the mix network. Using probabilistic modeling, we
show that parallel mixing falls short of achieving optimal anonymity in
this case. In particular, when the number of unknown inputs is small,
there are significant anonymity losses in the expected case. This remains
true even if all the mixes in the network are honest, and becomes worse
as the number of mixes increases. We also consider repeatedly applying
parallel mixing to the same set of inputs. We show that an attacker
who knows some input–output relationships will learn new information
with each mixing and can eventually link previously unknown inputs and
outputs.

1 Introduction

Re-encryption mixes [6, 10, 9, 8] are a kind of mix network [1], where each mix
server re-encrypts each input ciphertext, producing an equivalent encryption of
the plaintext that is unlinkable to the original. Such mix networks avoid the
requirement of key agreement with the mix servers prior to sending a message,
as the re-encryption operation can happen without knowing the decryption key;
they have applications in electronic elections, but they could also be used in
place of regular mix networks. Synchronous mix networks require that each mix
server permute the entire set of inputs in sequence; in contrast, asynchronous
mix networks pass different inputs to different servers freely. Synchronous mix
networks avoid some of the attacks on asynchronous networks [12], but do so at
the cost of performance, as each server must re-encrypt the entire set of inputs
and the others must wait and be idle while it does so.

Parallel mixing [7] is a technique to speed up synchronous re-encryption mix
networks while attempting to preserve their anonymity guarantees. It divides
the input into batches, with each server mixing the inputs in its own batch and
then passing it to other servers. The scheme parallelizes the mixing workload
among all servers, increasing the per-server computation cost but dramatically
lowering the total mixing time. Parallel mixing can be made secure even if all
but one of the mixes are compromised, matching the security of conventional
synchronous mix networks.

However, the design of parallel mixing is such that not all possible permu-
tations of the mixed inputs are generated; therefore, when some relationships
between inputs and outputs are known to the attacker, parallel mixing leaks in-
formation about the other inputs. This may happen either because the attacker
controls some of the inputs and can therefore track the outputs, or when the
attacker learns which inputs correspond to outputs through other means. For
example, attacks such as traffic analysis or intersection attacks can help the at-
tacker identify some of the input–output correspondences. In this paper, we set
out to investigate exactly how much information is revealed by parallel mixing
in this case.

We use both the anonymity metric from [7], as well as the common entropy-
based metric [11, 4] to quantify anonymity. We develop two approaches to mea-
sure anonymity of parallel mixing: a probabilistic simulation, computing exact
distributions of the metric, and a sampling technique that approximates the
distributions, which is useful for larger mix network sizes. We find that par-
allel mixing falls significantly short of achieving the same anonymity levels as
conventional mixing in the expected case, and in some cases, such as with few
unknown inputs and many parallel mixes, reveals a lot of information about the
correspondence of inputs to outputs.

We further show how an attacker can use this information when the same
set of inputs are mixed repeatedly using parallel mixing. (Such a situation might
occur if parallel mixing is used to provide privacy for long-term communication.)
Each instance of parallel mixing is essentially an independent observation, and
the attacker can combine the information from all observations to accurately pin-
point which input corresponds to which output after a small number of rounds.
This attack re-introduces the anonymity degradation properties of asynchronous
mix networks [12] into parallel mixing, and is effective even when none of the
mix servers are compromised.

The anonymity shortfall we describe may not apply to the electronic election
application of parallel mixing. In particular, many elections can ensure that most
inputs are not controlled by the attacker and that the same inputs are not mixed
multiple times. However, the speed improvements of parallel mixing may make
them attractive for other applications, such as anonymous email or web surfing,
where our assumptions are valid and the problems we describe are practical. Our
hope is to caution against the use of parallel mixing in such applications, unless
one can ensure that the attacks we describe do not apply.

The following section provides some background on parallel mixing. Section 3
analyzes the anonymity of parallel mixing when some inputs are known to the
attacker. Section 4 describes how this information can be used to discover which
input corresponds to which output after several repeated rounds of mixing. Fi-
nally, Section 5 concludes and discusses some future research directions.

2 Background

2.1 Parallel Mixing

The parallel mixing technique described by Golle and Juels relies on breaking
the inputs into batches and then successively passing the input batches between
servers for re-encryption. We proceed to give an overview of their technique;
please refer to [7] for more details. (For clarity, we will use the same terminology
as Golle and Juels wherever possible.) Consider a network of M re-encryption
mixes operating on n inputs. We will assign inputs to individual slots, and each
mixing round will move the input ciphertexts between slots. For symmetry, we
require that M2|n. Parallel mixing is parameterized by a threshold M ′ < M ,
which is the maximum number of compromised mix servers.

The first step is to assign the input ciphertexts randomly to slots. The random
permutation is defined from a public, ideal source of randomness (in practice, it
would be computed jointly by all the servers). The slots are then partitioned into
batches, S(1), . . . , S(M) of equal size, with each batch assigned to an individual
mix server. Then the batches undergo M ′ + 1 mixing steps and M ′ rotation
steps. In a mixing step, each mix permutes the inputs among the slots in the
batch assigned to it. A rotation step involves passing batches between servers in
succession, so server i passes its batch to server i + 1 (mod M).

After this, a distribution step follows. In this step, the inputs in each batch
are redistributed so that an equal number ends up in each resulting batch. I.e.
for each original batch Si and new batch S′

j , |Si∩S′
j | = n/M2. After distributing

the inputs in this way, there are another M ′ + 1 mixing steps, with M ′ rotation
steps in between.

If we label the input batches as B(1), . . . , B(M) and the output batches as
C(1), . . . , C(M), then the first step ensures that each ciphertext is assigned to
a random batch B(j). Then the batch B(j) is mixed by M ′ + 1 servers, at least
one of which must be honest. Therefore, before the distribution, the slot that an
input i occupies within a batch j is chosen uniformly at random, and is unknown
to the corrupt mixes. Then in the distribution step, i is assigned to an effectively
random output batch C(j′). Finally, the next M ′ + 1 mixing steps ensure that
the output batch C(j′) is once again mixed by at least one honest server, and
hence the position of the input within the batch is unknown.

Following this process, each input ciphertext is equally likely to end up in
each of the output slots. Golle and Juels show that if no more than M ′ servers
are compromised, and no input–output relationships are known, the attackers
cannot learn any information about the correspondence of the mix inputs and
outputs.

Therefore, we discount mix corruption attacks and in fact we will assume that
all the mixes are honest for the remainder of this paper. Instead, our focus will
be on situations where the attacker learns some input–output relations, either
through submitting rogue inputs to the mix or by other means. In this case,
Golle and Juels suggest that the anonymity is statistically close to optimal. We

will proceed to quantify the difference between parallel mixing and an optimal
mix and examine the consequences of such a difference.

2.2 Anonymity

To perform a meaningful analysis, we need to have some measure of anonymity.
Golle and Juels define an anonymity measure of a network as

Anon =
(

min
k,j

Pr(ik → oj)
)−1

where ik are input positions of the parallel mix and oj are output positions. Since
we are concerned with the anonymity achieved when an attacker knows some of
the input output relations, the minimum should be taken over those inputs and
outputs that the attacker does not know. The intuition for this measure is that
when Anon = n, the worst-case probability of a true input–output relationship
being guessed is 1/n, or equivalent to a uniform mixing among n input–output
pairs. Thus, with n unknown input–output relationships, we would like Anon to
be as close to n as possible.

In addition to this measure, we will use an entropy-based metric, proposed
in [11, 4] and used to analyze many anonymous systems [2, 5, 3]. The metric
involves computing a probability distribution X of inputs corresponding to a
particular output (or vice versa), and computing the entropy of this distribution
using the formula H(X) =

∑
i −pi log2 pi, where pi = Pr[t → i], the probability

that a target input t gets mapped to output slot i during mixing. (We will
consider the problem of linking a given input to its corresponding output; the
converse problem is analogous due to symmetry inherent in the mixing process.)
The intuitive interpretation is that the metric represents the number of bits
of uncertainty that an attacker has about the relationship between inputs and
outputs. The entropy measure is also useful for certain kinds of information-
theoretic analysis, which we will explore below.

The two anonymity measures are also connected by the relation:

H(X) ≥ log2 Anon

3 Anonymity Analysis

We first motivate our analysis by a simple example. Consider a parallel mix
network with M = 3 and n = 9. Initially, the 9 inputs are permuted and assigned
into 3 batches of size 3. Then each batch is permuted, the inputs are redistributed
into new batches, and these batches are permuted again before being output.
Since we are assuming that all mixes are honest, we can assume that each batch
will undergo a perfectly random permutation and therefore we can ignore the
order of the inputs in each input batch, as well as the order of outputs in each
output batch. Therefore, we can simplify the problem to considering which input
batches the inputs get assigned to by the initial permutation (which an attacker

can observe), and which output batches each input gets distributed to (which
the attacker cannot see).

Suppose now that the attacker knows the input–output relations for all but
2 of the inputs. How much anonymity will parallel mixing provide the other 2?
Consider the initial permutation; with probability 3/4, the two inputs will be
assigned to different batches. Therefore, some batch B will contain the unknown
input i1 as well as two attacker-known inputs a2, a3. After the distribution step,
the inputs in batch B will be distributed among the 3 output batches. The
key point here is that each output batch will have exactly one input from B.
Therefore, if the attacker can observe the position of the outputs a2 and a3, he
can learn which output batch C contains i1.

The other unknown input i2, which we assumed was in some other input
batch, will be assigned to some output batch by the distribution process. With
probability 2/3, it will be a batch C ′ 6= C. In that case, the other two inputs in
C will be attacker-known inputs a4, a5. This will allow the attacker to immedi-
ately identify i1 as the member of C and therefore determine which output it
corresponds to. Combining the two probabilities, we see that in 3/4 ∗ 2/3 = 1/2
the cases, the parallel mixing provides no anonymity to the two inputs. (In the
other half of the cases, the attacker does not learn anything about I1 and I2.)

The foregoing is an extreme example, but it helps illustrate the kind of poten-
tial problems introduced by parallel mixing. In essence, although parallel mixing
can assign any input slot to any other output slot, it generates only a subset
of the permutations on all inputs. Therefore, knowing the relationship between
some of the inputs and their permuted positions allows an attacker to deduce
information about the other inputs. We now proceed to formally analyze the
extent of such information for larger mix sizes and more unknown inputs.

3.1 Previous Results

Golle and Juels show how an attacker that knows some input–output relations
can use this information to estimate probabilities of unknown inputs and outputs
being linked through the mix. Consider A(I) be the set of inputs known to
the attacker, and A(O) be the set of the corresponding outputs. Let α(j) =
|B(j)∩A(I)| be the number of slots in input batch j occupied by known inputs
and γ(j′) = |C(j′) ∩ A(O)| be the number of slots in output batch j′ occupied
by known outputs. Also, let δ(j, j′) = |B(j) ∩ A(I) ∩ C(j′)| be the number of
inputs in input batch j known to the attacker that are mapped to output batch
j′. Then [7, Theorem 4.2] states:

Theorem 1 Let s0 ∈ B(j) and s1 ∈ C(j′) with s0 /∈ A(I) and s1 /∈ A(O).
Then:

Pr(s0 → s1) =
n/M2 − δ(j, j′)

(n/M − α(j))(n/M − γ(j′)

Theorem 1 shows that Pr(s0 → s1) is only dependent on α(j), δ(j, j′), and
γ(j′). Golle and Juels approximate α(j),γ(j′) by Poisson random variables, with

mean of |A(I)|/M and standard deviation
√
|A(I)|/M , and δ(j, j′) by a random

variable with mean |A(I)|/M2 and standard deviation of
√
|A(I)|/M2. When

each of the variables is equal to their mean, Theorem 1 shows that the ano-
nymity is optimal: Pr(si → sj) = 1

N−|A(I)| . However, variations in the values
of α(j), δ(j, j′), and γ(j) are going to cause the anonymity to be lower. For
example, Figure 1 plots Pr(s0 → s1)−1 when α(j), δ(j, j′) and γ(j′) are each
one standard deviation away from the mean, when 1000 inputs are distributed
among 5 or 10 mixes. There is a significant distance from optimal anonymity
shown in this graph, which becomes larger as the number of mixes increase.

Fig. 1. Anonymity achieved at one
standard deviation from the mean with
1000 inputs and 5 or 10 mix servers.

Fig. 2. Anonymity of 3 mixes with 18
inputs.

The Poisson model is only an approximation and does not accurately estimate
how likely this scenario is, since the random variables are not in fact independent.
In the rest of this section, we will use simulations to measure the possible values
of α(j), δ(j, j′), and γ(j′) and the corresponding anonymity.

3.2 Simulation Results

We have built a probabilistic simulation of parallel mixing. At a high level, the
simulation consists of taking inputs i1, . . . , in and assigning them to input slots.
Then we non-deterministically simulate each of the steps in parallel mixing;
we compute each possible resulting assignment of inputs to slots and record the
probability of arriving at each assignment. Let I denote an ordering of the inputs
after the initial permutation, and O denote their ordering after all the steps of
parallel mixing. Our simulation allows us to compute Pr[I → O] for all pairs I
and O.

Starting with some subset of attacker-known inputs, and input and output
orderings I and O we can compute the anonymity measure Anon(I,O) as follows:
first, we determine the positions of the attacker inputs in I and O and use that
to compute α(j), γ(j, j′), and δ(j′) for all j, j′. Then we apply Theorem 1 to com-
pute Pr[s0 → s1] for all s0, s1 and take Anon(I,O) = mins0,s1 Pr[s0 → s1]−1.

Using the results from our probabilistic simulation, we can then compute the
expected anonymity by

∑
I,O Pr[I → O]Anon(I,O). We can also use them to

compute the median or other measures on the distribution of anonymity.
Simulating all the permutations of inputs becomes impractical very quickly.

Fortunately, for the purposes of computing the Anon metric, we can make a
few simplifying assumptions. First, since we are assuming at most M ′ mixes are
corrupt, we can model the mixing and rotation steps by a uniformly random
permutation of each individual batch. Second, an initial distribution with a dif-
ferent ordering of batches, or a different order of inputs within a batch, produces
an identical distribution of outputs. Similarly, the order of inputs in the output
batch does not affect the variables α, γ, δ, hence we can stop the simulation after
the distribution step. Finally, we can treat all unknown inputs as identical, and
all known inputs within a given mix as identical, greatly reducing the space of
possible permutations.

With these simplifications, we are able to model mix networks of moderate
sizes. Figure 2 shows the median as well as the first and third quartile values for
the Anon metric calculated on a mix network with 3 mixes and 18 inputs. Even
with only one known input, the Anon metric falls short of optimal, and in almost
all the cases, the median value of the metric is significantly below the maximum.
For example, with 9 unknown inputs, the median value for Anon is 4 meaning
that in over half the cases, there exist s0 and s1 such that Pr[s0 → s1] ≥ 1

4 ,
instead of the 1

9 we would hope for with an optimal system.

3.3 Sampling Based Results

The probabilistic simulation methodology does not to scale to mix networks of
large sizes. In this case, we use sampling to get an estimate of what kind of
anonymity to expect in such networks. Instead of simulating all possible per-
mutations of inputs, we instead compute the results of a mix network using
random permutations and apply the anonymity metric to that. We repeat this
multiple times to obtain sampling of the distribution of the Anon metric. The
estimate is inexact and will not capture the tail of the distribution (even with
the smaller network sizes, we observed events of probability < 1%). However,
it is representative of what users of the mix network should expect to see in
practice.

Figure 3 shows the cumulative distribution function of the Anon function
on a mix network with 1008 inputs, 900 of which are unknown. The CDF was
estimated using 1000 samples; the figure demonstrates the effect of different
numbers of mix servers on the anonymity of the network. Unsurprisingly, the
anonymity degrades with a larger number of servers. With more mix servers,
the permutations that are generated are more restricted, as the distribution step
forces the inputs to be directed to one of a larger number of batches. However,
what is perhaps surprising is the amount of anonymity loss. With 12 servers, the
median value of Anon is nearly one fifth lower than optimal.

The difference is even more dramatic when the attacker knows more input–
output relationships. Figure 4 shows the CDF corresponding to a network with

Fig. 3. Sampled anonymity CDF with
1008 inputs, 900 unknown, and 2–12
servers.

Fig. 4. Sampled anonymity CDF with
1008 inputs, 100 unknown, and 12
servers.

12 servers and 1008 inputs, 100 of which are unknown. The median value for
Anon is only 18, and the largest we observed after 1000 trials was only 30. This
figure shows that introducing parallelism into a mix system where one can expect
an attacker to know a large fraction of the input–output relationships greatly
reduces the anonymity provided by this system.

3.4 Entropy Metric

We can use the same techniques to compute the entropy-based anonymity metric.
Both probabilistic simulations and sampling let us calculate Pr[s0 → s1] for each
s0, s1. Therefore, given an input t, we can compute the probability Pr[t → s1]
for each slot s1 and take the entropy of the resulting distribution.

Fig. 5. Expected entropy with 3 mixes,
18 inputs.

Fig. 6. Sampled expected entropy with
12 mixes, 1008 inputs.

Figure 5 shows the expected entropy for a 3 mix network with 18 inputs. Note
that the entropy will be larger than log2 Anon for two reasons: the entropy metric

takes into account the entire probability distribution, rather than the highest
value, and the expectation is taken over a particular input, rather than the worst-
case input for a given mix, as is the case with Anon. Therefore, the metric is more
“forgiving” than Anon; however, there is still a significant difference between the
optimal anonymity and what is achieved by parallel mixing, especially when most
inputs are known to the attacker.

Figure 6 shows the expected entropy obtained by sampling a 12 mix net-
work with 1008 inputs. Once again, the difference from optimal entropy is more
significant when more of the inputs are known to the attacker. These results
suggest that parallel mixing should not be used in situations where an attacker
might be expected to learn many input–output correspondences, either through
controlling the inputs themselves or through some outside source of information.

4 Multi-Round Anonymity

In the previous section, we showed how parallel mixing fails to achieve optimal
anonymity. However, in most cases, the attacker gains only a statistical advan-
tage over the optimum, but is unable to directly link an input with an output. In
this section, we show how the attacker can use this statistical advantage over re-
peated rounds of mixing to reveal previously unknown correspondence between
inputs and outputs. Such repeated mixing may occur when parallel mixing is
used to protect long-term communication, such as a regular email correspon-
dence or a set of long-lived TCP connections.

4.1 Repeated Mixings

To begin, consider the input to the parallel mix consisting of a set of unknown
inputs, G(I) and a set of attacker-known inputs A(I). And let’s imagine the
attacker wants to determine which output i0 ∈ G(I) corresponds to. The attacker
can observe the initial permutation to find out which slot i0 is assigned to, as
well where the other inputs in G(I) and A(I) are assigned, and then observe
the positions of A(I) in the output. Let us call this entire observation O1. Now
consider a particular output ok; let s0 ∈ B(j) be the slot assigned to I0 and
s1 ∈ C(j′) be the slot of ok. The attacker can compute α(j), δ(j, j′), and γ(j′) and
then derive Pr(s0 → s1) using Theorem 1. We can write that Pr[i0 → ok|O1] =
Pr(s0 → s1). The attacker can compute this value for each k efficiently, since
all that’s necessary is α(j), δ(j, j′), and γ(j′) for each pair j, j′.

Now suppose that the same set of inputs is sent to the mix a second time,
with a different initial permutation and a different mixing process. Consider the
observations he makes in this round represented by O2. Then, once again, the
attacker can compute Pr[i0 → ok|O2]. O1 and O2 are independent observations,
meaning that:

Pr[O1 ∧ O2|i0 → ok] = Pr[O1|i0 → ok] · Pr[O2|i0 → ok]

Using this fact, we can show that:

Pr[i0 → ok|O1 ∧ O2] =
Pr[i0 → ok|O1] · Pr[i0 → ok|O2]∑|G(I)|
j=1 Pr[i0 → oj |O1]Pr[i0 → oj |O2]

(1)

(See Theorem 2 in Appendix A for details.) Now, in the optimal anonymity
case, Pr[i0 → oj |Ol] = 1

|G(I)| for each l = 1, 2, j = 1, . . . , n. In this case,
Pr[i0 → oj |O1 ∧ O2] = 1

|G(I)| , i.e. the attacker learns no new information from
repeated mixes. However, as we saw in the last section, we expect the anonymity
to fall somewhat short of optimal with parallel mixing, in which case the attacker
will be able to amplify the anonymity loss with repeated observations.

For example, consider the case where |G(I)| = 2, Pr[i0 → o1|Ol] = 0.6, and
Pr[i0 → o2|Ol] = 0.4, for l = 1, 2. Then Pr[i0 → o1|O1 ∧O2] ≈ 0.69. Therefore,
given 2 observations, the attacker has more confidence that i0 → o1 than from
each individual observation.

We can extend (1) to a set of observations O1, . . . ,On:

Pr

[
i0 → ok

∣∣∣∣∣
n∧

l=1

Ol

]
=

∏n
l=1 Pr[i0 → ok|Ol]∑|G(I)|

j=1

∏n
l=1 Pr[i0 → oj |Ol]

(2)

If there is, as we showed in the last section, a bias in the probability distribu-
tions based on each observation towards the true ok, this bias will be amplified
with multiple observations and eventually reveal the true correspondence with
a high confidence.

4.2 Simulations

We can measure the success of this attack by using simulations. The simulation
set up is similar to that of Section 3.3. We simulate a mixing of a set of inputs
and record an observation O1. Then, for a particular input i0, we compute the
probability distribution Pr[i0 → ok|O1] for each k. Then we perform another
trial to obtain another probability distribution. After a number of trials, we
apply (2) to compute the probability Pr[i0 → ok|

∧
Ol] for each k.

Figure 7 shows the success of this attack for a mix network with 12 mixes and
1008 inputs total, with varying numbers of them being unknown. We plot the
probability Pright that is assigned to the true output corresponding to i0, and
Pwrong , which is the highest probability assigned to each incorrect guess. Initially,
there is insufficient information to identify the correct correspondence; however,
after a sufficient number of rounds, Pright invariably tends to 1 and Pwrong

to 0. For 100 unknown inputs, fewer than 10 rounds are required to identify
the correct output. The attack remains effective even with larger numbers of
unknown inputs: with 500 unknown inputs, fewer than 100 rounds successfully
identify the correct link. However, as the number of unknown inputs increases,
the success of the attack diminishes; with 900 unknown inputs, the most likely
guess for the link is incorrect even after 700 rounds of mixing.

We can use information theory to predict how quickly this attack succeeds.
Section 3.4 shows how to compute the expected entropy metric applied to parallel

Fig. 7. Success of repeated mixing attack with 100, 500, and 900 unknown inputs.

mixing. The expected entropy is also known as conditional entropy, or H(X|O),
where X is a random variable modeling input–output correspondences, and O is
modeling observations. The conditional entropy is closely related to the mutual
information between X and O:

I(X;O) = H(X)−H(X|O)

If we consider parallel mixing as a noisy communication channel, I(X;O) shows
how many bits of information are revealed with each mixing. Therefore, to iden-
tify a particular output among n − |A(I)| unknown ones, we will need at least
log2(n− |A(I)|)/I(X;O) rounds of mixing.

With n−|A(I)| unknown inputs, H(X) = log2(n−|A(I)|). We can therefore
calculate the number of rounds required to reveal the input–output correspon-
dence based on the data in Figure 6. For 100 unknown inputs, we expect to need
about 7 rounds of mixing. With 500 unknown inputs, the expected number of
rounds is 91, and with 900, it is as high as 880. Therefore, we can see that with
900 unknown inputs, the attack is unlikely to succeed unless very many rounds
of mixing are performed, while with smaller numbers of unknown inputs, the
attack can be quite effective.

Information theory offers only a lower bound on the number of rounds needed,
and potentially more rounds will be required. However, the data in Figure 7 show
that the lower bound comes close to being tight.

5 Conclusions and Future Work

We have presented an analysis of parallel mixing and how well it performs when
the attacker can learn the relationship between some inputs and outputs. We
showed that in such cases, there is a significant difference between the anonymity
provided by parallel mixing and the optimal anonymity achieved by conventional
mixes. In addition, we demonstrated how this difference may be exploited to
reveal the secret mapping of inputs to outputs when the same inputs are mixed
repeatedly by way of parallel mixing.

Note that our attacks apply even when all the mix servers are honest. Further,
they do not require that the attackers control any of the inputs, but rather only
that they know some of the input–output correspondences. Such information

may be revealed through other attacks, such as traffic analysis or intersection
attacks. Hence a completely passive adversary may be able to compromise the
security of parallel mixing. Therefore, we strongly caution against using parallel
mixing in situations when attackers may learn some input–output correspon-
dences and/or when the same inputs are mixed multiple times.

For a more complete understanding of parallel mixing, it would be useful to
analyze directly the success of combining intersection attacks or traffic analysis
with our techniques for exploiting the information revealed by parallel mixing.
Such an analysis would show whether such attacks are practical in a given set-
ting, and thus whether parallel mixing is appropriate. Unfortunately, our current
simulation techniques face a state explosion problem preventing such analysis.

An important question is whether parallel mixing can be extended to cor-
rect the problems we present while maintaining some of the performance ad-
vantage. For example, it can be shown that adding another distribution and a
rotation/mixing step to parallel mixing will cause it to generate all permutations
of the inputs, albeit with a non-uniform distribution. Once again, our current
analysis methods can only analyze this extension for very small network sizes
and cannot predict its resilience against our attacks.

Our analysis in Section 4.2 touches upon a connection between conditional
entropy, mutual information, and the performance of multi-round attacks. Our
information-theoretic model may apply to other anonymity systems; perhaps the
conditional entropy metric can be used to derive useful bounds on the success
of multi-round attacks, such as a generalization of the predecessor attack [12].

Acknowledgments

We would like to thank Marco Barreno, Rob Johnson, Umesh Shankar, and
Naveen Sastry for initial discussions aboutu parallel mixing that motivated this
paper, David Molnar for his thoughts on efficient enumeration, and the anony-
mous reviewers for their insightful comments.

References

1. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 4(2), February 1981.

2. George Danezis. Mix-networks with restricted routes. In Roger Dingledine, editor,
Proceedings of the Privacy Enhancing Technologies (PET) Workshop. Springer-
Verlag, LNCS 2760, March 2003.

3. Claudia Diaz, Len Sassaman, and Evelyne Dewitte. Comparison between two prac-
tical mix designs. In 9th European Symposium on Research in Computer Security,
September 2004.

4. Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards measur-
ing anonymity. In Roger Dingledine and Paul Syverson, editors, Proceedings of
Privacy Enhancing Technologies (PET) Workshop. Springer-Verlag, LNCS 2482,
April 2002.

5. Roger Dingledine, Vitaly Shmatikov, and Paul Syverson. Synchronous batching:
From cascades to free routes. In Proceedings of the Privacy Enhancing Technologies
(PET) Workshop, Toronto, Canada, May 2004.

6. Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle. In
CRYPTO, pages 368–387, 2001.

7. Philip Golle and Ari Juels. Parallel mixing. In ACM Conference on Communica-
tions and Computer Security, October 2004.

8. Philippe Golle and Dan Boneh. Almost entirely correct mixing with applications
to voting. In ACM Conference on Communications and Computer Security, pages
68–77, 2002.

9. Markus Jakobsson, Ari Juels, and Ron Rivest. Making mix nets robust for elec-
tronic voting by randomized partial checking. In USENIX Security Symposium,
pages 339–353, 2002.

10. C. Andrew Neff. A verifiable secret shuffle and its applications to e-voting. In ACM
Conference on Communications and Computer Security, pages 116–125, 2001.

11. Andrei Serjantov and George Danezis. Towards an information theoretic metric
for anonymity. In Roger Dingledine and Paul Syverson, editors, Proceedings of
Privacy Enhancing Technologies (PET) Workshop, San Diego, CA, April 2002.
Springer-Verlag, LNCS 2482.

12. Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields. An analysis
of the degradation of anonymous protocols. In Proceedings of the Network and
Distributed Security Symposium (NDSS). IEEE, February 2002.

A Conditional Probabilities

Theorem 2 Given some set of inputs I = {1, . . . , n} and some set of obser-
vations O, let O1,O2 ∈ O be two independent observations on some input i0.
Then:

Pr[i0 = k|O1 ∧ O2] =
Pr[i0 = k|O1]Pr[i0 = k|O2]∑n
j=1 Pr[i0 = j|O1]Pr[i0 = j|O2]

Proof. The independence assumption can be formalized as:

Pr[O1 ∧ O2|i0 = k] = Pr[O1|i0 = k]Pr[O2|i0 = k]

Then on one hand:

Pr[O1 ∧ O2|i0 = k] =
Pr[O1 ∧ O2 ∧ i0 = k]

Pr[i0 = k]

On the other hand,

Pr[O1 ∧ O2|i0 = k] = Pr[O1|i0 = k]Pr[O2|i0 = k]

=
Pr[O1 ∧ i0 = k]

Pr[i0 = k]
Pr[O2 ∧ i0 = k]

Pr[i0 = k]

Therefore,

Pr[O1 ∧ O2 ∧ i0 = k]
Pr[i0 = k]

=
Pr[O1 ∧ i0 = k]Pr[O2 ∧ i0 = k]

Pr[i0 = k]2

Pr[O1 ∧ O2 ∧ i0 = k] =
Pr[O1 ∧ i0 = k]Pr[O2 ∧ i0 = k]

Pr[i0 = k]

And:

Pr[O1 ∧ O2] =
n∑

j=1

Pr[i0 = j ∧O1 ∧O2] =
n∑

j=1

Pr[O1 ∧ i0 = j]Pr[O2 ∧ i0 = j]
Pr[i0 = j]

Pr[i0 = k|O1 ∧ O2] =

=
Pr[i0 = k ∧ O1 ∧ O2]

Pr[O1 ∧ O2]
=

Pr[O1∧i0=k]Pr[O2∧i0=k]
Pr[i0=k]∑n

j=1
Pr[O1∧i0=j]Pr[O2∧i0=j]

Pr[i0=j]

=
Pr[O1 ∧ i0 = k]Pr[O2 ∧ i0 = k]∑n
j=1 Pr[O1 ∧ i0 = j]Pr[O2 ∧ i0 = j]

(because Pr[i0 = k] = Pr[i0 = j] =
1
n

for all j.)

=
Pr[O1∧i0=k]

Pr[O1]
Pr[O2∧i0=k]

Pr[O2]∑n
j=1

Pr[O1∧i0=j]
Pr[O1]

Pr[O2∧i0=j]
Pr[O2]

=
Pr[i0 = k|O1]Pr[i0 = k|O2]∑n
j=1 Pr[i0 = j|O1]Pr[i0 = j|O2]

