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Abstract. Tor is the most popular low-latency anonymity network for enhanc-
ing ordinary users’ online privacy and resisting censorship. While it has grown in
popularity, Tor has a variety of performance problems that result in poor quality
of service, a strong disincentive to use the system, and weaker anonymity prop-
erties for all users. We observe that one reason why Tor is slow is due to low-
bandwidth volunteer-operated routers. When clients use a low-bandwidth router,
their throughput is limited by the capacity of the slowest node.
With the introduction of bridges—unadvertised Tor routers that provide Tor ac-
cess to users within censored regimes like China—low-bandwidth Tor routers
are becoming more common and essential to Tor’s ability to resist censorship. In
this paper, we present Conflux, a dynamic traffic-splitting approach that assigns
traffic to an overlay path based on its measured latency. Because it enhances the
load-balancing properties of the network, Conflux considerably increases perfor-
mance for clients using low-bandwidth bridges. Moreover, Conflux significantly
improves the experience of users who watch streaming videos online.
Through live measurements and a whole-network evaluation conducted on a scal-
able network emulator, we show that our approach offers an improvement of
approximately 30% in expected download time for web browsers who use Tor
bridges and for streaming application users. We also show that Conflux intro-
duces only slight tradeoffs between users’ anonymity and performance.

1 Introduction

Tor [10] is a widely used low-latency anonymity network, which offers strong privacy
guarantees by tunnelling a user’s Internet traffic through virtual circuits consisting of
multiple intermediate overlay routers using a layered encryption scheme based on onion
routing [40]. Beyond enabling anonymous communications online, Tor has become
an essential tool in the fight against Internet censorship. Today, regimes around the
world continue to aggressively filter [61], monitor [36], or explicitly block access [34] to
certain types of online content. While Tor serves an estimated 400,000 users on a daily
basis [54], its public infrastructure of over 3000 public relays can be easily blocked.
In response, Tor uses special unlisted relays called bridges to aid users residing within
regimes, such as China, that explicitly block the Tor network. Unfortunately, bridges
generally provide a lower quality of service than Tor’s public infrastructure.

Although Tor’s primary goal is to support real-time interactive applications such as
web browsing, the network suffers from a variety of performance problems [11] that

∗An extended version of this paper is available [1].
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Fig. 1: Figure 1(a) shows the time required to download 1 MiB files over Tor in Jan. and
Oct. 2012. Observe the long tail of the download time distribution. Figure 1(b) shows
a download time comparison between Tor users who use public entry guards and those
who use bridges.

are manifested as high and variable delays which result in a poor user experience. This
poor experience discourages Tor’s adoption and ultimately results in a smaller user base
and weaker anonymity for all users [9].
Dynamic Traffic Splitting for Tor. In this work, we recognize that the diversity of
bandwidth provided by Tor’s volunteer-operated routers, and in particular the low-
bandwidth bridges, degrades performance. We also recognize the significance of im-
proving the performance of some high-throughput applications, such as streaming web
videos, for Tor users. We propose an unconventional approach to improving perfor-
mance when using low-bandwidth routers and bridges: Tor users should split their traf-
fic across multiple semi-disjoint circuits.

In the context of Tor, traffic splitting can improve load balancing. When routers
become over-utilized and experience congestion, splitting traffic across semi-disjoint
paths can ease the burden on the congested circuit; under our scheme, circuits need
only share a common exit router. Second, by splitting data over multiple circuits, the
user’s throughput can achieve up to the aggregate throughput of all circuits rather than a
single one. This is particularly useful when a circuit uses a low-bandwidth router. Tor’s
router selection algorithm favors routers that have higher bandwidths to ensure suffi-
cient throughput to transport users’ traffic and to balance the traffic load across Tor’s
routers. However, individual Tor routers can have vastly different bandwidth capacities,
ranging from 20 KiB/s to over 20 MiB/s. Figure 1(a) shows a long-tailed distribution of
download times for 1 MiB files over the course of two different months: January and
October 2012.1 These slower downloads often correspond to circuits that used at least
one low-bandwidth router. By combining multiple circuits with low-bandwidth nodes,
the attainable throughput is no longer bound by the bottleneck node, but is instead the
aggregate of each individual circuit’s throughput.
Our approach. We design, implement, and evaluate Conflux,2 a novel congestion-
aware traffic splitting and load balancing algorithm for anonymous communication net-
works. Conflux forwards a client’s individual cells down multiple circuits that share a

1This data was obtained from The Tor Metrics Portal [52].
2Conflux: a flowing together of rivers or streams.
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common exit router. Our algorithm dynamically measures the throughput of each con-
stituent circuit and assigns traffic to each in proportion to its observed throughput. Our
approach performs sub-stream traffic splitting, which provides a fine granularity of load
balancing, as splitting can be performed at the individual cell level. This allows the traf-
fic that is sent on a circuit to correspond to its desired load. The circuit’s endpoints (the
client and the exit router) are responsible for splitting the traffic at one endpoint and
buffering, re-ordering, and delivering in-order cells to the application at the other end
of the circuit. This approach can be deployed incrementally, as only clients and exit
routers need to upgrade to support it.

To quantify the performance benefits of our proposed design, we perform a variety
of live and whole-network experiments on an emulation-based Tor network testbed [4].
Our evaluation indicates that our approach can result in decreased queueing delays and
increased throughput for users, particularly those who rely on low-bandwidth bridges
to access the Tor network. We also find that, under light traffic loads, Conflux im-
proves performance for clients who use Tor to access streaming videos (such as blocked
YouTube videos3). Improving performance for such users is important, as streaming
video websites are becoming a dominant source of Internet traffic [27, 41].

We also critically evaluate the security implications of utilizing additional circuits
in light of the end-to-end traffic confirmation attack [43, 45]. Our analyses indicate
that our scheme only slightly increases users’ vulnerability to this attack. Anonymity
is also slightly decreased when the adversary uses powerful selective denial of service
tactics [3, 6, 7, 56] to maximize the number of circuits that can be compromised.
Contributions. This paper offers these contributions.
1. To improve performance for bridge and streaming application users, we design, im-

plement, and evaluate a dynamic traffic splitting scheme that distributes the traffic
load across circuits according to each circuit’s bandwidth capacity.

2. Our live performance analysis indicates that Conflux results in an expected im-
provement of 30% in a typical Tor client’s queueing delay and up to 75% in total
download time. Whole-network experiments show that noticeable improvements
are possible even when most or all clients adopt Conflux.

3. We analyze the security of Conflux and provide quantitative results showing that
there is a small tradeoff between users’ anonymity and performance gains.

Outline. The remainder of this paper is organized as follows: Section 2 describes Tor’s
design at a high level and Section 3 presents the Conflux design and an algorithm for
splitting traffic in a manner that balances the traffic load over each circuit. We evaluate
our proposal in Section 4 and offer a security analysis in Section 5. We discuss a variety
of open issues and enumerate avenues of future work with our design in Section 6,
contrast our contributions with related work in Section 7, and conclude in Section 8.

2 Background

How Tor works. The Tor overlay network involves three kinds of nodes: Onion Proxies
(OP), Onion Routers (OR), and directory authorities. OPs run on end-users’ machines

3Note that while Tor’s browser bundle disables Flash by default, it is now possible to stream videos over Tor using
HTML5. We expect this use case of streaming video over Tor to increase in popularity in the near term.
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(clients). OPs start their operation by contacting the directory authorities to download
the network consensus, which contains information about all ORs in the Tor network.
ORs are volunteer-run relays (or nodes) that are responsible for relaying users’ traffic
to other nodes or to destinations outside of Tor, such as web servers.

The OP constructs a number of circuits—Tor-network paths through which the
client’s traffic is relayed in fixed-sized (512-byte) units called cells. To construct a cir-
cuit, the OP chooses three relays, each in a manner that weights a relay’s selection in
proportion to its bandwidth capacity. With Tor’s decentralized architecture, only the exit
node can observe the user’s traffic and only the entry guard knows the identity of the
user. Clients use the same set of three entry guards for a long period of time (currently
30–60 days), to mitigate the threat of the predecessor attack [60] and other attacks that
seek to correlate entry and exit traffic to link senders with their respective receivers [35].
If both the entry guard and exit node cooperate, they can use traffic analysis to link the
initiator to her destination [24, 45].
Circuits and streams. A single TCP connection is used between any two ORs in the
network. However, this single TCP connection is used to multiplex several circuits that
may or may not belong to the same user. To identify different circuits, each OR assigns
different circuit IDs to circuits. In addition to circuit multiplexing, the OP can multiplex
several TCP streams over one circuit, which generally has a lifetime of ten minutes.

To ensure flow control of data in flight, Tor employs an end-to-end window-based
flow control mechanism in which every time the OP (or exit OR) receives 100 cells,
it acknowledges windows of data cells using SENDME (or acknowledgement) cells.4

We leverage these end-to-end control cells as a means to infer a circuit’s bandwidth
capacity, as we describe in Section 3.
Evading censorship with bridges. In addition to anonymous communications, Tor is
an important tool in the fight against censorship. Tor helps users around the world visit
blocked websites. In some cases, Tor’s infrastructure of directory authorities and routers
has been blocked, for example by the so-called “Great Firewall of China” [25]. To facil-
itate entry to the Tor network despite such blocking, Tor has introduced bridges, which
are unlisted Tor routers that are distributed to censored users via out-of-band mech-
anisms such as HTTPS queries to bridges.torproject.org. To ensure that a
censor cannot collect all bridges and simply block them, Tor currently limits the num-
ber of bridges that are distributed to each /24 IP address block [55]. Currently, clients
use bridges in lieu of an entry guard, to keep the total circuit length at three routers.

While bridges provide an essential service to an estimated 30,000 censored users
as of November 2012 [54], they are believed to be operated by Tor clients who often
reside on low-bandwidth broadband networks. To confirm this hypothesis, we obtained
221, of approximately 700 [53], bridges in January 2012 using Tor’s standard HTTPS
request service from PlanetLab hosts on 55 different /24 IP networks.5 Figure 1(b)
compares the performance of a live Tor client that downloads 1 MiB files using entry
guards versus bridges. Clearly, the low-bandwidth bridges are a significant source of
poor performance. Furthermore, Tor bridges are becoming integrated into ubiquitous

4For more details about Tor’s flow control mechanisms, see AlSabah et al. [2].
5This procedure for enumerating bridges is described in more detail by Ling et al. [26]. Automatically enumerating Tor

bridges is more difficult at present because clients have to solve CAPTCHAs. For our experimental evaluation in Section 4.2,
we use a smaller, more recent list of bridges.
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devices such as wireless access points to simplify the process of configuring and run-
ning a bridge on a broadband Internet link at home [50]. Thus, because low-bandwidth
bridges will likely become even more common in the near future, in this work we seek
to improve performance for bandwidth-limited bridge clients.
Adapting Tor to the changing web. Unlike previous efforts which seek to enhance
the experience of web browsers in Tor by throttling bulk downloads (specifically file-
sharing applications) [19,31], we recognize that some emerging classes of bulk transfers
should actually be improved rather than throttled. In fact, recent Internet traffic stud-
ies have revealed that file sharing applications are consuming less bandwidth,6 while
streaming video applications are starting to account for an increasingly large fraction of
Internet traffic by volume [27,41]. Therefore, in order to survive and continue to attract
new users, it is crucial for Tor to meet the demands of its users and the changing web by
improving the experience for streaming users. Although The Tor Project mainly wel-
comes web browsing, it is hard these days to separate streaming from web browsing.
If a user visits a blocked news website via Tor, the user may also want to view videos
associated with the stories accessed.

While streaming websites (such as Youtube and Netflix) sometimes use strategies
that consist of buffering data followed by transmitting ON-OFF bursts to users, it has
also been shown that one streaming strategy can be considered as simple file down-
loads [38]. We adopt the strategy of the simple file downloads to model streaming
videos in our experiments in Section 4

3 Conflux’s Design

We next shift attention to the design of our system. An OP that uses Conflux builds a
number of circuits (two or more) that intersect at a common exit OR. We refer to the
OP and common exit OR as the end points of a multipath. The OP receives and sends
data to the client’s application (such as a web browser), while the exit OR sends and
receives data from an external server (such as a web server). Each end point receives
data and splits it into cells, adding sequence numbers to the cell headers. Next, the end
point divides the cells across the circuits of the multipath according to a traffic splitting
scheme. When the other end point receives the cells, it collects and reorders them ac-
cording to their sequence numbers before delivering their contents to their destinations.
We note that this approach does not replace Tor’s bandwidth-weighted router selection
algorithm, but complements it.

Our approach to cell-level traffic splitting consists of three parts: 1) multipath con-
struction, 2) throughput-informed sub-stream traffic splitting, and 3) sequencing, buffer-
ing, and reordering. We next describe each part in turn.
Constructing the multipath. As shown in Figure 2, the client constructs the first cir-
cuit, called the primary circuit, according to Tor’s bandwidth-weighted router selection.
Then, if the client wishes to use Conflux, the client forms another circuit that uses differ-
ent entry and middle ORs, which are also selected according to the bandwidth-weighted
algorithm. The only constraint our system requires on the second circuit is that its exit
OR has to be the same as the primary circuit’s exit OR. Next, the OP sends a new type of

6Note that P2P traffic on Tor is also likely to drop with the rise of UDP-based P2P applications [5].
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Fig. 2: Multipath construction and stream linking

command cell, which we call the “multipath” cell, through both circuits to the common
exit OR. The multipath cell contains a 32-byte random nonce that is common to each of
the OP’s linked circuits. This nonce enables the exit router to associate the OP’s TCP
streams with its linked circuits.7 The OP uses the primary circuit to command the exit
OR to establish the TCP connections to Internet destinations. Closing a multipath is no
different from closing circuits in Tor. If a circuit in a multipath exceeds its lifetime (ten
minutes by default), and if it is idle, the circuit is torn down. Closing one circuit does
not affect the operation of other circuits. Since a Tor client already builds many spare
circuits by default, we do not expect any additional load being introduced by Conflux.
Dynamic sub-stream traffic splitting. To improve load balancing, we designed and
implemented a dynamic load balancing algorithm where the splitting end point assigns
different amounts of traffic to each circuit depending on its observed throughput rela-
tive to the other linked circuits. The advantage of this approach is that it is reactive to
network dynamics, such as the congestion state of a circuit and its available capacity
relative to the other circuits.

This scheme works as follows. First, the splitting end point (the OP for client-to-
server traffic, or the exit OR for server-to-client traffic) measures the latency of each of
the linked circuits. This can be done by storing the time every 100th cell is sent down
a particular circuit, and noting the time that the corresponding circuit-level SENDME
arrives. This allows the splitting end point to compute the current round-trip-time (RTT)
of cells on the circuit; this will be inversely proportional to the circuit throughput, as
cells are of fixed size.

The splitting end point periodically updates the throughput measurements assigned
to each linked circuit. Next, every time a data cell is ready to be transmitted on a mul-
tipath, the particular circuit used to send the cell is selected with a probability propor-
tional to its throughput.
Sequencing, buffering, and reordering. Before any splitting can be performed on
TCP streams across different circuits, we have to ensure that the receiver will be able
to reorder cells before delivering them to their destination (client program or exit TCP
connection). Therefore, we implement sequencing of data cells before sending them
down our multipaths. Tor’s standard data cell consists of a circuit identifier, a “relay”
command type, a “data” sub-type, a “recognized” field to identify whether the cell is
to be delivered locally, a stream identifier, a message digest to ensure integrity, a data
length, and the data. We modify the cell format slightly, to reserve the first four bytes of
the payload for the sequence numbers, as shown in Figure 3. This reduces the amount
of data that can fit into each cell’s payload by less than 1%.

7As usual, a malicious exit router can trivially observe all circuits it handles, including linked ones.
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494

Fig. 3: The 512-byte data cell format with each field’s length (in bytes) for Conflux.

Because we divide a single TCP stream across circuits, we expect that cells may
arrive out of order. Therefore, the two end points of a multipath, the OP and exit OR,
are responsible for buffering and reordering cells that arrive out of order. First, as long
as the cells arrive in order, they are immediately delivered to the client application (or
the TCP exit connection) when the receiver is the OP (or the exit OR). Also, we keep
track of the sequence number of the last delivered cell. If a cell arrives out of order, it is
stored in a sorted list of cells. When the next expected cell arrives, it is delivered to the
OP (or TCP exit connection) along with any buffered cells with subsequent sequence
numbers that have already arrived.
Implementation details. We implemented the multipath construction and cell se-
quencing, buffering, and reordering in the Tor source code (version 0.2.3.0-alpha-dev).
We also implemented the weighted traffic splitting algorithm as described above. Con-
flux can be turned on or off as a configuration option. Note that only the circuit’s end
points (e.g., the client and the exit router) are required to upgrade to run Conflux. Thus,
Conflux can be incrementally deployed as individual exit routers and clients upgrade.
Our full implementation consists of roughly 2,000 lines of code.

4 Performance Evaluation

In order to empirically demonstrate the potential performance benefits of the proposed
scheme, we present a series of live and large-scale experiments.

4.1 Experimental Setup

Live experiments. First, we seek to measure the potential benefits of deploying a
modified Tor router on the currently deployed Tor network. Since only the Tor exit
router needs to be modified in order to use Conflux, we deploy a single exit router and
conduct a series of performance measurements using a Tor client that we control.

Each measurement is collected as follows: First, a Conflux multipath circuit is built
using two entry routers entry1 and entry2, two middle routers middle1 and middle2, and
our modified exit router exit. In order not to expose other clients’ traffic, we set the
exit policy of exit so that it can only connect to a specific web server. This means that
exit will act as an exit router only for our traffic, but it can be a middle or an entry
node for other clients’ encrypted traffic. Using Conflux, our client fetches 320 KiB,
1 MiB and 5 MiB files. These file sizes were chosen to approximate web pages and
larger files [37]. For comparison, the stock Tor client downloads the files over different
circuits it builds using Tor’s default bandwidth-weighted router selection algorithm.8

8To reduce any bias in the performance results due to the selection of particularly fast or slow entry guards, we disable
the use of entry guards for this experiment.
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Table 1: Network model for whole-network experiments

Attribute Data Source
Pairwise link latency King dataset [15]
Tor router bandwidth Tor consensus (Nov. 2011)
Tor client bandwidth Ookla Net Index dataset [33]
Traffic characteristics Tor traffic study [28]

Measurements were collected from December 2012–January 2013, during which time
our exit router was configured with a bandwidth rate of 200 KB/s.

To evaluate the performance benefits for people using low-bandwidth Tor bridges,
we also collect measurements where our client uses Tor bridges as its entry nodes. We
collected 36 bridges by using Tor’s standard HTTPS request service and we manually
solved CAPTCHAs. The bridge clients work as follows. Every thirty minutes, our stock
Tor and Conflux clients choose six bridges randomly from the list of 36 bridges we
obtained, and use them as the first hop on each circuit they construct.
Whole-network experiments. One of the limitations of a live performance evaluation
is that it is generally not possible to understand how performance might change when
all participants of the network adopt the new design. To help understand these whole-
network effects, we also perform experiments using the ExperimenTor testbed [4]. Ex-
perimenTor is a Tor network testbed and toolkit that enables whole-network Tor exper-
iments on a network topology with realistic delay, bandwidth, and other characteristics
using the Modelnet [57] network emulation platform.

One challenge in conducting such an evaluation is that one must faithfully model
the dynamics of the live network such as network latency, bandwidth, and traffic charac-
teristics and replicate them in isolation. To enhance the realism of our experiments, we
use a variety of empirical data sources, summarized in Table 1, to construct a network
topology based on realistic link latencies, Tor router bandwidths sampled uniformly
from a Tor consensus document from November 1, 2011, and asymmetric Tor client
bandwidths assigned by sampling from the Ookla Net Index broadband data set [33]
(the interquartile ranges are 4 –13 Mbit/s downstream, 0.5–1.9 Mbit/s upstream).
Client traffic models. In addition to building a realistic network topology, it is impor-
tant to replicate the dynamics of the network’s traffic. Since Tor’s users are anonymous,
it is inherently difficult to characterize real Tor traffic. One such study [28] exists, which
reported that over 92% of TCP connections leaving a Tor exit router result from web
browsing and make up nearly 60% of the network’s aggregate traffic volume. However,
BitTorrent accounts for only about 3% of connections, but comprises over 40% of the
aggregate traffic volume. We employ these empirical observations in developing realis-
tic traffic models for our whole-network experiments. Beyond modeling the dynamics
of the past and present Tor network, we also consider emerging trends in Internet traffic.

We model two types of clients in our experiments: First, web browsing clients are
modelled as fetching 320 KiB files (the median web page size on the Internet [37]) with
random think time pauses between 1–30 seconds (chosen uniformly at random). A sim-
ilar distribution of “think times” between web requests was measured by Hernández-
Campos et al. [18]. Second, bulk clients (e.g., streaming video) download 5 MiB files
with uniformly random delays of 1–5 minutes between fetches. This download size
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Fig. 4: Live performance comparison between Tor and Conflux
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Fig. 5: Download time performance comparison between Tor and Conflux using live
Tor network bridges

and delay distribution approximates observations of YouTube video sizes and viewing
durations [22]. As mentioned in Section 2, we model streaming clients by large file
downloads [38].

To highlight the performance benefits for bandwidth-deprived bridge clients, we
also conduct whole-network experiments in which clients use a bridge in lieu of an
entry guard. Since bridges are typically run by Tor clients themselves, we configure
five bridges to run on asymmetric broadband-like Internet connections chosen from the
Ookla Net Index data set.

4.2 Results

Performance metrics. To evaluate the performance of our technique, we measure time-
to-first-byte and download time. The time-to-first-byte is the time it takes the client to
receive the first cell of data after it issued a request; it is a good measure of both the
responsiveness of the network and its congestion state. The other metric we consider is
download time, which is simply the time it takes for the client to receive the last byte of
data after issuing a request (download time includes the time-to-first-byte).
Live performance. Figure 4 compares the time for a client to download 320 KiB,
1 MiB, and 5 MiB files using Tor and Conflux. We observe a noticeable improvement in
download times for all file sizes. However, improvements are more visible with larger
file sizes. For example, the median improvement in download time for the 320 KiB
and 1 MiB files is 42% and 25%, respectively. For the 5 MiB files, the improvement
is around 54%. The reason why improvements are more visible for larger file sizes is
the mechanics of TCP congestion control (see the extended version of this work [1,
Appendix A] for details).
Live performance for bridge users. When we apply Conflux with clients who use
low-bandwidth bridges as their entry nodes, we also observe significant improvement
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Fig. 6: Time-to-first-byte performance comparison between Tor and Conflux using live
Tor network bridges
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Fig. 7: Performance comparison between ExperimenTor (testbed), when 370 web
browsers and 30 bulk clients are used, and the live Tor network using torperf. These
graphs show that our testbed setup realistically reproduces the performance of the live
Tor network.

in performance, regardless of the download size. Figures 5(a), 5(b) and 5(c) show that
the download times for 320 KiB, 1 MiB, and 5 MiB files are significantly improved; the
performance improvement is most significant for the 5 MiB download, which experi-
ences an improvement of over 50% relative to Tor.

Furthermore, Figures 6(a), 6(b) and 6(c) compare the times-to-first-byte for clients
who use bridges to download 320 KiB, 1 MiB, and 5 MiB files using Tor and Conflux.
Regardless of the download size, the Conflux clients experience faster response times
compared to Tor. By using multiple circuits, if one circuit is congested, Conflux is able
to send cells down a second, possibly uncongested circuit.
Whole-network deployment. We next seek to evaluate the performance of our tech-
nique if all our browsing bridge users and bulk clients in the network upgraded. In
our large-scale experiments, we deploy a 20-router Tor network on our ExperimenTor
testbed. Next, we fix the number of the total Tor clients to 400. Of the 400 clients, 30
clients act as bulk downloaders and 370 clients act as the interactive web browsers. Our
initial experiments revealed that if all web clients who use entry guards use Conflux,
those clients observe no performance benefits because the exit routers would be slower
than the entry guards and would become the bottlenecks in circuits constructed by Con-
flux. Therefore, for our whole-network deployment experiments, we focus on browsing
bridge users, since they have more performance incentives to use Conflux.

Before we present our whole-network deployment results, we first compare the
stock Tor download time measurements obtained from our testbed, when 370 web and
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Fig. 8: Download time comparison between Tor and Conflux for web clients that down-
load 320 KiB using bridges in whole-network deployment experiments

30 bulk clients are used, with the live Tor network measurements maintained by the Tor
metrics portal [52]. Figure 7(a) shows that the stock Tor download time distribution, of
320 KiB files obtained using ExperimenTor, fits between the download time distribu-
tions of the 50 KiB and 1 MiB files obtained from the live Tor network. Note that the
Tor project only maintains the download times of 50 KiB, 1 MiB and 5 MiB file sizes
over the live Tor network.

Second, Figure 7(b) demonstrates that our testbed’s download time distribution of
5 MiB files closely approximates the respective distribution obtained from the live Tor
network. In fact, the results look accurate for the fourth quartile of the download times,
and for the first three quartiles, the testbed performance is only 15% slower than the
live Tor network.

Although we believe that using 370 web and 30 bulk clients produces an accurate
approximation, we also experiment with a lighter load of 390 web and 10 bulk clients,
as there are continual efforts to reduce the load in the network by throttling the bulk
downloaders [19, 31]. Furthermore, in each experiment, among the 390 or 370 web
clients, we fix the number of bridge users to 50. We also run an additional five low-
bandwidth routers that act as bridges.9 Those bridges are neglected by non-bridge users.

Next, we present the results for the web browsing bridge users (for bulk clients’
results, see the extended version of this paper [1, Appendix B]). Figure 8 shows the
significant performance gains in download times experienced by bridge users using
Conflux when the network is lightly loaded with 10 bulk clients and 390 web browsers.
At the median, it takes a Tor client 11 seconds to finish downloading the 320 KiB file,
whereas with Conflux, it takes only 6 seconds, which is approximately a 45% improve-
ment. When we increase the load to 30 bulk clients to match the performance of the
current Tor network, we still observe significant download time improvements. For Tor
clients, the download times are degraded by 4 seconds, as the download time reaches
15 seconds at the median, whereas with Conflux, the degradation is only 2 seconds, as
downloads complete in 8 seconds. Therefore, even with congestion, Conflux maintains
the performance advantage of roughly 46%.

9 Since little is known about the total number and behavior of bridge users, we make reasonable assumptions in design-
ing these experiments.
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Fig. 9: Time-to-first-byte comparison between Tor and Conflux for web clients that
download 320 KiB using bridges in whole-network deployment experiments

Figure 9 tells us a similar story for the time-to-first-byte results. Under a light load
of 10 bulk clients, Conflux needs only 1.8 seconds before the browser starts changing
for the bridge user at the median. The respective waiting time for the Tor client is 3.3
seconds, which is a 45% improvement in time-to-first-byte using Conflux. When we
increase the load to 30 bulk clients, the median time-to-first-byte is still improved by
roughly 23% when Conflux is used. Therefore, our large-scale experiments confirm our
live experiments, in which we observed large performance benefits when Conflux is
used for bridge users. Table 2 summarizes our whole-network experimental results.

Table 2: Relative download time comparison at the 80th percentile for Conflux and Tor
under increasing traffic loads

User type Light load Regular load
Web browsing bridge users Improved by 32% Improved by 34%

Streaming (bulk) users Improved by 17% Improved by 3%
Other clients Not affected Not affected

5 Security Analysis

We next investigate how the multipath routing scheme in Conflux affects the proba-
bility of the adversary linking together a circuit’s source and destination. This linking,
or circuit compromise, occurs when the adversary controls both endpoints of a given
circuit [48] and applies timing analysis [24, 45] to reveal the communication patterns
between the client and its corresponding destination. We first analyze the potential for
path compromise due to passive attacks. Active attacks are considered in Section 5.3.

5.1 Identifying Bridge Users

Exit ORs can easily recognize which clients are using Conflux. Therefore, to prevent
exit ORs from identifying bridge users, both bridge users and non-bridge users are en-
couraged to use Conflux. In fact, non-bridge browsing users can benefit from Conflux
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Fig. 10: Security of Conflux with two and three circuits compared to stock Tor.

because browsing activity often involves streaming or downloading large files or im-
ages. In such situations, non-bridge users can observe between 3% to 17% performance
improvements as we have seen in the results of our whole-network deployment experi-
ments summarized in Table 2. This substantial improvement provides them with strong
incentives to use Conflux and thereby aid in increasing the anonymity set of bridge
users who adopt Conflux.

5.2 Path Compromise

We next examine the effect Conflux has on client exposure and compare it to Tor. We
look at both client compromise rates as well as individual circuit compromise rates to
provide a more thorough discussion of the security implications of Conflux.

For client compromise, we adopt the model used by Elahi et al. [13], which pro-
vides a realistic and empirical approach to determining client exposure due to real-
world network phenomena such as guard churn. In their model, clients are considered
compromised whenever there is a malicious relay in their guard set. Note that if a client
has a guard set containing malicious guards, then the number of circuits created before
choosing a malicious guard would be sightly smaller for Conflux as compared to Tor.
However, such a client would be deanonymized with either Tor or Conflux, and so from
a client compromise point of view, we consider either situation to be equally bad. (We
will consider circuit compromise, in which one cares about how often a client’s circuits
are compromised, below.) This captures the upper bound on the absolute compromise
levels of the client population. The reason why only clients with all guards honest are
assured safety is that if even one of the guards is malicious then the client will even-
tually pick a malicious guard at the same time as picking a malicious exit, and will be
exposed.

This model depends only on the distribution of the guards amongst the clients’ guard
sets and is not affected by the multipath scheme Conflux utilizes. Conflux does not alter
how guards are selected by clients into their guard sets nor how guards are selected for
circuits. This makes the guards clients pick with Conflux identical to those picked with
Tor, and hence both systems have identical exposure rates.
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Table 3: Compromised circuit rates at different values of k (the number of entry guards
used for a (multi)path) given m malicious relays in the user’s guard set at 10% malicious
guard bandwidth (for the computation of Bm) and 10% malicious exit bandwidth (for
the computation of Pm)

Pm(Compromised)
Malicious Relays Probability k = 1 k = 2 k = 3
in Guard Set (m) of m (Bm) (Tor) (Conflux-2) (Conflux-3)

0 72.9% 0% 0% 0%
1 24.3% 3.33% 6.67% 10%
2 2.7% 6.67% 10% 10%
3 0.1% 10% 10% 10%

Under certain circumstances, individual circuit compromise rates can be just as im-
portant as client compromise rates. The following formula captures the probability of a
compromised multipath in Conflux.

P (Compromised) ∆= fxbw · (1− (1− fgbw)
k) (1)

Here, k is the number of guard nodes10 used in the multipath, while the adversary
controls a proportion fxbw of the network’s exit bandwidth and a proportion fgbw of the
network’s guard bandwidth. The equivalent value for Tor is fxbw · fgbw, the probability
of selecting both a malicious exit and guard. Note that, as expected, this is the same as
the expression for Conflux when k = 1.

In order to understand the implications of this formula, we compare Conflux —
denoted Conflux-2 where two guards are used on a multipath and Conflux-3 where
three guards are used — with Tor and plot the results in Figure 10(a). It is clear that
while Conflux-2/3 increases the chance of a compromised circuit, it is very slight in
absolute terms; at 10% compromised exit bandwidth it is 0.9% in Conflux-2 and 1.72%
in Conflux-3, as shown in Figure 10(b). The tradeoff between this slight increase and
that of increased performance can be evaluated depending on the needs of the client.

We further analyze the probability distribution (Bm) of a client having m malicious
guards in its guard set as well as the probability (Pm) of constructing compromised
circuits given m compromised guards. Assuming 10% malicious exit bandwidth, Ta-
ble 3 provides the probabilities of picking 0 or more malicious guard relays as well
as the probabilities of constructing malicious circuits under those conditions. Note that
because malicious guards are chosen infrequently, Conflux often adds no additional
vulnerability to path compromise over and above Tor.11

The same analysis follows for AS-level adversaries that can observe the connections
between clients and their guards/bridges, and between exit relays and the destinations.

10This analysis is also applicable to bridge relays since Conflux utilizes them in the same
manner as guard relays.

11As of July 2012, the Tor network had roughly 1,200 MiB/s aggregate guard bandwidth and
roughly 600 MiB/s aggregate exit bandwidth [51]. We believe that an adversary in possession
of 10% of each of these bandwidths is a powerful, high-resource attacker. Thus, this should be
considered a worst-case security analysis.
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Substituting the fraction of circuits observed by the adversary between the two end
points, i.e. fclient−guard and fexit−destination, for fgbw and fxbw respectively in Equa-
tion 1, we can calculate compromise rates in similar fashion to those in Table 3. While
it is difficult to estimate realistic adversarial AS coverage, Edman and Syverson [12]
and Wacek et al. [58] provide values of between 18–25% for the parameters above.

5.3 Selective Denial of Service

We now consider active attacks, in the form of selective denial of service (SDoS) [3,6,7,
56]. Under this attack the adversary actively breaks circuits he is part of if he finds that
either end point is not controlled by him. This causes the client to create compromised
circuits at a higher rate. The adversary can choose to either SDoS circuits immediately
or be strategically patient.

Recall that Conflux establishes primary circuits first, to which further (secondary)
circuits are linked to form multipaths. Hence, this mechanism provides two avenues
for the SDoS attack: first at the primary circuit building stage and second at the circuit
linking stage. We analyze each in turn.

We model the likelihood of primary circuit compromise with SDoS by inputing
Formula 1 from Section 5.2 in the following formula, proposed by Das and Borisov [7],
where f is the fraction of malicious relay bandwidth:

P (SDoS) =
P (Compromised)

P (Compromised) + (1− f)3
(2)

With SDoS, the only primary circuits that are possible will either be compromised
(P (Compromised)) or entirely honest ((1 − f)3). At 10% malicious bandwidth this
attack increases the likelihood to 2.54% from 1.9% for Conflux-2 and to 3.57% from
2.7% for Conflux-3. Compare this to Tor where the same attack increases the likelihood
to 1.35% from 1%. The increases here are due to the primary circuit creation phase and
not due to Conflux’s multipath linking scheme.

The strategic adversary servicing a primary circuit with a compromised exit relay
may gain an added advantage by performing SDoS exclusively on the secondary circuits
being linked to the primary. At 10% malicious bandwidth the probability of this sce-
nario is 9%. Under Conflux-2, employing SDoS on such secondary circuits exclusively
gains the adversary 0.23% whereas Conflux-3 gains the adversary 0.41%. The adver-
sary needs to balance the cost of this strategy in terms of bandwidth used to service the
uncompromised primary and the added advantage it provides.

A possible countermeasure is to ensure that the OP will retry the linked circuit using
the same guard and will not switch to another (potentially malicious) guard. After a few
retries, if it is unable to build a secondary circuit for the linked stream, the OP will give
up but without impacting the client whose traffic still flows over the uncompromised
primary circuit.

6 Discussion

Congestion. Conflux does not introduce any additional traffic to the network as our
multipaths are bounded by the window of the primary circuit and by the bandwidth
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of the exit routers. Indeed, in our large-scale experiments, we found that the windows
are not exhausted when Conflux is used. As indicated by our results, congestion is
reduced because Conflux dynamically senses latency on each circuit as a congestion
indicator, which allows our traffic splitting approach to perform smart load balancing
so that congestion can be avoided. Moreover, Conflux is complementary to incentive
schemes that seek to increase the number of exit routers and bridges.
Computational Cost. One might wonder if Conflux adds more complexity to the op-
eration of routers since it requires building more circuits resulting in more public key
(PK) operations. Since Tor clients build spare idle circuits by default, Conflux can use
those circuits as secondary circuits in order not to add more PK operations in build-
ing multipaths. For circuits that must be built on demand, Conflux doubles the cost of
building circuits (assuming only two paths are used). However, those costs can be sig-
nificantly reduced if Conflux uses Tor 0.2.4’s ntor handshake [8], which eliminates PK
decryptions at routers during circuit construction.
Experimental Limitations. The results we obtained show an improvement in a testbed
environment. In our experiments, we emulate the network behaviour and traffic load
using ExperimenTor, since it allows us to set up different network topologies with dif-
ferent bandwidth and link settings. For practical purposes, we scaled the network down
to 20 routers, which is not reflective of the real Tor network. However, we strived in our
experiments to perform and obtain realistic performance measurements under different
traffic loads. Performing large-scale experiments using different network models such
as the ones recently proposed by Jansen et al. [20] and Wacek et al. [58] and performing
a large-scale performance evaluation on the live Tor network are areas for future work.
Future Work. Recall that our dynamic traffic splitting technique is based only on two
circuits. One area we want to explore is using Conflux with more than two circuits.
Since we found the performance improvements to be significant with two circuits, we
suspect that we may find even more performance benefits with more than two circuits.
We leave exploring the performance benefits of splitting traffic over more than two
circuits for future investigation.

Another avenue for future work is to evaluate alternative methods for measuring
circuit latency. Recall that we opportunistically measure the latency of a circuit in order
to access its performance using Tor’s existing circuit-level SENDME cells that a client
sends to the exit router after receipt of every 100th data cell. This allows us to measure
circuit latency/congestion for free (e.g., with no additional overhead to the network).
An alternative technique is to introduce a new cell type that clients send to exits and
perform more frequent measurements. A potential advantage of this approach is that it
might detect sudden changes in latency and thereby react to congestion faster. However,
a downside is that this approach is more hostile to the network, because it places more
probe traffic onto the network.

7 Related Work

Multipath TCP (MPTCP). MPTCP [17] is a transport layer protocol that allows appli-
cations to send data over several interfaces/addresses, whereas Conflux is implemented
at the overlay layer. Because data is source-routed in Tor, we can choose our multi-
paths and ensure they are only joined at the exit routers. In MPTCP, routing decisions
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are done by IP routers, and a TCP source cannot choose the Internet path. MPTCP is
more useful if divergent paths are available (multi-homing).
Multipath to improve anonymity. In the context of high-latency Chaumian mix net-
works, Serjantov and Murdoch [42] show that sending packets over multiple disjoint
routes through the mix network may increase anonymity against a partial passive ad-
versary. Also, Feigenbaum et al. [14] proposed multipath routing to mitigate timing
attacks [43, 45] in low-latency anonymity networks, using a layered mesh topology.
Multipath to improve performance. In the context of low-latency onion routing net-
works, MORE [23] routes every packet through a different path of onion routers, half of
which are chosen by the sender and half chosen by the receiver. While this approach of-
fers the ability to create highly dynamic paths—which can have desirable performance,
load balancing, and anonymity properties—the requirement that communicating parties
participate in the anonymity network may reduce MORE’s practicality.

To increase throughput in Tor, Snader [46] presents preliminary experiments in
which clients receive n different streams over n disjoint circuits. In particular, multiple
circuits are shown to reduce the time to download 1 MB files. However, it is unclear
whether performance is improved for smaller web-like streams; furthermore, since this
scheme uses more entry and exit points into the Tor network, it may increase the threat
of end-to-end traffic confirmation attacks (as in Bauer et al. [3]).
Combination with other Tor performance work. There are several proposals that
aim to improve the performance of Tor in different ways such as congestion control and
avoidance [2,16,39,49,59], improved router selection [44,47], scalability [29,30], and
applying incentive schemes to increase the number and bandwidth of Tor relays [21,31,
32]. Conflux is complementary to these previous approaches and we expect that even
greater performance benefits are possible by combining these proposals together. We
leave this for future investigation.

8 Conclusion

Motivated by the need to improve the performance of Tor, we presented the design,
implementation, and analysis of Conflux, a dynamic congestion-aware traffic splitting
scheme that is designed to improve the load balancing of the network which is particu-
larly useful for clients using low-bandwidth routers such as bridges. We evaluated Con-
flux using a series of small-scale experiments on the live network, and using large-scale
experiments on an isolated testbed. Our results indicate that significant performance
benefits can be obtained at the expense of a slight decrease in anonymity.
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ity and Accuracy in a Large-Scale Network Emulator. SIGOPS Oper. Syst. Rev. 36, 271–284
(December 2002)

58. Wacek, C., Tan, H., Bauer, K., Sherr, M.: An Empirical Evaluation of Relay Selection in
Tor. In: Proceedings of the Network and Distributed Security Symposium (NDSS) (February
2013)

59. Wang, T., Bauer, K., Forero, C., Goldberg, I.: Congestion-aware Path Selection for Tor. In:
Proceedings of Financial Cryptography and Data Security (FC’12) (February 2012)

60. Wright, M.K., Adler, M., Levine, B.N., Shields, C.: The Predecessor Attack: An Analysis
of a Threat to Anonymous Communications Systems. ACM Trans. Inf. Syst. Secur. 7(4),
489–522 (2004)

61. Xu, X., Mao, Z.M., Halderman, J.A.: Internet Censorship in China: Where Does the Filtering
Occur? In: PAM. pp. 133–142 (2011)

20

https://trac.torproject.org/projects/tor/wiki/doc/TorouterAssignedTicketstothisproject
https://trac.torproject.org/projects/tor/wiki/doc/TorouterAssignedTicketstothisproject
https://metrics.torproject.org/network.html?graph=bwhist-flags&start=2012-07-01&end=2012-07-02&dpi=72#bwhist-flags
https://metrics.torproject.org/network.html?graph=bwhist-flags&start=2012-07-01&end=2012-07-02&dpi=72#bwhist-flags
https://metrics.torproject.org/network.html?graph=bwhist-flags&start=2012-07-01&end=2012-07-02&dpi=72#bwhist-flags
https://metrics.torproject.org/data.html#performance
https://metrics.torproject.org/data.html#performance
http://metrics.torproject.org/network.html?graph=networksize&start=2012-01-01&end=2012-01-31&dpi=72#networksize
http://metrics.torproject.org/network.html?graph=networksize&start=2012-01-01&end=2012-01-31&dpi=72#networksize
http://metrics.torproject.org/network.html?graph=networksize&start=2012-01-01&end=2012-01-31&dpi=72#networksize
http://metrics.torproject.org/users.html
http://metrics.torproject.org/users.html
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/bridges-spec.txt
https://gitweb.torproject.org/torspec.git/blob_plain/HEAD:/bridges-spec.txt

	The Path Less Travelled: Overcoming Tor's Bottlenecks with Traffic Splitting

