
Anonymous Addresses for Efficient and Resilient
Routing in F2F Overlays

Stefanie Roos, Martin Beck, Thorsten Strufe
TU Dresden, Privacy and IT Security

{stefanie.roos,martin.beck1,thorsten.strufe}@tu-dresden.de

Abstract—Friend-to-friend (F2F) overlays, which restrict di-
rect communication to mutually trusted parties, are a promising
substrate for privacy-preserving communication due to their
inherent membership-concealment and Sybil-resistance. Yet, ex-
isting F2F overlays suffer from a low performance, are vulnerable
to denial-of-service attacks, or fail to provide anonymity. In par-
ticular, greedy embeddings allow highly efficient communication
in arbitrary connectivity-restricted overlays but require commu-
nicating parties to reveal their identity. In this paper, we present a
privacy-preserving routing scheme for greedy embeddings based
on anonymous return addresses rather than identifying node
coordinates. We show that the return addresses allow plausible
deniability. Furthermore, we enhance the routing’s resilience by
using multiple embeddings and propose a method for efficient
content addressing. Our extensive simulation study on real-world
data indicates that our approach is highly efficient and effectively
mitigates failures as well as powerful denial-of-service attacks.

I. INTRODUCTION

Anonymous and censorship-resistant communication is a
prerequisite for freedom of speech. Threats to this essential
human right have recently emerged even in western countries,
the fear of surveillance of personal communication has lead
to observable self-censorship1. The inherent vulnerability of
publicly known servers to sabotage necessitates decentralized
solutions for anonymous communication and content distribu-
tion. Yet, the openness of such systems presents a vulnerability
in itself, enabling attackers to infiltrate the system with a large
number of forged participants, as observed in attacks on the
Tor [1] network in 20142.

F2F overlays reduce disclosure to strangers by restricting
connectivity to participants who share a mutual trust rela-
tionship in the real world. Hence, adversaries need to resort
to social engineering attacks to infiltrate the network. Large-
scale privacy-preserving communication in F2F overlays still
requires additional measures to achieve anonymity, resilience
to failures and attacks, and efficiency. Multiple studies indeed
have shown that deployed F2F overlays as well as proposed
alternatives are highly inefficient and vulnerable to attacks [2]–
[4].

Greedy network embeddings, as proposed in e.g. [5], [6],
are a potential solution. They allow for efficient greedy routing
with local knowledge on arbitrary graphs. For this purpose,
they first construct a spanning tree of the network and then

1http://www.theguardian.com/commentisfree/2013/jun/17/
chilling-effect-nsa-surveillance-internet

2https://blog.torproject.org/category/tags/attacks

assign coordinates based on a node’s position in the tree.
However, contacting an untrusted user requires knowledge of
its coordinate in the network. Though only direct neighbors
can map the embedding coordinate to a real-world identity,
arbitrary participants can reconstruct the social graph based
on the coordinates that are revealed through the protocols.
Participants then can then be identified from the social graph
structure [7] and potentially tracked.

Our first requirement for F2F overlays thus is that address-
ing and routing protocols are modified to achieve efficiency
and anonymity. Second, in the face of well-known attacks, the
resilience of such embeddings to both failures and attacks have
to be increased dramatically. Third, efficient content storage
and retrieval requires a suitable content addressing scheme that
exploits the network embeddings.

Our solution meets the above requirements by i) introducing
anonymous return addresses to provide receiver anonymity,
ii) leveraging multiple embeddings and backtracking during
routing to increase resilience, and iii) constructing a virtual
overlay that exploits the network embeddings and thus avoids
the enormous stabilization costs of previous approaches.

We evaluate our solution both by a formal security and
performance analysis and an extensive simulation study. The
performance analysis shows that our scheme achieves scalable
and efficient routing as well as efficient self-stabilization in the
presence of dynamic arrival and departure of participants. In
the security analysis, we prove that our return addresses indeed
provide receiver anonymity in the form of plausible deniability.
Furthermore, our simulation study indicates a high robustness
and attack-resistance in comparison to state-of-the-approaches.
We therefore believe that our F2F overlay is the first to offer
anonymity, resilience, and efficiency.

II. RELATED WORK

Here, we describe the state-of-the-art with regard to routing
and content discovery in F2F overlays.

Unstructured approaches utilize flooding, e.g. in Turtle [8],
or probabilistic forwarding e.g. in OneSwarm [9]. GnuNet
attempts to combine random walks with deterministic routing
[10]. These overlays focus locating content rather than indi-
vidual nodes. Due to the replication of content, the content
can indeed be located, but efficient communication between
two uniquely defined entities is not possible.

Virtual overlays address the problem of establishing an
overlay despite the restricted connectivity by replacing overlay

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

2

links with tunnels of trusted nodes. So, efficient tunnel dis-
covery and maintenance is a main concern given the inherent
network dynamics: Vasserman et al. [3] suggest flooding the
network for discovering adequate overlay neighbors, thus cre-
ating a large overhead. In contrast, X-Vine [11] leverages the
overlay routing by concatenating previously existing tunnels
to a new one, thus entailing a increase of the average tunnel
length and hence routing costs over time [4].

In contrast, network embeddings assign coordinates that
allow efficient routing to nodes. For example, the F2F mode
of Freenet relies on a network embedding. However, results
indicate that the embedding is lacking both with regard to rout-
ing efficiency [3] and attack resilience [2]. Hoefer et al. [12]
propose highly efficient greedy embeddings. However, their
approach reveals the identity of the communicating parties
and fails to consider resilience. Furthermore, their proposed
scheme for content addressing maps the majority of content
keys to the same central node.

In summary, network embeddings are the only existing ap-
proach providing a high efficiency at acceptable maintenance
costs. However, achieving receiver anonymity, resilience, and
suitably content addressing is an unsolved highly challenging
problem.

III. NETWORK EMBEDDINGS

Our solution builds upon previous work in the area of
network embeddings, which assign coordinates to nodes with
the goal of structuring networks. In the following, let G =
(V,E) be a network and (X, δX) be a metric space with a
distance δX . A network embedding is defined as a function
id : V → X assigning each node a coordinate. The problem
of enabling routing in a connectivity-restricted network has
been addressed by the design of greedy embeddings. Greedy
embeddings [13] are coordinate assignments, such that for any
source-destination pair (s, t) ∈ V × V with s 6= t, a neighbor
u of s exists such that δX(u, t) < δX(s, t). We say that u
is closer to t than s with regard to δX . As a consequence,
straight-forward greedy routing is guaranteed to find a route
from s to t.

Though there exists a multitude of greedy embedding
algorithms, they all follow the same four abstract steps: i)
Construct a spanning tree T , ii) Each internal node in T
enumerates its children, iii) The root receives a predefined co-
ordinate, iv) Children derive their coordinate from the parent’s
coordinate and the enumeration index assigned by the parent
(e.g. [5], [6], [14], [15]). The coordinates are then distributed
such that the embedding of the spanning tree is greedy, as
specified for the PIE embedding below. Subsequent to the
coordinate assignment, nodes consider all neighbors, including
those that are neither parent nor child, for the routing. So,
routing is not restricted to tree edges. We call non-tree edges
shortcuts because they allow for a faster reduction of the
distance and shorter routes than predicted by the distance in
the tree.

Though embedding algorithms generally rely on a spanning
tree and assign coordinates according to the tree structure,

the nature of the assigned coordinates is highly diverse:
Embeddings into hyperbolic space such as [5], [14], [15] allow
embedding in low-dimensional spaces. However, proposed
hyperbolic embeddings are extremely complex and do not
scale with regard to the number of bits required for coor-
dinate representation [15]. Custom-metric approaches have
been designed to overcome these shortcomings. The custom-
metric embedding PIE [6] assigns an empty vector as the root
coordinate. Child coordinates are then derived from the parent
coordinate by concatenating the parent coordinate with the
index assigned to the child by the parent, potentially weighted
with the cost of the parent-child edge if such weights are given.
In this manner, a node s’s coordinate represents the route from
the root to u. Consequently, the distance δX is given by the
hop distance of two nodes in the tree. Whereas routing in
greedy embeddings is highly efficient in comparison to non-
greedy embeddings [12], neither anonymity nor resilience has
been considered in a suitably manner.

IV. ADVERSARY MODEL

We aim to realize efficient routing and resource discovery
in F2F overlays making use of network embeddings. At the
same time, we need to provide receiver anonymity, resilience,
and content addressing. Thus, two attack goals are considered
in our adversary model, namely i) identifying communicating
parties, i.e., the sender and receiver of a message and ii) block-
ing undesired communication, for instance by a denial-of-
service (DoS).

As for the attacker’s capabilities, we assume a local, active,
internal, and possibly colluding attacker, who is able to drop
and manipulate the messages she receives. A global passive
attacker is disregarded as steganographic techniques can be
applied to hide the F2F traffic (cf. [16]). Furthermore, the ad-
versary is computationally bounded to polynomial time, which
in particular prevents her from breaking computationally-
secure cryptographic primitives. However, in order to protect
against powerful adversaries, such as government bodies, we
assume that the adversary is computationally strong, possibly
stronger than all honest users combined. Regarding the number
of malicious nodes and their impact, the adversary can control
an arbitrary number of colluding Sybil nodes in the network.
She is unable to observe the complete topology and can only
establish a limited number of connections to honest nodes, as
the seeming real-world trust relationships have to be social-
engineered. We particularly assume that i) an adversary cannot
be certain that she knows all neighbors of a node, and ii) the
total number of connections to honest nodes is small, meaning
bound by O(

√
n) in agreement with related studies [17].

Based on the above capabilities and goals, the adversary
may apply the following strategies. To break the anonymity of
communicating parties, the adversary learns from messages
that are passed through her, either directly from the content
of the messages or indirectly from more sophisticated attacks,
such as timing analyses.

As for the routing resilience, we focus on adversaries drop-
ping messages. In order to maximize its impact, we assume the

3

adversary to precede her denial-of-service attack by gaining
an influential position in the network, employing, e.g., a
black hole attack [18]. To attack the network embeddings, the
adversary A is assumed to interrupt the communication from
her descendants in the spanning tree to other parts of the tree
by dropping all messages forwarded to A. Though the use of
shortcuts to different parts of the tree mitigates the impact of
the above attack, the resilience of a single network embedding
to such attacks may be insufficient, especially if the adversary
manages to sabotage the spanning tree construction. We do not
specifically consider pollution and local eclipse attacks in this
paper. Although they present a threat for F2F networks, they
have been addressed in various publications (cf. [19]), which
can be applied to our contribution with few modifications.

V. DESIGN

Our main contribution lies in proposing multiple greedy
embeddings with anonymous return addresses and a virtual
overlay on top of the embeddings. Throughout this section,
let b be a sufficiently large integer, PRNG a pseudo-random
number generator with values in Zb2, and h : {0, 1}∗ → H a
cryptographically secure hash function.

A. Tree Construction and Stabilization

In this section, we show how we construct and stabilize γ
parallel spanning trees. In the next section, we then describe
how to assign coordinates on the basis of these trees. We
want to increase the robustness and censorship-resistance by
using multiple trees. In order to ensure that the trees indeed
offer different routes, our algorithm encourages nodes to select
different parents in each tree if possible.

Tree Construction : We divide the construction of a tree
into two phases i) selecting the root, and ii) building the tree
starting from the root. We can apply [20] for the root election,
which achieves a communication complexity of O (n log n).
Our own contribution lies in ii) the tree construction after the
root node has been chosen.

We now shortly describe the idea of our algorithm. Due to
space constraints, we limit our description of the algorithm to
an informal characterization. Our technical report includes the
pseudocode and expands on the role of the essential parameter
q [21]. A node u that is not the root receives messages, called
invitations in the following, from its neighbors when they join
a tree and hence become potential parent nodes. There are two
questions to consider when designing an algorithm governing
u’s reaction to such messages. First, u has to decide if and
when it accepts an invitation. Second, u has to select one
invitation in the presence of multiple invitations.

For the second question, u always prefers invitation from
nodes that have been their parent in less trees with the goal of
constructing different trees and increasing the overall number
of possible routes. Increasing the number of routes allows the
use of alternative routes if the request cannot be routed along
the preferred route due to a failed or malicious node. If two
neighbors are parents in the same number of trees, u can either
select one randomly or prefer the parent closer to the root.

Choosing a random parent reduces the impact of nodes close
to the root but is likely to lead to longer routes and thus a
lower efficiency.

Coming back to the first question of if and when u accepts
invitations, u always accepts an invitation of a neighbor v that
is not yet a parent of u in any tree. In contrast, if v is already a
parent, u might wait for the invitation of a different neighbor.
However, it is unclear if it is possible for all neighbors of u
to ever become a parent. For example, a neighbor of degree
1 is only a parent if it is the root. In order to overcome
this dilemma, u periodically probabilistically decides if it
should accept v’s invitation or wait for another invitation. The
probability of accepting one invitation in the absence of any
invitations from preferred neighbors, i.e., neighbors that are
not yet parents, is q. Note that u accepts at most one invitation
per round, i.e., per periodic consideration of parent nodes. So,
u eventually accepts an invitation but does provide alternative
parents the chance to send an invitation.

Stabilization : Now, we consider the stabilization of
the trees when nodes join and leave. Stabilizing the trees
efficiently, i.e., repairing them locally rather than reconstruct-
ing the complete tree whenever the topology changes, is
essential for efficiency. Joining nodes can be integrated in a
straight-forward manner by connecting to their neighbors as
children, again trying to maximize the diversity of the parents.
For this purpose, nodes record the time, i.e., the round in
our abstract time model, they joined the tree. Now, when a
new node u joins, it requests its neighbors’ coordinates and
these timestamps for all trees. Based on this information, u
can simulate the tree construction locally, ensuring that its
expected depth in the tree is unaffected by its delayed join.
When a node departs, all its children have to choose a different
parent and inform their descendants of the change. In order
to prevent a complete subtree from being relocated at an
increased depth, the descendants may also select a different
parent. The selection of the new parent again the above
algorithm but only locally re-establishes the trees affected
by the node departure. We formally prove that the above
stabilization algorithm indeed only introduces only logarithmic
complexity in Theorem VI.3.

B. Embedding and Routing

In this section, we show how we assign coordinates in a
spanning tree and how to route based on these coordinates. As
we want to prevent an attacker from guessing the coordinate
of a receiver, we require a certain degree of in-determinism in
the coordinate assignment. We thus choose a slightly modified
version of the unweighted PIE embedding [6], which we have
introduced in Section III. Our proposed routing algorithm cor-
responds to the greedy routing with backtracking. In addition
to the tree distance in [6], we also present a second distance
preferring nodes with a long common prefix and thus avoiding
routes via nodes close to the root whenever possible. In this
manner, we increase robustness and censorship-resistance be-
cause the routing algorithm considers alternative routes. In the

4

following, we subsequently present the embedding algorithm,
the distance functions, and the routing with backtracking.

Embedding Algorithm : Embeddings are computed on
each of the γ trees independently, so that we only consider one
embedding id . The coordinate assignment starts at the root and
then spreads successively throughout the tree. After a spanning
tree has been established, the root r is assigned an empty
vector as a coordinate id(r) = (). In the next step, each child
v of the root generates a random b-bit number a ∈ Zb2 such that
its coordinate is id(v) = (a). Here, our algorithm differs from
the PIE embedding because it uses random rather than consec-
utive numbers, thus preventing an adversary from guessing the
coordinate in an efficient manner. Subsequently, nodes in the
tree are assigned coordinates by concatenating their parent’s
coordinate with a random number. So, upon receiving its
parent coordinate id(p(v)) = (a1, . . . , al−1), a node v on level
l of the tree obtains its coordinate id(v) = (a1, . . . , al−1, al)
by adding a random b-bit number al. The coordinate space is
hence given by all vectors consisting of b-bit numbers, i.e.,
X = {(a1, . . . , al−1, al) : l ∈ N0, ai ∈ {0, 1}b}.

Note that the independent random choice of the b-bit
number a ∈ Zb2 might lead to two nodes having the same
coordinate. Thus, b should be chosen such that the chance
of equal coordinates should be negligible. If two children
nevertheless select the same coordinate, the parent node can
inform one of them to adapt its choice. By moving the choice
of the last coordinate element from the parent to the child,
we automatically reduce the impact of a malicious parent as
it can not determine the complete coordinate of the child.

Distances : We still need to define distances between
coordinates in order to apply greedy routing. For this purpose,
we consider two distances on X. Both rely on the common
prefix length cpl(x1, x2) of two vectors x1 and x2 and the
coordinate length |x1|.

First, we consider the tree distance δTD from [6], which
gives the length of path between the two nodes in the tree,
i.e.,

δTD(x1, x2) = |x1|+ |x2| − 2cpl(x1, x2). (1)

Secondly, the common prefix length can be used as the
determining factor in the distance function, i.e., for a constant
L exceeding the length of all node coordinates in the overlay,
we define

δCPL(x1, x2) =

{
L− cpl(x1, x2)− 1

|x1|+|x2|+1 , x1 6= x2

0, x1 = x2
.

(2)

The reason for using the common prefix length rather than the
actual tree distance is the latter’s preference of routes passing
nodes close to the root in the tree. In this manner, the nodes
on these routes are very influential, so that adversaries can
gain a large impact from gaining such a position. In contrast,
δCPL prefers possibly longer routes by always forwarding to
a node within the same subtree as the destination and avoids
central nodes in the tree.

Greedy Routing in Multiple Embeddings : We route in
1 ≤ τ ≤ γ trees in parallel. More precisely, given a vector
of coordinates (id1(e), . . . , idγ(e)), the sender s selects τ
coordinates and sends a request for each of them. s can
either select τ embeddings uniformly at random or choose
the embeddings so that the distance of the neighbor vi with
the closest coordinate to id i(e) is minimal. The latter choice
might result in shorter routes due to the low distance in the
embedding.

The routing processes in each embedding independently.
Nodes forward the request to the neighbor with the closest
coordinate in the respective embedding. Thus, in order for the
nodes on the route to forward the request correctly, the request
has to contain both the coordinate id i(v) and the index i of
the embedding.

We optionally increase the robustness and censorship-
resistance of the routing algorithm by allowing backtracking
if the routing gets stuck in a local minimum of the distance
function due to failures or intentional refusal to forward a
request. For this purpose, all nodes remember their predecessor
on the routing path as well as the neighbors they have
forwarded the request to. If all neighbors closer to the target
have been considered and have been unable to deliver the
request, the node reroutes the request to its predecessor for
finding an alternative path. The routing is thus only considered
to be failed if the request returns to its source s and cannot
be forwarded to any other neighbor. In this manner, all greedy
paths, i.e., all paths with a monotonously decreasing distance
to the target, are found.

This completes the description of the routing and stabiliza-
tion functionalities. However, up to now, we used identifying
coordinates rather than anonymous addresses.

C. Anonymous Return Addresses

In this section, we introduce our address generation al-
gorithm for generating anonymous return addresses that do
not reveal the receiver of the request while at the same time
allowing the routing to traverse along the same path as for
receiver coordinates. For this reason, we call the generated
addresses route preserving (RP) return addresses. Based on
these return addresses, we specify two routing algorithms
RTD and RCPL for routing a request containing a return
address.

Return Address Generation : The first step of the return
address generation prevents an adversary from identifying
coordinates based on their length. A node v pads its coordinate
x = (a1, . . . , al) by adding random elements a′l+1, . . . , a

′
L.

More precisely, v selects a seed spad for the pseudo-random
number generator PRNG and obtains the padded coordinate
x′ = (a′1, . . . , a

′
l, a
′
l+1, . . . , a

′
L) with a′j = aj if j ≤ l and

a′j = PRNG(spad ⊕ j) otherwise. In order to ensure that the
closest node coordinate to x′ is indeed x, v recomputes the
padding with a different seed if a′l+1 is equal to the l + 1-
th element of a child’s coordinate. Afterwards, v chooses a
different seed s for the construction of the actual return address
and generates k̃ = PRNG(s) ∈ K̃ = Zb2. v then executes the

5

local function hc : X→ Y = HL in order to obtain a vector
y with elements in H . The i-th element of y = (d1, . . . , dL)
is given by

dj =

{
h(k̃ ⊕ a′1), j = 1

h(dj−1 ⊕ a′j), j = 2 . . . L
. (3)

We call the pair (y, k̃) a return address, which can be used to
find a route to the node with coordinate x. Before publishing
the return address, v adds a MAC mac(yi,KMAC(v)) =
h(d1|| . . . dL||KMAC(v)) for a private key KMAC(v) to pre-
vent malicious nodes from faking return addresses and gaining
information from potential replies. Last, v publishes the return
address (y, k̃) and the MAC.

Routing Algorithms : Now, we determine diversity mea-
sures δRP−TD : X×Y → R+ and δRP−CPL : X×Y → R+

in order to compare coordinates x and y with regard to δTD
and δCPL. The diversity measure then assumes the role of the
distance δ in the routing algorithm.

In order to define a sensible diversity measure, note that
for any coordinate c and return address y corresponding to
a coordinate x, we have cpl(x, c) = cpl(y, hc(c, k̃)). We thus
can define the diversity measure in terms of the common prefix
length in the same manner as the distance. More precisely,
for ∗ ∈ {TD,CPL}, the diversity δRP−∗(y, k̃, c) for of a
coordinate c to the return address y is

δRP−∗(y, k̃, c) = δ∗(yi, hc(c, k̃)). (4)

In practice, u can increase the efficiency of the computation
by only determining hc(c, k̃) up to the first element in which it
disagrees with y. Thus, we now have two possible realizations
of the routing algorithm, namely RTD and RCPL. Given the
RP return address (y, k̃) of the destination e, RTD and RCPL

forward the message to the neighbor v with the lowest diver-
sity measure δRP−TD(y, k̃, id(v)) and δRP−CPL(y, k̃, id(v)),
respectively. We present a proof that the return addresses are
indeed route preserving in our technical report [21].

Up to now, we have only considered route preserving return
addresses generated by padding coordinates and applying a
hash cascade. Optionally, an additionally layer of symmetric
encryption can be added, preventing a node v from deriving
the actual length of the common prefix. Rather, v can only
determine if a neighbor is closer to the destination than v
itself. However, we show the same degree of anonymity for
for both algorithms, so that the additional layer does not result
in a provably higher level of anonymity. Furthermore, the
additional layer reduces the efficiency as nodes select one
closer neighbor at random rather than the closest neighbor. For
this reason, the advantage of the additional layer is limited, so
that we focus on RP return addresses here and defer the further
obfuscation of coordinates to our technical report [21].

We prove that our return addresses indeed enable receiver
anonymity in Section VI-A.

D. Content Storage

In order to store content, we use a distributed hash table
(DHT). As nodes can not communicate directly, they store

tree addresses in their routing tables and leverage the tree
routing. In this manner, we do not require maintenance-
intensive tunnels like [11] and [3]. Note that we only sketch
the solution for content storage and retrieval because our focus
lies on improving the quality of the greedy embeddings for
messaging between nodes.

Nodes establish a DHT by maintaining a routing table of
(virtual) overlay connections. The routing table contains en-
tries correspond to a DHT coordinate and corresponding return
addresses. Nodes communicate with their virtual neighbors by
sending requests in any of the γ embedding.

New routing table entries are added by routing for a suitable
virtual overlay key, as done in [11] for the tunnel discov-
ery. However, after the routing terminates, the discovered
nodes send back their return addresses rather than taking the
routing path as a new tunnel. In this manner, the length of
routes between virtual overlay neighbors only depends on
the embeddings and does not increase over time. The exact
nature of the neighbor discovery, the DHT lookup algorithm,
and the stabilization of the virtual overlay depend on the
specifications of the DHT. For our evaluation, we utilize a
recursive Kademlia [22].

We have now presented the essential components of our
design. In the following, we evaluate our design with regard
to our requirements.

VI. THEORETICAL ANALYSIS

The purpose of this section is twofold: First, we show that
we indeed achieve sender and receiver anonymity in the form
of plausible deniability. Second, we derive bounds on the
routing and stabilization complexity in order to show that both
indeed scale logarithmically or polylog with the network size
n. We only sketch the proofs here. The complete proofs are
contained in our technical report [21].

A. Anonymity

We show that our return addresses provide plausible denia-
bility under the assumption that the attacker does not control
the complete neighborhood of a sender or receiver.

Theorem VI.1. Let u be a local attacker, which is aware only
of its direct neighbors Nu in the social graph. Consider a re-
quest addresses for the return addresses y = (y1, . . . , yγ) with
routing information k̃ = (k̃1, . . . , k̃γ) for γ embeddings. Let A
be a polynomial-time algorithm executed by u for identifying
either the sender or receiver v of the request. Then u cannot
identify v with absolute certainty, i.e., P (A(y, k̃) = v) < 1.

So, we guarantee plausible deniability of both sender and
receiver. The idea of the proof is to consider different cases
with regard to the common prefix length of the receiver
coordinate and attacker’s closest neighbor. For each such case,
we either show that none of the neighbors is the receiver or
it is uncertain if the neighbor or one of its descendants is the
receiver.

6

B. Scalability

In the first part of this section, we obtain upper bounds on
the expected routing length of the routing algorithms RTD

and RCPL for one embedding. The desired upper bound on
the routing complexity follows by multiplying this bound for
routing in one tree with τ , the number of trees used for parallel
routing. Afterwards, we consider the stabilization complexity
CSS of the stabilization algorithm S consisting of i) the
local reconstruction of the trees and ii) the assignment of new
coordinates for the nodes affected by a change topology using
the modified PIE embedding.

Theorem VI.2. Let id be a modified PIE embedding on a
spanning tree of G generated according to Section V-A with
parameters γ and q. Furthermore, assume that the diameter of
G is diam(G) = O(log n). The expected routing length is at
most E(RTD) = O

(
γ
q log n

)
for the routing algorithm RTD

and E(RCPL) = O
((

γ
q

)2
log n

)
for RCPL.

For the proof, we first show that the expected level of a
node in the tree is bound by O

(
γ
q log n

)
and then derive the

routing length based on the expected level.
The bounds for a virtual overlay lookup follow directly

from the fact that a DHT lookup requires O(log n) overlay
hops with each hop corresponding to one route in the network
embedding, i.e., we multiple all the asymptotic bounds in
Theorem VI.2 with O(log n). We now derive the stabilization
complexity for the spanning trees, the stabilization complexity
of the virtual overlay depends on the overlay structure.

Theorem VI.3. We assume the social graph G to be of a
logarithmic diameter and a constant average degree. Fur-
thermore, we assume the use of a the root election protocol
with complexity O(n log n). Then the expected stabilization
complexity CSS of the spanning trees for one topology change
is E(CSS) = O

(
γ γq log n

)
.

We show that the expected stabilization complexity for one
embedding is equal to the expected level of a node. The result
then follows from the proof of the routing complexity.

We have shown that the complexity of routing, content
discovery, and stabilization is bound (poly-)log as required.

VII. SIMULATIONS

In this section, we evaluate the efficiency and the resilience
of our scheme in a simulation study. We start by validating
the asymptotic bounds derived in Section VI-B for concrete
scenarios. Afterwards, we consider the robustness to failures
and the resistance to attacks.

A. Efficiency

We start by detailing our simulation model and set-up, fol-
lowed by our expectation, the results and their interpretation.

Model and Evaluation Metrics : In order to evaluate the
efficiency, we consider the routing length and the stabilization
complexity. We express the stabilization complexity in terms
of the average number of coordinates that have to reassigned
when a randomly chosen node leaves, i.e., the average number
of descendants of a node.

We compared our results to those for Freenet, a virtual over-
lay V O, and the original PIE embedding. The virtual overlay
V O combines the advantages of X-Vine [11] and MCON [3]
by using shortest paths as tunnels in a Kademlia overlay like
MCON but integrating backtracking in the presence of local
optima and shortcuts from one tunnel to another like X-Vine.

Set-up : Due to space constraints, we restrict the pre-
sented results to one example network, namely the giant
component of a community network from Facebook with
63392 users 3.

The spanning tree construction is parametrized by the
number of trees γ ∈ {1, 2, 3, 5, 7, 10, 12, 15}, the acceptance
probability q = 0.5, and the parent selection criterion W
chosen to be either random selection (denoted DIV-RAND)
or preference of nodes at a low depth (denoted DIV-DEP). In
addition, we consider a breadth first search for spanning tree
construction (denoted BFS). Moreover, we consider the impact
of the two distances δTD (denoted TD) and δCPL (denoted
CPL). The length of the return addresses was set to L = 128
and the number of bits per element was b = 128, all τ = γ
embeddings were considered for routing.

For the virtual overlay used for content addressing, we chose
a highly resilient recursive Kademlia [22] with bucket size
8 and α ∈ {1, 3} parallel look-ups. Because routing table
entries are not uniquely determined by Kademlia identifiers,
the entries were chosen randomly from all suitable candidates.

We parametrized the related approaches as follows. For
simulating Freenet, we executed the embedding for 6, 000
iteration as suggested in [23] and then routed using a distance-
directed depth-first search based only on the information about
direct neighbors. The routing and stabilization complexity of
the original PIE embedding is equal to the respective quantities
of our algorithm for γ = 1, the distance function δTD and
routing without the use of backtracking. In order to better
understand the results of the comparison, we simulate the
virtual overlay V O using the same Kademlia overlay as for
our own approach but replacing the tree routing by tunnels
corresponding to the shortest paths between overlay neighbors.
So, we parametrized the related approaches by either using
the proposed standard parameters or selecting parameters that
are suitable for comparison because they corresponds to the
same degree of redundancy as the parametrization of our own
approach.

All results were averaged over 20 runs. They are displayed
with 95% confidence intervals. Each run considered 100, 000
randomly selected source-destination pairs.

Results : The impact of the three parameters, number
of trees, tree construction, and distance on the routing length

3http://konect.uni-koblenz.de/networks/facebook-wosn-links

7

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 0 2 4 6 8 10 12 14 16

R
o
u
ti
n
g
 L

e
n
g
th

Trees

BFS, TD
BFS, CPL

DIV-DEP, TD
DIV-DEP, CPL
DIV-RAND, TD

DIV-RAND, CPL

(a) Rnode

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 0 2 4 6 8 10 12 14 16

R
o
u
ti
n
g
 L

e
n
g
th

Trees

BFS, alpha=1
BFS, alpha=3

DIV-DEP, alpha=1
DIV-DEP, alpha=3

DIV-RAND, alpha=1
DIV-RAND, alpha=3

(b) Rcontent

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 2 4 6 8 10 12 14 16

M
e
a
n
 S

ta
b
il
iz

a
ti
o
n
 C

o
s
ts

Trees

BFS

DIV-DEP

DIV-RAND

(c) Stabilization

Fig. 1: Impact of number of embeddings γ, tree construction, and distance function on routing length for a) tree routing and
b) Kademlia lookup with degree of parallelism α; related approaches result in routing lengths of 14 (virtual overlay V O) and
close to 10, 000 (Freenet), and c) stabilization overhead
was in accordance with our expectations when designing the
system. First, the results indicate that the tree construction, in
particular the number of trees, is the dominating factor for the
routing length. So, the routing length decreased considerably if
multiple embeddings were used because the shortest route in
any of the trees was considered. Second, preferring parents
closer to the root, i.e., using BFS or DIV-DEP, produced
shorter routes in the tree and hence reduced the routing length.
Third, in comparison to the tree construction, the choice of a
distance function had less impact. For BFS or DIV-DEP, the
advantage of TD over CPL was barely noticeable, whereas the
difference for DIV-RAND was still small but noticeable. In
order to understand this difference, note that CPL is expected
to lead to longer routes. The reason for the longer routes lies in
forwarding the request to neighbors at a higher depth, which
might have a long common prefix but are nevertheless at a
higher distance from the destination due to their depth. For
BFS or DIV-DEP, the difference of the depth of neighbors
was generally small because neighbors at a lower depth were
preferably selected as parents. In contrast, DIV-DEP allows for
larger differences in depth. Hence there is a higher probability
to increase the tree distance by selecting a neighbor with a
longer common prefix length but at a high depth. All in all,
the routing length varied between 4.67 (BFS, γ = 15, TD)
and 6.24 (DIV-RAND, γ = 1, CPL) hops, as displayed in
Figure 1a. In summary, the use of multiple embeddings indeed
reduced the routing length considerably.

The performance of the DHT lookup in the virtual overlay
directly related to the previous results (cmp. Fig. 1b for the
distance under TD). The overhead for the discovery of a
randomly chosen Kademlia ID, stored at the node with the
closest ID in the overlay, varied between 15.56 and 24.25 hops
in the F2F overlay, at around 4 hops in the virtual overlay.

By Theorem VI.3, the stabilization complexity was expected
to increase at most quadratic with the number of trees. Indeed,
Figure 1c supports this fact for DIV-RAND. The increase
for BFS and DIV-DEP was even only linear and slightly
super-linear, respectively. Note that the quadratic increase is
due to the raising average depth of additional trees. With
the goal of achieving diverse spanning trees, nodes select

parents at a higher depth. However, the average number of
descendants increases with the depth, because a node at
depth l is a descendant of l nodes. Due to the stabilization
complexity corresponding to the number of the departing
node’s descendants, the stabilization overhead was higher for
DIV-RAND and DIV-DEP than for BFS. More precisely, BFS
constructs all γ trees independently, so that the average depth
of each tree is independent of the number of trees. The
stabilization complexity per tree thus remains constant. DIV-
DEP, aiming to balance diversity and short routes, causes
stabilization overhead between the two former approaches,
but performed closer to BFS (this similarity also held for
the routing length). More concretely, the average stabilization
overhead for a departing node was slightly below 4.5 for a
single tree. For γ = 15, the overhead increased to 65 (BFS),
69 (DIV-DEP), and more than 101 (DIV-RAND). In contrast to
a complete re-computation of the embedding requiring at least
n = 63392 messages, the stabilization overhead is negligible.

For the related approaches, we found a routing length of
9403.1 for Freenet, 16.11 for VO with α = 1, and 14.07 for
VO with α = 3. Furthermore, the shortest paths are on average
of length 4.31, meaning that our routing length of 4.67 is close
to optimal. So, routing between nodes in the tree required less
than half the overhead of state-of-the-art approaches. Routing
in the virtual overlay, requiring at best less than 16 hops in our
scheme, was slightly more costly in our approach than in VO
due to the inability of the tree routing to guarantee shortest
paths between virtual neighbors.

A straight-forward comparison of the stabilization overhead
was not possible. Since Freenet stabilizes periodically, there is
no overhead directly associated with a leaving node. In case
of virtual overlays, VO uses flooding for stabilization, which
is clearly more costly. Other overlays such as X-Vine use less
costly stabilization but stabilization and routing overhead are
unstable and increase over time as shown in [4], so that it is
unclear which state of the system should be considered for
a comparison. In order to nevertheless give a lower bound
on the stabilization overhead, we computed the number of
tunnels that needed to be rebuild in VO. On average, 477.35
tunnels corresponding to shortest paths were affected by a

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
u
c
c
e
s
s
 R

a
ti
o

Failure Ratio

PIE
BFS, t=1

DIV-DEP, t=1
DIV-RAND, t=1

BFS, t=5
DIV-DEP, t=5

DIV-RAND, t=5
BFS, t=15

DIV-DEP, t=15
DIV-RAND, t=15

(a) Robustness

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 2 4 6 8 10 12 14 16

S
u
c
c
e
s
s
 R

a
ti
o

t

BFS, ATT-RAND
BFS, ATT-ROOT

DIV-DEP, ATT-RAND
DIV-DEP, ATT-ROOT

DIV-RAND, ATT-RAND
DIV-DEP, ATT-ROOT

(b) Attacks: 16 Edges

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200

S
u
c
c
e
s
s
 R

a
ti
o

Attacker Edges x

PIE, ATT-RAND
t=1, ATT-RAND
t=5, ATT-RAND

t=15, ATT-RAND
PIE, ATT-ROOT
t=1, ATT-ROOT
t=5, ATT-ROOT

t=15, ATT-ROOT
VO

(c) Attacks: Up to 1024 edges

Fig. 2: a) Robustness to failures for distance CPL and b),c) Censorship-Resistance of tree routing for distance CPL to adversaries
which are either able to undermine the root election (ATT-ROOT) or are unable to do so (ATT-RAND) for b) x = 16 attacking
edges, and c) up to 1, 024 attacking edges and tree construction DIV-DEP
departing node. If a tunnel is repaired by routing in the
Kademlia overlay like in X-Vine, the stabilization overhead per
tunnel corresponds to routing a request and the corresponding
reply, i.e., for tunnels corresponding to shortest paths at least
2 ·14 = 28 messages, resulting in a lower bound on more than
10, 000 messages per node departure.

B. Resilience

Before detailing our simulation in detail, we derive attacker
strategies for a local adversary unaware of the topology of the
social graph. Here, we only state the strategy. Our technical
report goes into more detail with regard to their applicability
and explain why alternative attack strategies are bound to
result in less damage [21].

Attack Strategies : In order to model secure and insecure
root selection protocols, we consider two realizations of ATT-
RAND and ATT-ROOT. In the following, assume that one
attacker node has established x links to honest nodes and now
aims to censor communication.

For secure spanning trees, the adversary A is unable to
manipulate the root election. Nevertheless, A can manipulate
the subsequent embedding. The attack strategy ATT-RAND
assigns each of its children a different random prefix rather
than the correct prefix. In this manner, routing fails because
nodes in the higher levels of the tree do not recognize the
prefix. So, the impact of the attack is increased in comparison
to a random failure.

In contrast, if the adversary A can manipulate the root
election protocol, ATT-ROOT manipulates the root election
in all spanning trees such that A becomes the root in all
trees. Under the assumption that the root observes the maximal
number of requests, the attack should result in a high ratio of
failed requests.

Simulation Model and Metrics : We utilized the simu-
lation model and set-up from Section VII-A for evaluating
the efficiency and extended it to include robustness and
censorship-resistance. So, we simulate the robustness of an
overlay by subsequently selecting random failed nodes. In each
step, we select a certain fraction of additional failed nodes and
then determine the success ratio. Furthermore, we evaluate

attacks using the two attack strategies ATT-RAND and ATT-
ROOT described above. We compare our results to the virtual
overlay VO, described in Section VII-A, with an attacker that
dropped all messages but did not strategically manipulate the
protocols.

Set-up : We used the embedding and routing algorithms
as parametrized in Section VII-A. In order to evaluate the
robustness, we removed up to 50% of the nodes in steps of
1%. During the process of removing nodes, individual nodes
inevitably became disconnected from the giant component,
so that routing between some pairs was no longer possible.
For this reason, we only considered the results for source-
destination pairs in the same component. Our results are
presented for 1, 5, and 15 trees only.

The number of edges x controlled by the adversary A were
chosen as x = 2i×dlog2 ne with 0 ≤ i ≤ 6 and dlog2 ne = 16.
So, up to 1, 024 attacker edges were considered. In particular,
x = 1024 >

√
n

logn , a common asymptotic bound on the number
of edges to honest nodes considered for Sybil detection
schemes [17]. For quantifying the achieved improvement, we
compared our approach to the resilience of the original PIE
embedding and routing, i.e., 1 tree, δTD, and no backtracking.
For VO, we used a degree of parallelism of α = 1. Since
backtracking was applied, all values of α > 0 resulted in
the same success ratio, because regardless of the value of α,
the routing succeeded if and only if a path along which the
distance of virtual neighbors decreases in each hop.

Results : First note that the observed differences between
the two distances δTD and δCPL were negligible, i.e., less
than 0.1%. TD had a slight advantage for random failures due
the routes and the resulting lower probability in encountering
a failed node. In contrast, CPL entailed a higher resistance
to attacks because of the lower importance of strategically
important positions. However, as the differences were barely
noticeable, we present the results for CPL in the following with
the exception of the results for the original PIE embedding.

We start by evaluating the robustness to random failures.
The results, displayed in Figure 2a, indicate that the use of
multiple embeddings considerably increased the robustness.
The success ratio for γ = 1 was low, decreasing in a

9

linear fashion to less than 30% for a failure ratio of 50%.
In contrast, for γ = 15, the success ratio exceeded 90%.
Though the number of embeddings was the dominating factor,
the tree constructing algorithm also strongly influenced the
success ratio. For γ > 1, aiming to choose distinct parents
improved the robustness to failures because of the higher
number of distinct routes. For example, when routing in 5
parallel embeddings, the success ratio was above 80% for DIV-
RAND. In contrast, BFS had a success ratio below 70%. In
summary, the robustness to failures was extremely high for
multiple embeddings, enabling a success ratio of more than
95% for up to 20% failed nodes. The robustness was further
increased by using DIV-RAND or DIV-DEP rather than BFS,
showing that even such relatively simple schemes can achieve
a noticeable improvement.

Now, we consider the censorship-resistance for x = 16
attacking edges, as displayed in Figure 2b. If the adversary
A was unable to manipulate the root selection, the success
ratio was only slightly below 100%. Even if γ = 1, more than
99.5% of the routes were successfully discovered. The high
resilience against ATT-RAND was to be expected, considering
that the attack was only slightly more severe than failure of
one random node. If the attacker was able to become the
root in all trees, the success ratio dropped to about 93% for
γ = 1. However, with multiple trees, the ratio of ATT-ROOT
was close to 100%. The impact of the tree construction was
small but noticeable. So, BFS generally resulted in a slightly
lower success ratio. Hence, by using multiple embeddings and
backtracking, the resilience to an adversary that can establish
only dlog2 |V |e = 16 is such that nearly all routes are
successfully found.

For an increased number of attacking edges x, the success
ratio remained close to 100% when more than one tree was
used for routing, as displayed in Figure 2c for DIV-DEP.
However, for one tree, the success ratio decreased drastically if
an attacker could undermine the root selection. For x = 1024,
i.e., if the attacker controlled edges to roughly 1.7% of the
nodes, the success ratio for γ = 1 decreased to slightly less
than 30%. In contrast, if γ = 5 or γ = 15, the success ratio
was still 97.9 or 99.9%, respectively.

We compared the results for our approach with the original
PIE embedding and the virtual overlay V O. As can be seen
from Figure 2a, the success ratio dropped much more quickly
for PIE than for the improved approaches. In contrast to PIE,
VO exhibited a rather high success ratio as displayed in Figure
2c. VO’s advantage in contrast to γ = 1 holds despite VO’s
longer routes (see Section VII-A). The reason for VO’s lower
vulnerability lies in the absence of strategic manipulation.
While greedy embeddings allow the attacker to assume an
important role, our attacker in VO does not attract a dis-
proportional fraction of traffic. However, establishing multiple
trees ensures that the role of the root is effectively mitigated,
so that the censorship-resilience of VO is slightly lower than
VOUTE’s resilience for 5 or more parallel embeddings.

All in all, the simulation study confirms that our F2F
overlay design exceeds the related approaches with regard to

both efficiency and resilience, with the exception of the DHT
routing.

VIII. CONCLUSION

We have introduced a privacy-preserving, efficient, and
resilient design for F2F overlays. For this purpose, we have
developed an algorithm for the generation of anonymous return
addresses Furthermore, we have designed multiple parallel
network embeddings to enable both efficiency and resilience,
as validated by an extensive simulation study.

Extending our simulation results, we are currently integrat-
ing our algorithms in an existing F2F overlay and have started
initial testbed studies to better understand the system and its
performance in real environments.

ACKNOWLEDGEMENTS

The presented work was partially founded by the DFG
(Grant STR 1131/2-1), BMBF project SEnCom, the CRC
HAEC, and the Excellence Cluster "cfaed". Furthermore, the
authors want to thank Andreas Höfer for helpful discussions.

REFERENCES

[1] R. Dingledine et al. Tor: The second-generation onion router. Technical
report, DTIC Document, 2004.

[2] N. Evans et al. Routing in the dark: Pitch black. In ACSAC, 2007.
[3] E. Vasserman et al. Membership-concealing overlay networks. In CCS,

2009.
[4] S. Roos and T. Strufe. On the impossibility of efficient self-stabilization

in virtual overlays with churn. In INFOCOM. IEEE, 2015.
[5] R. Kleinberg. Geographic routing using hyperbolic space. In INFOCOM,

2007.
[6] J. Herzen et al. Scalable routing easy as pie: A practical isometric

embedding protocol. In ICNP, 2011.
[7] A. Narayanan and V. Shmatikov. De-anonymizing social networks. In

Security and Privacy, 2009.
[8] B. Popescu. Safe and private data sharing with turtle: friends team-up

and beat the system. In Security Protocols, 2006.
[9] T. Isdal et al. Privacy-preserving p2p data sharing with oneswarm. In

ACM SIGCOMM CCR, 2010.
[10] N. Evans and C. Grothoff. R5n: Randomized recursive routing for

restricted-route networks. In NSS, 2011.
[11] P. Mittal et al. X-vine: Secure and pseudonymous routing in dhts using

social networks. In NDSS, 2012.
[12] A. Hofer et al. Greedy embedding, routing and content addressing for

darknets. In NetSys, 2013.
[13] CH Papadimitriou and D. Ratajczak. On a conjecture related to

geometric routing. In ALGOSENSORS. 2004.
[14] A. Cvetkovski and M. Crovella. Hyperbolic embedding and routing for

dynamic graphs. In INFOCOM, 2009.
[15] D. Eppstein and M. Goodrich. Succinct greedy graph drawing in the

hyperbolic plane. In Graph Drawing, 2009.
[16] H. Mohajeri Moghaddam et al. Skypemorph: Protocol obfuscation for

tor bridges. In CCS, 2012.
[17] G. Danezis and P. Mittal. Sybilinfer: Detecting sybil nodes using social

networks. In NDSS, 2009.
[18] A. Singh et al. Eclipse attacks on overlay networks: Threats and

defenses. In INFOCOM, 2006.
[19] J. Liang et al. The index poisoning attack in p2p file sharing systems.

In INFOCOM, 2006.
[20] R. Perlman. An algorithm for distributed computation of a spanningtree

in an extended lan. ACM SIGCOMM CCR, 15(4), 1985.
[21] S. Roos et al. Voute-virtual overlays using tree embeddings. CoRR,

abs/1601.06119, 2016.
[22] B. Heep. R/kademlia: Recursive and topology-aware overlay routing. In

ATNAC, 2010.
[23] O. Sandberg. Distributed routing in small-world networks. In ALENEX,

2006.

