
4

Dealing with Dead Ends: Efficient Routing in Darknets

STEFANIE ROOS and THORSTEN STRUFE, TU Dresden

Darknets, membership-concealing peer-to-peer networks, suffer from high message delivery delays due to in-
sufficient routing strategies. They form topologies restricted to a subgraph of the social network of their users
by limiting connections to peers with a mutual trust relationship in real life. Whereas centralized, highly
successful social networking services entail a privacy loss of their users, Darknets at higher performance
represent an optimal private and censorship-resistant communication substrate for social applications.

Decentralized routing so far has been analyzed under the assumption that the network resembles a perfect
lattice structure. Freenet, currently the only widely used Darknet, attempts to approximate this structure
by embedding the social graph into a metric space. Considering the resulting distortion, the common greedy
routing algorithm is adapted to account for local optima. Yet the impact of the adaptation has not been
adequately analyzed.

We thus suggest a model integrating inaccuracies in the embedding. In the context of this model, we
show that the Freenet routing algorithm cannot achieve polylog performance. Consequently, we design
NextBestOnce, a provable poylog algorithm based only on information about neighbors. Furthermore, we
show that the routing length of NextBestOnce is further decreased by more than a constant factor if neighbor-
of-neighbor information is included in the decision process.
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1. INTRODUCTION

Centralized communication platforms, such as online social networking (OSN) services,
are partial to giving away data due to economical or political pressure. Encryption—if
permitted by the service provider—does not provide protection against tracking and
tracing of online habits. Distributed services such as Diaspora1 or peer-to-peer OSNs
[Buchegger et al. 2009; Cutillo et al. 2009] avoid data collection at one central point,
but arbitrary participants can track others. Darknets by design protect users from
being tracked by a foreign party, be it a governmental or commercial institution or a

1http://www.joindiaspora.com.
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curious individual. Devices of users, henceforth called nodes, only establish connections
if their owners share a mutual trust relationship in the real world. In this manner,
Darknets provide anonymity; that is, a node should not be linkable to its actions such
as requesting certain content, and membership concealment against untrusted parties,
that is, the presence of a node in the network, should remain unknown to anyone but
its trusted contacts. Whereas currently deployed Darknets such as Freenet [Clarke
et al. 2010] and GnuNet [Evans and Grothoff 2011] focus on content storage and re-
trieval, Darknets present a suitable communication substrate for all social applications
such as chat or email.

More precisely, Darknets are commonly characterized by three main criteria:
(1) restricted topology with only local knowledge: the overlay topology corresponds
to the real-world trust graph and each node is only aware of its immediate neighbors,
(2) hop-by-hop anonymization: queries are forwarded by trusted links only and each
contacted node resets the source tag to itself to obfuscate the original source, and
(3) use of end-to-end cryptography, steganography, and anonymization. Anonymity is
hence achieved by the rewriting of the source tag combined with suitable anonymiza-
tion techniques such as mixing [Chaum 1981]. Membership concealment is achieved
by restricting a node’s direct communication of the network to its trusted contacts and
applying steganographic techniques such as Moghaddam et al. [2012], which obfus-
cates Tor traffic within Skype by adjusting the pattern of the traffic, to hide the typical
traffic patterns of the Darknet from a passive global adversary.

Locating objects, be it data items or individual users, in a Darknet is extremely chal-
lenging. Conventional approaches such as DHTs can only be established in a Darknet
by adding an additional layer. The goal is to nevertheless achieve acceptable latency
while at the same time providing membership concealment and anonymity. Asymptot-
ically, the latency is directly proportional to the routing length, that is, the number
of edges on the route between the source and destination. Hence, for maintaining ac-
ceptable latencies in a large-scale Darknet, the expected routing length is required
to increase only slightly with the network. In this article, we thus aim to provide a
routing algorithm for which the expected routing length scales at most polylog with
the network size.

Freenet, the most widely known Darknet, assigns node identifiers in order to ap-
proximate a ring topology with additional links to allow for polylog routing [Clarke
et al. 2010]. However, polylog routing has only been proven under the assumption of a
greedy embedding; that is, each nonterminal node on the routing path has a neighbor
closer to the destination. Freenet cannot achieve a greedy embedding, so it remains
unclear if the routing is indeed efficient.

In this article, we suggest a novel small-world model that allows analyzing routing in
nongreedy embeddings. We model the accuracy of the embedding, that is, its closeness
to a connected lattice, by a parameter C. Each node is required to have at least one
neighbor C in each direction. The standard model by Kleinberg [2000] then corresponds
to the case C = 1. The model accounts for the ability of Darknet embeddings to reflect
topological closeness, albeit in a nongreedy fashion. We then show that the Freenet
algorithm D2-DFS cannot provide polylog routing length. We suggest NextBestOnce to
overcome the discovered weaknesses. For a scale-free degree distribution with exponent
α, NextBestOnce has an expected routing length of O(logα−1 n log log n + C3 log n). Fur-
thermore, we compare NextBestOnce to NextBestOnce-NoN, which considers neighbor-
of-neighbor (NoN) information for the routing rather than only information about the
direct neighbors. We find that the asymptotic upper bound on NextBestOnce-NoN is
strictly lower than the lower bound on NextBestOnce. So, the expected routing length is
improved by considering neighbors of neighbors, though the average degree is constant.
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We start by introducing related work on analyzing and designing routing algorithms
in Section 2. In Section 3, we present our model, algorithms, and notation. In Sections
4, 5, and 6, we give performance bounds for D2-DFS, NextBestOnce, and NextBestOnce-
NoN, respectively, before concluding in Section 7.

2. RELATED WORK

In this section, we describe the state of the art with regard to the theoretical analysis of
routing algorithms and provide an overview of existing approaches for Darknets. Due
to our focus on routing in connectivity-restricted networks rather than on anonymiza-
tion, we do not consider P2P-based anonymization services requiring connections to
arbitrary peers such as I2P2 or Torsk [McLachlan et al. 2009] in detail.

2.1. Routing Analysis

In this section, we describe the state of the art with regard to the theoretical analysis
of routing algorithms. When analyzing decentralized routing algorithms, the most
intensively studied property is the expected routing length. Let V be the set of nodes
and RA(s, t) denote the number of steps needed to route from node s to node t using
algorithm A. The maximal expected routing length is then given by maxs,t∈V E(RA(s, t)).
The expected routing length is similarly defined as 1

|V |(|V |−1)

∑
s �=t∈V E(RA(s, t)). The

analyzed models vary with regard to the locally available information as well as the
degree distribution of the nodes. In general, nodes are aware of all identifiers in their
k-neighborhood for a small k, most commonly k = 1. The degree distribution, that is,
the probability distribution of a node to have a certain number of neighbors, is often
assumed to be constant (e.g., in Kleinberg [2000] and Martel and Nguyen [2003]), but
also more general degree distributions frequently observed in complex networks have
been considered (e.g., in Fraigniaud and Giakkoupis [2009]).

In Kleinberg’s famous model for routing small-world networks, nodes are placed on
an m-dimensional lattice. Each node v then is connected to all nodes within distance
p ≥ 1 and additionally has q ≥ 1 long-range contacts. A long-range contact u is chosen
with probability antiproportional to dr for some r > 0, where d is the distance of
v to u. The routing length of the standard algorithm with respect to the described
topology model is polylog if and only if r = m [Kleinberg 2000]. The result for the
case r = m has been extended in various ways: it has been shown that the standard
routing algorithm has expected routing length �(log2 n) steps. Since the diameter is
logarithmic, this is not asymptotically optimal. Consequently, extensions of the routing
algorithm using the information of �log n� nodes in each step have been proposed, which
reduce the expected routing length to �(log1+1/m n) [Martel and Nguyen 2003]. Similar
alternative routing algorithms, considering a larger neighborhood before choosing the
next hop, have been discussed in Lebhar and Schabanel [2004] and Giakkoupis and
Schabanel [2011]. Though achieving close-to-optimal or optimal performance, these
algorithms are designed considering a constant degree distribution. Furthermore, they
are based on additional knowledge about the network size, which is not supposed to be
known in a privacy-preserving embedding. More closely related to the topic of Darknets,
Fraigniaud and Giakkoupis analyzed greedy routing for a scale-free distribution with
exponent α. The expected routing length for directed scale-free graphs is asymptotically
the same as in the original model, but in case of undirected links, it is reduced to
O(logα−1 n log log n) [Fraigniaud and Giakkoupis 2009]. In their generative model for
the undirected graphs, long-range links are first created as directed edges and then the
reverse edges are added. However, the resulting graphs are not truly undirected and

2https://geti2p.net/en/.
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hence fail to provide some essential properties. In particular, the number of neighbors
of neighbors given the degree of the node is distributed differently than in undirected
graphs, and thus the model is not suitable for analyzing neighbor-of-neighbor routing in
undirected graphs. Our model provides undirected graphs by design. The case of using
NoN information for routing has been treated in Manku et al. [2004], who found that
with �(log n) neighbors per node, the expected routing length is asymptotically equal
to the diameter of O( log n

log log n). However, general degree distributions are not considered.
All these results assume a greedy embedding on a lattice. Thus, they are only of
limited applicability to Darknet topologies, which in general do not offer the required
lattice structure. In the next section, we show how the assumptions on the underlying
structure can be loosened to better model restricted topologies.

2.2. Darknet Routing

Early routing approaches for Darknets, for example, Turtle [Popescu et al. 2006], use
flooding, and hence are aimed at rather small network sizes. Probabilistic search has
been implemented in OneSwarm [Isdal et al. 2010], a Darknet protocol for BitTorrent.
Both approaches can lead to large overhead, low success rates, and long routes in case
of rare files and sparse topologies. GNUnet, an anonymous publication system with a
Darknet mode, uses recursive Kademlia for routing, restricting the neighbors to trusted
contacts [Evans and Grothoff 2011]. It requires a high replication rate to still locate
content. All of these approaches have mainly been proposed for anonymous file sharing
with a high replication rate for popular files. They are not designed to provide social
networking or real-time communication services.

Second-level virtual overlays have been proposed to decrease latency and overhead:
MCON [Vasserman et al. 2009] hence implements structured peer-to-peer systems by
connecting the closest neighbors in the namespace through tunnels of trusted nodes.
However, their original design, restricting a node’s knowledge to its direct neighbors,
exhibited a low resilience to failures and churn. Aiming to improve the resilience, the
authors hence proposed a robust routing algorithm including NoN. Their NoN algo-
rithm differs from ours in that messages are actually sent to all neighbors of the next
hop, whereas we only include information about the neighbor’s IDs in a namespace.
As a consequence, their robust scheme reveals the actual identity of the NoNs by es-
tablishing connections between them, whereas we only reveal their pseudonymous IDs
in the namespace, which prevents direct identification. Furthermore, sending a mes-
sage to each neighbor of the next hop for all hops drastically increases the number
of messages required for routing in MCON, whereas our scheme reduces the message
overhead at the price of slightly increased computation costs at each hop. An essen-
tial drawback of MCON is the high cost of maintaining the tunnels produced by the
use of flooding for overlay neighbor discovery. In contrast, X-Vine [Mittal et al. 2012]
establishes tunnels by leveraging the overlay routing of the social contacts of a newly
joined or otherwise disconnected node. Though X-Vine is primarily designed as a Sybil
defense for distributed hash tables (DHTs), its design is based on a social graph. The
performance of X-Vine over a longer period of joins and departures has not been con-
sidered in Mittal et al. [2012], so it remains unclear if sufficiently short tunnels can
be maintained over time. Indeed, recent work shows that tunnels of a polylogarithmic
length can only be maintained at a high cost [Roos and Strufe 2015], indicating that
the tunnel length in X-Vine is bound to increase beyond a suitable length eventually.
Thus, virtual overlays such as MCON and X-Vine are by design costly with regard to
either routing or maintenance overhead when considering their long-term behavior.

The Darknet modus of Freenet, the only widely used P2P-based system for
censorship-resilient and anonymous communication, makes uses of an embedding.
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Fig. 1. Kleinberg model (left) with full neighborhood connectivity and one long-range link (dashed line),
opposed to our topology model with connectivity within C-neighborhood and a long-range link (right, further
long-range links omitted).

Nodes are assigned identifiers (IDs) in a metric space (the ID space). The distances
in the ID space are supposed to mirror the structure of the social graph. In general,
embeddings are designed to be greedy: a stateless greedy routing, so that each node on
the path contacts the neighbor closest to the destination, is supposed to always find its
destination. However, existing greedy embeddings disclose topology information and
have been shown to suffer from a highly unbalanced load distribution [Höfer et al.
2013]. Thus, the embedding deployed in Freenet is not greedy. Nodes are usually not
adjacent to the closest nodes in the ID space. The standard routing algorithm hence
fails and has to be adapted to deal with local optima during the routing process. Freenet
suggests a distance-directed depth-first search D2-DFS to mitigate inaccuracies in the
embedding but fails to provide a proof that the modified algorithm achieves the desired
polylog routing steps [Clarke et al. 2000].

3. MODEL AND ALGORITHM DESIGN

In this section, we define our model of a Darknet topology. Afterward, the considered
routing algorithms are introduced. We conclude this section by giving an informal
overview of the proof ideas for the later sections and discussing the impact of changing
the routing algorithm on the anonymity. The model has been used as a basis for the
results in Roos and Strufe [2012] and Roos and Strufe [2013].

3.1. Model

We use a model for restricted topologies with nongreedy embeddings, extending
Kleinberg’s small-world model [Kleinberg 2000]. Though Kleinberg’s model offers an
explanation of how short paths are found in small-world networks, it is only of re-
stricted use with respect to Darknets due to the assumed greedy embedding. Our
Darknet model introduces an additional parameter C to characterize the maximal
distance to the closest neighbor in nongreedy embeddings. Furthermore, Kleinberg’s
model is extended to allow for arbitrary degree distributions and undirected graphs.

Throughout the article, P denotes a probability measure, and whp is used to denote
with high probability. Note that we generally drop the brackets indicating sets for
improved readability.

A graph of the class D(n, m, C, L) consists of nm nodes, arranged in an m-dimensional
hypercube of side length n, so nodes are given unique identifiers (IDs) in Z

m
n . In the fol-

lowing, we use the name v of a node synonymously with its identifier id(v) = (v1, . . . , vm).
The distance between two nodes u and v is given by the Manhattan distance with
wraparound, that is, dist(v, u) = ∑m

i=1 min{|vi − ui|, n − |vi − ui|}.
The parameter C is a measure for the accuracy of the embedding and gives the max-

imal distance to the closest neighbor in each principal direction. Figure 1 illustrates
the difference in the choice of short-range links between Kleinberg’s and our model for
the case d = 2 and C = 3: the node in the center indeed has short-range links to two
of the four nodes closest to it, but the links to the other two are replaced by longer
links in the same principal direction. Formally, each node v = (v1, . . . , vm) is given
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short-range links to neighbors av
1, . . . , av

m, bv
1, . . . , bv

m. Here, av
j is chosen from the set

Av
j = {u = (u1, . . . , um) ∈ V : ui = vi for i �= j, 1 ≤ min{uj − v j, n + uj − v j} ≤ C}.

Analogously, bv
j is chosen from

Bv
j = {u = (u1, . . . , um) ∈ V : ui = vi for i �= j, 1 ≤ min{v j − uj, n + v j − uj} ≤ C}.

The random variable L governs the degree distribution, an inherent property of the
trust graph. In addition to the short-range links, long-range links are chosen in a
two-step process:

(1) Choose a label lv ∈ N, distributed according to L, for each node v ∈ V .
(2) Connect nodes u, v with probability

P(l(u, v)|lu = l1, lv = l2, dist(u, v) = d) = 1 − e− l1l2
dmγ , (1)

where γ is a normalization constant chosen such that

2
n/2∑
d=1

∞∑
l1=1

(
1 − e− l1

dmγ

)
P(L = l1) = 1; (2)

that is, the expected number of long-range links of a node v with label lv = 1 is 1.

We denote all long-range neighbors of a node u by LN(u), and short-range neighbors
by SN(u).

The following lemma provides a general result about the model needed for the rest
of the article.

LEMMA 3.1. Let the average degree E(L) be bound by a constant. The probability that
a long-range link is at least of length 2

√
n is constant, that is,

P(dist(u, v) ≥ 2
√

n|l(u, v)) = � (1).

PROOF. The proof is a direct application of Bayes’ Theorem combined with a summa-
tion over all possible distances, that is,

P(dist(u, v) ≥ 2
√

n|l(u, v)) =
n∑

d=2
√

n

P(dist(u, v) = d|l(u, v))

=
n∑

d=2
√

n

P(l(u, v)|dist(u, v) = d)P(dist(u, v) = d)
P(l(u, v), dist(u, v) = d)

.

We start by deriving P(l(u, v)|dist(u, v) = d). Recall that γ = �(log n) is the normal-
ization constant in Equation (2). First, consider that the probability that u and v are
neighbors given their distance is

P
(
l(u, v)|dist(u, v) = d

) =
∞∑

l1=1

∞∑
l2=1

(
1 − e− l1l2

dγ

)
P (L = l1) P (L = l2)

=
∞∑

l1=1

∞∑
l2=1

�

(
l1l2
dγ

P (L = l1) P (L = l2)
)

= �

(
1

γ d
E(L)2

)
= �

(
1

γ d

)
.

The last step holds because E(L) is bound by a constant. Note that the probability that
two randomly selected nodes on a ring of length n have at least distance

√
n converges
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to 1. The claim now follows from

P(dist(u, v) ≥ 2
√

n|l(u, v)) = P(l(u, v)|dist(u, v) ≥ 2
√

n)
P(l(u, v))

P(dist(u, v) ≥ 2
√

n)

= �

(
P(l(u, v)|dist(u, v) ≥ 2

√
n)

P(l(u, v))

)

= �

⎛
⎝

∑n/2
d=2

√
n

1
γ d · 2

n∑n/2
d=1

1
γ d · 2

n

⎞
⎠ = �

⎛
⎝

∑n/2
d=2

√
n

1
d∑n/2

d=1
1
d

⎞
⎠

= �

(
log(n/2) − log(2

√
n)

log(n/2)

)
= �

(
1/2 log n − 4

log n

)
= � (1) .

The second last step holds because
∑n

i=1
1
i = �(log n).

In the following, we assume that labels and hence the node degrees are chosen
according to a scale-free distribution Sα with exponent 2 < α < 3 and a maximum μ,
that is,

P(Sα = k) ∝ 1
kα

, k = 1 . . . μ. (3)

Scale-free degree distribution is common in various complex networks, especially social
networks. Theorem 4.1 in Section 4 does not assume a scale-free degree distribution, so
the inefficiency of the Freenet routing algorithm holds regardless of the degree distri-
bution. For the remaining results, the actual bounds depend on the degree distribution,
but the fact that the algorithms allow polylog performance holds for arbitrary degree
distributions as explained in greater detail in the respective sections. Furthermore,
the set Bd(v) = {u : dist(v, u) < d} contains all nodes at distance less than d of v. For an
event A, we denote its complement by A⊥.

For reasons of presentation, results are given for m = 1 dimensions but can analo-
gously be derived for multidimensional identifier spaces.

3.2. Algorithms

For deterministic routing based on a nongreedy embedding, state information is needed
to avoid loops and dead ends. In this section, we introduce several algorithms that can
deal with local optima with regard to the distance to the target.

These algorithms are based on two principles: (1) backtracking is used in case a node
has no suitable neighbor to forward the message to, and (2) nodes are marked when they
should only be contacted for backtracking in the future. The order by which nodes are
marked is crucial for the routing performance. The straightforward approach, currently
implemented in Freenet, is a distance-directed depth-first search D2-DFS. Here, a node
u is marked the first time it receives a message. u selects the neighbor v that is closest
to the target as the next hop and has not been contacted before. If v is already marked,
it returns a backtrack message, and u either contacts the next closest node or sends
a backtracking message to its predecessor if all neighbors have been contacted. The
routing is considered failed if the source node cannot forward the message to any
neighbor. We show in Section 4 that D2-DFS does not achieve a polylog routing length.
Thus, we present NextBestOnce∗, a generic algorithm that can be applied to multiple
scenarios. These scenarios differ by the amount of information each node maintains.
NextBestOnce∗’s performance is based on the fact that it always chooses the neighbor
that offers the least fallback regardless of whether this neighbor has seen the message
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ALGORITHM 1: NextBestOnce∗(Node v, p, ID t, Set B, Boolean b)
1: # input: v: message holder, p: predecessor, t: target
2: # B: marked nodes, b: backtracking flag
3: # Nv: neighbors of v
4: # IDS(u): set of identifiers associated with u
5: if id(v) == t then
6: routing successful; terminate
7: end if
8: if !backtrack then
9: v.predecessor.add(p);

10: end if
11: S = {u ∈ Nv :!B.contains(u)}
12: if S NOT EMPTY then
13: nextNode = argminu∈Sdist(IDS(u)), t)
14: b = false;
15: if dist(nextNode, t) ≥ dist(v, t) then
16: B.add(v)
17: end if
18: else
19: B.add(v)
20: nextNode = v.predecessor.pop();
21: b = true;
22: end if
23: if nextNode != null then
24: NextBestOnce(v, t, nextNode, B, b)
25: else
26: routing failed; terminate
27: end if

before or not. A node is only marked after all its neighbors closer to the target have
been marked. In the basic Darknet scenario, the only available information is the ID of
all neighbors. However, when the average degree in a graph is low, this has been shown
to entail long routing paths and frequent backtracking [Schiller et al. 2011; Roos and
Strufe 2012, 2013]. Hence, NextBestOnce∗ allows the possibility to include additional
topology information. Each neighbor u is mapped to a set IDS(u) rather than only one
ID. In this article, we explicitly consider the case that IDS(u) consists of the ID of u and
the IDs of its neighbors. However, NextBestOnce∗ is designed to work in more general
situations.

NextBestOnce∗ is detailed in Algorithm 1. The input of NextBestOnce∗ consists of the
current message holder v, the predecessor p of v, the target ID t, the set B of marked
nodes, and a flag b indicating if the routing is in the backtracking phase. Note that
B can be realized in a privacy-preserving manner, for example, by relying on a Bloom
filter, and is not decisive for the asymptotic routing length. Each node keeps a stack of
predecessors for backtracking, which are contacted if v has only marked neighbors (ll.
19–20).

If at least one neighbor is not marked, v selects the not marked neighbor u so that
the distance to one of the identifiers in IDS(u) is minimal (l. 12).

After determining the next node uon the path, v is marked if u is at a larger distance to
t (l. 15) or backtracking starts (l.18). To guarantee termination, only one representative
ID of u is considered for the decision of marking v.

In the remainder of the article, we first show that the distance-directed depth-first
search D2-DFS as deployed in Freenet cannot achieve a polylog hop count. Afterward,
we analyze the performance of two routing algorithms based on NextBestOnce*. The
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Fig. 2. Exemplary adverse connectivity for D2-DFS.

first one, NextBestOnce, has been proposed in Roos and Strufe [2012] and only uses the
identifiers of the direct neighbors, that is, IDs(u) = id(u) in Algorithm 1. The second
algorithm, NextBestOnce-NoN, uses information about neighbors of neighbors, that is,
IDs(u) = {id(u)} ∪ ⋃

v∈N(u){id(v)}}, where N(u) is the set of neighbors of node u. The
number of hops required by D2-DFS, NextBestOnce, and NextBestOnce-NoN to find a
path from source s to destination t are denoted by RDFS, RNBO(s, t), and RNoN(s, t),
respectively.

In the following sections, we first show that NextBestOnce achieves a polylog routing
length, while the Freenet algorithm D2-DFS does not scale polylog with the network
size. The principal reason for D2-DFS’s inadequate performance lies in the fact that
nodes are not considered twice before the backtracking phase. However, due to the
inaccuracies of the embedding, a node u’s closest neighbor v to the target t in terms
of distance dist might not be as close to t in terms of the hops as a neighbor w at a
slightly higher distance. For D2-DFS, u forwards the message to v rather than w. v in
turn chooses the closest of its not-yet-contacted neighbors to t despite them potentially
being at a larger distance to t than v. Now, w cannot be contacted by u until the
backtracking phase. For the routing to terminate in a timely fashion, we thus have to
discover either a path to w not containing u or a path to t not containing w. In the proof,
we show that both possibilities are sufficiently unlikely for the expected routing length
not to be polylog. Figure 2 shows an exemplary scenario for which the routing does not
converge within an acceptable number of steps with high probability. NextBestOnce
removes this principal weakness of D2-DFS by allowing u to be contacted several times
before the backtracking phase as long as u has not contacted all neighbors offering a
potential improvement. In this scenario, NextBestOnce allows v to return the message
to u when not in possession of any other suitable neighbor rather than contacting a
node at a large distance to t. Then, u can contact w, which has indeed a short path to
t. So, a timely termination of the routing can be guaranteed.

In Section 6, we prove that NextBestOnce-NoN offers more than a constant improve-
ment over NextBestOnce by taking the IDs of neighbors of neighbors into consideration.
The proof is based on two observations: high-degree neighbors are more likely to have
a neighbor close to t because they have more neighbors to choose from. By allowing
a node to consider the coordinates of the neighbor’s neighbor, a node is more likely
to choose the high-degree neighbor and achieve a large improvement in two hops. In
contrast, when only considering direct neighbors, the next hop is chosen independently
of its degree and thus might have little potential to improve the routing further.

3.3. Impacts on Anonymity

One of the key concerns of routing in Darknets is to maintain the anonymity and
membership concealment. Recent work describes how the Freenet routing algorithm
D2-DFS can undermine sender anonymity due to its loop detection. Furthermore, the
authors show that algorithms like NextBestOnce that do not reroute when encountering
a loop enhance the anonymity [Tian et al. 2014]. Both NextBestOnce and D2-DFS reveal
information about the receiver of the route by including a target ID in the routing.
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The identifier clearly allows a node to estimate the probability that a neighbor is the
receiver, that is, the closest node to the target identifier. However, the problem is widely
known for anonymous routing in structured P2P systems and is out of the scope of the
current work. Possible solutions are described in, for example, Panchenko et al. [2009]
and Mittal and Borisov [2009].

So, while NextBestOnce actually increases the privacy of the routing in contrast to
D2-DFS, NextBestOnce-NoN is clearly more privacy invasive. By being aware of the IDs
of neighbors of neighbors, a node is given additional information about the social graph,
namely, which of its trusted contacts also share a trust relationship. Furthermore, the
probability for nodes in the 2-hop neighborhood to be the receiver can be estimated. The
question of whether such information should be available for an increased performance
is highly scenario dependent. In the current version of Freenet, neighbor-of-neighbor
information is hence only revealed if nodes allow it. In this article, we only show that
such information indeed increases the performance considerably, concluding that it
should be revealed when considered acceptable.

4. ANALYSIS OF D2-DFS

In this section, we analyze the performance of D2-DFS in the context of D(n, 1, C, L).
The only requirement with regard to the degree distribution is that the degree of a
node is bound by a constant T with probability r, meaning that the degree of a certain
percentage of nodes does not increase with the network size. A variant of this proof is
presented in Roos and Strufe [2013].

THEOREM 4.1. Let L be such that the degree Du of node u is bound by a constant T ∈ N

with constant probability r ∈ R+, that is,

P(Du ≤ T ) ≥ r > 0, (4)

and C > 2. Then D2-DFS does not have polylog expected routing length; that is, for any
ρ > 0,

1
n(n − 1)

∑
s �=t∈V

E(RDFS(s, t)) = �(logρ n). (5)

We identify the main drawback of D2-DFS: if all short-range neighbors of a node
have received the message, the message is forwarded via a long-range link. Hence, whp
a node at a high distance to the target is contacted, so the progress up to this point is
nullified. We show that in this manner, polylog routing complexity is not possible. The
idea of the proof is based on two steps: we first show that with constant probability,
the target can only be reached via a long-range link to a node in its vicinity or after the
backtracking phase has started (Lemma 4.3). Second, we show that with high proba-
bility, both conditions are not fulfilled within a polylog number of steps (Lemma 4.4).
The result then follows from the fact that the routing length is not polylog with
constant probability and hence the average routing length is not polylog either.

We start by proving that nodes closer to the target are more likely to be contacted. An
intuitive explanation for this fact is that the improvement toward the target decreases
with the distance, so that the density of contacted nodes increases as routing nears the
termination.

LEMMA 4.2. Let Pt ⊂ V be the nodes contained on the routing path of RDFS with
target t. The probability that a node v is contained in Pt is bound from above by

P(v ∈ Pt|dist(v, t) ≥ d) = O
( |Pt|

d

)
. (6)
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In particular, for two nodes u, v with dist(u, t) < dist(v, t), the probability that u is
contained in the path is of the same order as the probability that v is part of the path,
that is,

P(u ∈ Pt|u ∈ Pt ∪ v ∈ Pt) = �(1). (7)

PROOF. We first show Equation (7). Let u and v be nodes such that dist(u, t) <
dist(v, t). Let w be node a on the path. If w has edges to both u and v, it is more likely
to forward the message to u. It remains to show that the probability to have an edge to
u is at least as high as the probability to have an edge to v for any distance dist(w, t).
Recall that P(l(u, v)|dist(u, v) = d) = θ ( 1

γ d) for the normalization constant γ . Note that
the distance between w and a node z is either |dist(w, t) − dist(z, t)| (if z and w are on
the same side of t) or dist(w, t) + dist(z, t) (if z and w are on opposite sides of t). Hence,

P(l(w, z)|dist(z, t) = dz ∪ dist(w, t) = dw)

= θ

(
1
γ

(
1

|dz − dw| + 1
dz + dw

))
= θ

(
1

γ (dz + dw)

)
,

and as a result

P(l(w, u)|dist(u, t) = du ∪ dist(w, t) = dw) = �(P(l(w, v)|dist(v, t) = dv ∪ dist(w, t) = dw))

because 1/(dist(u, t) + dist(w, t)) ≥ 1/(dist(v, t) + dist(w, t)). Equation (7) follows. In
order to derive Equation (6), consider that each node on the path is more likely to be
one of 2(d − 1) nodes that are closer to t than v. So, the probability of any node on the
path to be v is at most 1/(2d − 1). Equation (6) follows by a union bound.

We now describe a neighbor selection in the vicinity of t that entails that D2-DFS
chooses a path, such that t can only be reached by a long-range link or backtracking.
Furthermore, we show that the probability of this event is constant in n. In general,
we denote the vicinity of t by St = {t−m1 , . . . , t, . . . , tm2}, containing m1 nodes with lower
and m2 nodes with higher IDs. Our proof considers the case of m1 = 4 and m2 = 3.
During the proof, we will use the fact that all nodes in St but t−m1 and tm2 can have
short-range links to nodes within St only. For brevity, we denote the set of these nodes
by SI

t = St \ {t−m1 , t−m2}. Furthermore, let �t be the set of nodes that are reached by
long-range links and BSt the set of nodes that are first contacted after at least one node
in St has been backtracked to. We abbreviate the event E = ∪v∈SI

t
v ∈ �t ∪ t ∈ BSt that

any node in SI
t is reached by long-range link or t is reached by backtracking.

LEMMA 4.3. For a source s and a destination t with local neighborhood St and s /∈ St,
it holds that P (E) = �(1).

PROOF. We consider the event Aof link selection presented in Figure 2. We first show
that the probability of A is constant. Then we demonstrate that if St is not first reached
by a long-range link, D2-DFS forwards the message from a node in SI

t to a node not
in St with high probability, so that afterward nodes in St can only be contacted during
backtracking or via long-range links. The nodes have the depicted short-range link
selection, and in addition, t−2 is required to have one long-range link. In this lemma,
we do not make any assumptions about the number of long-range links of other nodes.
We condition

P (E) ≥ P ( E| A) P (A).
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First, note that the probability for A is only dependent on C and r, and hence, P(A) =
�(1)3 Furthermore,

P
(∪v∈SI

t
v ∈ �t ∪ t ∈ BSt

∣∣ A
)

= P
(∪v∈SI

t
v ∈ �t

∣∣ A
)+P

(
t ∈ BSt

∣∣A∩ (∪v∈SI
t
v ∈ �t

)⊥ ) · P
( (∪v∈SI

t
v ∈ �t

)⊥ ∣∣A)
.

Because for all events Y , P(Y ) + P(Y ⊥) = 1 and hence P(Y ) + �(1)P(Y ⊥) = �(1), it
remains to show

P
(
t ∈ BSt

∣∣A∩ (∪v∈SI
t
v ∈ �t

)⊥ ) = �(1).

If the first contacted node X in SI
t is not reached by a long-range link, X is either t−4

or t+3. If t+3 is contacted, t+1, t−1, t−4, and t−2 are contacted. Afterward, the message is
forwarded to a long-range contact of t−2, and nodes in St can only be reached by long-
range links or backtracking. So a lower bound on the probability to backtrack given
that St is not reached by a long-range link is

P
(
t ∈ BSt

∣∣ (∪v∈SI
t
v ∈ �t

)⊥ ∩ A
) ≥ P(X = t+3) = �(1),

where the last step follows from Lemma 4.2. This completes the proof.

The second step in the proof gives a bound on the number of hops to reach a node in
St via a long-range link or during backtracking.

LEMMA 4.4. The probability that the routing takes at least M logρ n hops is bound
from below by

P(RDFS(t, s) ≥ M logρ n |E ) = �(1),

given the event E that nodes in SI
t are reached via long-range links or t is reached during

backtracking.

PROOF. We first show that the routing length exceeds M logρ n whp if St is reached
by a long-range link. Then we show that the same holds for backtracking. The claim
follows. For both cases, we condition on the number of long-range links and their
lengths, showing that whp all long-range contacts of nodes in St are at a high distance
to t. Thus, it is very unlikely that they are found during the routing because only few
nodes at a high distance are contacted. For backtracking to start, all nodes reachable
from the node v /∈ St contacted by u ∈ St need to have received the message. Again,
this is unlikely if v is far from t. We now formalize the previous proof idea. Recall that
P(Du ≤ T ) ≥ r for some constant r > 0 and pl = P(dist(u, v) ≥ 2

√
n|l(u, v)). We first

determine the probability of the event

A = ∩v∈St (|LN(v)| ≤ T ∩ ∩u∈LN(v) dist(u, v) ≥ 2
√

n)

that all long-range links of nodes in St have length of at least 2
√

n and there are at
most |St|T long-range links into St. By Equation (4), Lemma 3.1, and a union bound, we
have P(A) ≥ (pT

l r)|St| = �(1) because all involved quantities are bound by a constant.
So it remains to show that

P(RDFS(t, s) ≥ M logρ n |E ∩ A) = �(1). (8)

3The exact probability is computed in Roos and Strufe [2013].
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By Lemma 4.2, we can bound the probability that a long-range link into St has been
encountered in M logρ n steps

P
(
RDFS(t, s) ≥ M logρ n

∣∣∪v∈SI
t
v ∈ �t ∩ A

) = �

((
1 − M logρ n√

n

)|St|T
)

= �

(
1 − |St|T M logρ n√

n

)
= �(1).

(9)

Backtracking is only applied if after following a long-range link from St to a node v, all
nodes reachable from v have been contacted. In particular, these nodes include at least
M logρ n nodes that are on the path following consecutive short-range links starting at
v and at distance d > dist(v, t) to t. If A holds, then dist(v, t) ≥ 1/2dist(v, St) ≥ √

n also
holds. We hence get by Lemma 4.2 with |Pt| = M logr n the lower bound

P(RDFS(t, s) ≥ M logρ n |t ∈ BSt ∩ A)

= P(RDFS(t, s) ≥ M logρ n |t ∈ BSt ∩ dist(v, t) ≥ √
n)

= �

((
1 − M logρ n√

n

)M logρ n
)

= �(1). (10)

Equation (8) is a direct consequence of Equations (9) and (10).

The proof of Theorem 4.1 follows directly.

PROOF. For the expected routing length not to be polylog, it suffices to show that it
is not polylog conditioned on the event that St is either reached by a long-range link or
by backtracking. Formally, for s, t ∈ V with s /∈ St, we have

E(RDFS(s, t)) ≥ M logρ n P(RDFS(s, t) ≥ M logρ n)

≥ M logρ n P (E) P(RDFS(t, s) ≥ M logρ n |E )
= �(logρ n).

The last step holds by Lemmas 4.3 and 4.4. Because P(s /∈ St) = �(1), the claim

1
n(n − 1)

∑
s �=t∈V

E(RDFS(s, t)) = �(logρ n)

is proven.

We have shown that the routing algorithm in Freenet cannot achieve polylog routing
length if C > 2. In the following, we prove that NextBestOnce, in contrast, can achieve
polylog routing length.

5. ANALYSIS OF NEXTBESTONCE

We present upper and lower bounds for the performance of NextBestOnce. The routing
length increases at least linearly with C, the maximal distance to a local neighbor. If
C is constant, the bounds are the same for a lattice [Fraigniaud and Giakkoupis 2009].

5.1. Upper Bound

A simplified version of Theorem 5.1 for constant C has been shown in Roos and Strufe
[2012].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 1, No. 1, Article 4, Publication date: February 2016.



4:14 S. Roos and T. Strufe

THEOREM 5.1. For a graph G = (V, E) ∈ D(n, 1, C, Sα) and two nodes s, t ∈ V at
distance d = dist(s, t), an upper bound on the expected routing length of NextBestOnce
is given by

E(RNBO(s, t)) = O(logα−1 d log log d + C3 log n). (11)

The maximal expected routing length is consequently

max
s,t∈V

E(RNBO(s, t)) = O(logα−1 n log log n + C3 log n).

The upper bound on NextBestOnce’s routing length is derived by dividing the routing
into two phases: the number of steps RNBO

1 (s, t) needed to reach a node v within distance
C of t and the number of steps RNBO

2 (s, t) to reach t from v. The result for the first phase
follows directly from the corresponding result for the lattice (Lemma 5.2). The idea of
the proof for the second phase is to show that (1) whp the message is not forwarded
to a node that is not in t’s proximity, and (2) the number of hops needed to find t by
only contacting nodes in its proximity is O(C3 log n). We first show that there exist
polylog paths between two nodes within distance C2 log n (Lemma 5.3). Afterward, we
prove that these paths are discovered by NextBestOnce in the claimed number of hops
(Lemma 5.4 and Lemma 5.5).

LEMMA 5.2. For a graph G = (V, E) ∈ D(n, 1, C, Sα) and two nodes s, t ∈ V with
d = dist(s, t), the expected routing length of NextBestOnce during the first phase is
E(RNBO

1 (s, t)) = O(logα−1 d log log d).

Since the distance to t decreases by at least 1 in each step during the first phase,
the previous lemma is essentially treated in Fraigniaud and Giakkoupis [2009],
Theorem 2.4, which gives the upper bound of standard greedy routing on a lattice
with a scale-free degree distribution.

Lemma 5.3, showing the existence of paths between nodes at distance at least
C2 log n, requires the concept of a greedy path, a path with nodes at a monotone decreas-
ing distance to some node v. Formally, a greedy path is a sequence of neighboring nodes
u0, u1, . . . , ul+1, so that dist(ui, v) < dist(ui−1, v) for i = 0, . . . , l. Let g(v,w) indicate if v
and w are connected by a greedy path.

LEMMA 5.3. For two nodes w, v ∈ V with dist(w, v) ≥ C2 log n, the probability that
w, v are connected by a greedy path is

P(g(w, v)) = �

(
1 − 1

n

)
.

PROOF. The idea of the proof is to show that each node has probability at least 1/C
to be on a greedy path. The probability that two greedy paths intersect on a segment
of length C2 log n is thus derived as the probability that one of those C2 log n nodes is
on both paths. Recall from Section 3 that each node u has two short-range neighbors
au

1 and bu
1 chosen independently of each other. They are both within distance C of

u, but in opposite directions. For all pairs (v,w) ∈ V × V , there is a path of short-
range links of length at most C originating at v leading to a node within distance
C of w and vice versa. A greedy path between v and w exists if those two paths
intersect (see Figure 3). Denote by ga(u0, ul+1) the event that u0 and ul+1 are connected
by a greedy path and aui

1 = ui+1 for i = 0, . . . , l. gb(u0, ul+1) is defined analogously.
Without loss of generality, w is “above” v in the ID space, that is, dist(w, v) = w − v

mod n. Now, we show that P(ga(v, u)) ≥ 1
C for all u ∈ U := {u ∈ V : dist(v,w) =

dist(v, u) + dist(u, w)} by induction. If dist(v, u) ≤ C, then P(ga(v, u)) ≥ P(av
1 = u) = 1

C
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because all nodes have one short-range link to a node within distance C. Otherwise,
there exists a node z such that ga(v, z) holds and dist(v, u) − C ≤ dist(v, z) < dist(v, u).
It follows that P(ga(v, u)) ≥ P(az

1 = u) = 1
C . Similarly, P(gb(w, u)) ≥ 1

C holds for all
u ∈ U . Because au

1 and bu
1 are chosen independently, the probability that the two paths

intersect is at least the probability of one node being on greedy paths from both w and v,
that is,

P(g(v,w)) ≥ P(∪u∈U (ga(v, u) ∩ gb(w, u))) ≥ 1 −
(

1 − 1
C2

)C2 log n

≥ 1 − e− C2logn
C2 = 1 − 1

n
.

The third inequality follows from 1 − x ≤ e−x for x ∈ [0, 1].

As a second step, a worst-case bound on the routing length of NextBestOnce is needed.

LEMMA 5.4. Let G = (V, E) be an undirected graph that is embedded in Z|V |, so that
all v ∈ V are connected to nodes within distance C in each direction. The expected
routing length of NextBestOnce on G is bound by

max
s,t∈V

E(RNBO(s, t)) = O (C|V |).

PROOF. The algorithm definitely terminates after every node has been marked. We
show that for every circle, on average at least every C + 1-th node is marked. So in
expectation, all nodes are marked after O(C|V |) hops. First, note that the maximal
increase per hop is C: each node u has a short-range link to a node v, so that the
dist(v, t) ≤ dist(u, t) + C. v is not yet marked, because a node is only marked after all
neighbors closer to the destination, including the current message holder u, have been
marked. Therefore, NextBestOnce can always choose a successor within distance C. The
maximal path length without producing a circle is |V |. Assume the algorithm produces
a circle of length l. Then at least l/(C + 1) nodes on the circle are marked. To see this,
recall that an increase of the distance to t implies that a node is declared marked. In
case of a circle, the sum of the distance changes per hop equals zero, so the distance
is increased in at least 1

C+1 = minDecrease
maxIncrease+minDecrease of all hops of the circle. So, after a

maximum number |V | of hops without circles, at least every C + 1-th node is marked
on average, so that

max
s,t∈V

E(RNBO(s, t)) ≤ |V | + (C + 1)|V | = O (C|V |) .

It follows that the maximal number of steps is linear in the network size if the
maximal increase to the destination is restricted by a parameter C independent of n.
For arbitrary graphs, the algorithm terminates after O(n2) steps by Lemma 5.4. The
last two lemmata enable us to bound the complexity of NextBestOnce during the second
phase.

LEMMA 5.5. For a graph G = (V, E) ∈ D(n, 1, C, Sα) and two nodes s, t ∈ V , the
expected routing length of NextBestOnce in the second phase is bound by

E(RNBO
2 (s, t)) = O(C3 log n).

PROOF. The idea of the proof is to determine a lower bound for the probability that
C consecutive nodes at distance C2 log n to C2 log n + C − 1 all have greedy paths to t.
Then, the maximum increase of NextBestOnce being C, nodes at distance C2 log n + C
or higher are not contacted anymore. The claim follows from Lemma 5.4.

Let Adenote the event that nodes at a distance exceeding C2 log n+C to the set {v, t},
with v being the first node contacted within distance C of t, are not contacted after v
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Fig. 3. Path of edges of length of at most C orig-
inating from v (w, respectively). A greedy path
between the v and w exists, because the two
paths intersect.

Fig. 4. Nodes v and t and the corresponding set X: No
node at distance exceeding C2 log n + C is contacted
with high probability.

has been reached:

E(RNBO
2 (s, t))

= P(A) · E(RNBO
2 (s, t)|A) + (1 − P(A)) · E(RNBO

2 (s, t)|A⊥)

= P(A) · O(C3 log n) + (1 − P(A)) · O (Cn) .

The last step follows from applying Lemma 5.4 to the subgraph of size C2 log n as
well as to the whole graph G. It remains to determine P(A). If v = t, the claim holds.
Otherwise, let xv

i for i = 0, . . . , C − 1 be the node such that dist(xv
i , t) = C2 log n + i

and dist(xv
i , t) > dist(xv

i , v). Analogously, xt
i denotes the node such that dist(xv

i , t) =
C2 log n+ i and dist(xt

i , v) > dist(xv
i , t). The set X = {xu

i : u ∈ {v, t}, 0 ≤ i < C} consists of
two sets of consecutive nodes at distance C2 log n to C2 log n + C − 1 from the set {v, t}
(see Figure 4). If a node at higher distance than C2 log n is reached after v, at least
one node in X needs to be on the path as well, because the maximal regression per
hop is bound by C. Recall that NextBestOnce marks a node u if all its neighbors closer
to t have been marked. It follows recursively that if a successor at a higher distance
than the current node u is chosen, all nodes reachable from u by paths along which the
distance to t decreases monotonously have been marked. Consequently, a node u with
dist(u, t) ≥ C2 log n + C can only be on the path if all nodes x ∈ X do not have a greedy
path to t.

Lemma 5.3 is applied to bound P(A) by the probability that all 2C nodes in X have
a greedy path to t, that is,

P(A) ≥ P(∩x∈Xg(t, x)) = �

((
1 − 1

n

)2C
)

= �

(
1 − 2C

n

)
.

The last step holds since (1 − x)k ≥ 1 − kx for 0 < x < 1 and k > 1. Finally, we get

E(RNBO
2 (s, t)) = �

(
1 − 2C

n

)
· O(C3 log n) + O

(
2C
n

)
· O (Cn) = O(C3 log n).

Theorem 5.1 is a direct consequence.

PROOF. For a source-destination pair (s, t) at distance d = dist(s, t), the expected
routing length of NextBestOnce is bound by

E(RNBO(s, t)) = E
(
RNBO

1 (s, t)
) + E

(
RNBO

2 (s, t)
)

= O(logα−1 d log log d + C3 log n)

by Lemmas 5.2 and 5.5. The distance between two nodes is at most n/2, so

max
s,t∈V

E(RNBO(s, t)) = O(logα−1 n log log n + C3 log n),

as claimed.
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5.2. Lower Bound

THEOREM 5.6. For a graph G = (V, E) ∈ D(n, 1, C, Sα) with C < 1
4 n1/4 and two nodes

s, t ∈ V , a lower bound on the expected routing length of NextBestOnce is given by

1
n(n − 1)

∑
s �=t∈V

E(RNBO(s, t)) = �(logα−1 n + C). (12)

As for the upper bound, the proof is done by dividing the routing process into two
phases. Let RNBO

1 (s, t) be the number of nodes contacted to reach a node within distance
C and RNBO

2 (s, t) be the number of steps needed to get from this node to t. The result for
the first phase follows from the respective result for the lattice. The proof idea for the
second phase is very similar to that of Theorem 4.1, but technically more demanding.
We consider the case that the target node t and its short-range neighbors only have
long-range contacts at high distance. Thus, each of them is whp contacted by a short-
range link. We show that it takes at least C hops to find the correct link.

LEMMA 5.7. For a graph G = (V, E) ∈ D(n, 1, C, Sα) and two nodes s, t ∈ V , the
expected routing length for the first phase is

E
(
RNBO

1 (s, t)
) = �(logα−1 n).

The proof of Lemma 5.7 is very similar to the one presented in Fraigniaud and
Giakkoupis [2009] for Theorem 2.4, giving the upper bound of standard greedy routing
on a lattice with a scale-free degree distribution.

In order to analyze the second phase, a preparatory result about the number of
neighbors at a given distance is needed. By this, we can bound the probability for a
node v to have a link to t or its short-range neighbors.

LEMMA 5.8. The expected number of nodes Q in V \ B√
n(t) that have a neighbor in

Bd(t) for any d <
√

n is

E(Q) = � (d).

PROOF. The claim follows from the fact that P(l(u, v)|dist(u, v) = d) = �( 1
d log n) for

any pair of nodes (u, v), so that

E(Q) =
n/2∑

d1=√
n

d∑
d2=0

�

(
1

(d1 − d2) log n

)
+

n/2∑
d1=√

n

d∑
d2=1

�

(
1

(d1 + d2) log n

)

= �

⎛
⎝ n/2∑

d1=√
n

d∑
d2=1

2
2d1 log n

⎞
⎠ = �

⎛
⎝ n/2∑

d1=√
n

2d
2d1 log n

⎞
⎠ = � (d) .

The last step uses
∑n/2

d1=√
n

1
d1 log n = �(1) as shown in the proof of Lemma 3.1.

We can now derive a lower bound on RNBO
2 .

LEMMA 5.9. For a graph G = (V, E) ∈ D(n, 1, C, Sα) with C < 1
4 n1/4 and two nodes

s, t ∈ V , the expected routing length for the second phase is E(RNBO
2 (s, t)) = �(C).

PROOF. We first show that whp t has few short-range neighbors, and all its long-range
contacts are at high distance. Based on this event, the probability that routing takes
at least C more steps after reaching a node within distance C of t is constant.
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Formally, we prove the claim that P(RNBO
2 (s, t) ≥ C/4|A) = �(1) for a suitable event

A with P(A) = �(1). It follows directly that E(RNBO
2 (s, t)) grows at least linearly with

C. Recall that t has at least two short-range neighbors at
1 and bt

1 within distance C of t.
The set of short-range neighbors of a node u is denoted by SN(u), whereas LN(u) is the
set of long-range neighbors. Furthermore, we abbreviate U = LN(t) ∪ LN(at

1) ∪ LN(bt
1).

The event A = A1 ∩ A2 ∩ A3 ∩ A4 is the intersection of the following events:

—A1 = {v /∈ {t, at
1, bt

1}}: the first contacted node within distance C of t is not t, at
1, or bt

1.
—A2 = {SN(t) = 2}: at

1 and bt
1 are t’s only short-range neighbors.

—A3 = {|LN(t)| ≤ 1} ∩ {|LN(at
1)| ≤ 1} ∩ {|LN(bt

1)| ≤ 1}: t and its two short-range
neighbors have maximally one long-range neighbor.

—A4 = ∪u∈U {dist(u, t) ≥ √
n}: t and its short-range neighbors have only long-range

neighbors at distance at least
√

n to t.

Before showing that P(A) = � (1), note that indeed P(RNBO
2 (s, t) ≥ C/4|A) = � (1).

NextBestOnce increases the distance to t by at most C in each step; hence, by condi-
tioning on A3 (and recalling that C · C/4 <

√
n), t, at

1, and bt
1 cannot be contacted by a

long-range neighbor in fewer than C/4 steps. Therefore, t can only be found in fewer
than C/4 steps if a node on the path contacts either at

1 or bt
1 via a short-range link (by

event A2 and A3). The probability that a node u ∈ {at
1, bt

1} is a short-range neighbor of
a node w on the routing path X is

P(u ∈ SN(w)|w ∈ X)
= P(u ∈ {aw

1 , bw
1 } ∪ w ∈ {au

1, bu
1}|w ∈ X)

≤ 2P(u ∈ {aw
1 , bw

1 }|dist(u, w) ≤ C) = 2
C

.

(13)

The second-to-last step holds because the probability that two nodes are short-range
neighbors is maximal when their distance is at most C. Applying a union bound, the
probability that none of the first C/4 nodes on the path after reaching v has an edge to
either at

1 or bt
1 is bound by

P
(
RNBO

2 (s, t) ≥ C/4|A) = �

((
1 − 4

C

)C/4
)

= � (1). (14)

The last step holds, because (1 − 1/x)x converges to 1/e for x → ∞.
It remains to show that P(A) = � (1). Using independence of edge selection, we can

rewrite:

P(A) = P(A1 ∩ A2 ∩ A3 ∩ A4) (15)
= P(A1|A2 ∩ A3 ∩ A4)P(A2)P(A3)P(A4|A3).

We now derive that each factor in Equation (15) has constant probability. The individual
steps are a bit lengthy but only rely on basic properties about the model. Note that
the event A only considers the link selection and the probability is hence independent
of the routing algorithm. For determining P(A1|A2 ∩ A3 ∩ A4), we distinguish between
short-range and long-range neighbors of nodes in BC(t). We define Wd

L = {w ∈ V \ Bd(t) :
l(w, BC(t))}, the set of all nodes with long-range links to a node at distance at least d
that have links into BC(t). Similarly, let WS = {w ∈ V \ BC(t) : SN(w) ∩ BC(t) �= ∅} be
the set of nodes with short-range links into BC(t). Denote the predecessor of v on the
routing path by w. Note that when conditioning on A3, WC

L = W
√

n
L . We consider the
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complement of A1 to derive the desired bound

P
(
A⊥

1 |A2 ∩ A3 ∩ A4
)

≤ P
(
A⊥

1 ∩ w ∈ WC
L |A2 ∩ A3 ∩ A4

)
+ P

(
A⊥

1 ∩ w ∈ WS|A2 ∩ A3 ∩ A4
)

≤ P
(
A⊥

1 ∩ w ∈ W
√

n
L |A2 ∩ A3 ∩ A4

)
+ P

(
A⊥

1 ∩ w ∈ WS|A2 ∩ A3 ∩ A4
)

= P
(
A⊥

1 |A2 ∩ A3 ∩ A4 ∩ w ∈ W
√

n
L

)
· P

(
w ∈ W

√
n

L |A2 ∩ A3 ∩ A4
)

+ P
(
A⊥

1 |A2 ∩ A3 ∩ A4 ∩ w ∈ WS
)

· P
(
w ∈ WS|A2 ∩ A3 ∩ A4

)
≤ P

(
A⊥

1 |A2 ∩ A3 ∩ A4 ∩ w ∈ W
√

n
L

)
+ P

(
A⊥

1 |A2 ∩ A3 ∩ A4 ∩ w ∈ WS
)

= O
(

3
C

)
+ O

(
2
C

)
.

(16)

The first summand in Equation (16) is derived by first dropping condition A2 because
the short-range links of t do not influence A1 given w ∈ W

√
n

L . By Lemma 5.8, there
are �(C) nodes in V \ B√

n(t) with edges into BC(t). Conditioning on A3 and A4, at most
three of these long-range links are incidents to t, at

1, and bt
1. The second summand 2

C in
Equation (16) is derived as in Equation (13). Note that A3 and A4 do not influence the
event, given that w ∈ WS. Consequently,

P(A1|A2 ∩ A3 ∩ A4) = 1 − O
(

3
C

+ 2
C

)
= � (1) .

P(A2) corresponds to the probability that none of the 2(C − 1) potential short-range
neighbors but at

1, bt
1 have chosen t as a neighbor. So

P(A2) =
(

1 − 1
C

)2(C−1)

= �(1).

Similarly to Equation (14), the last bound follows from (1 − 1/x)2x → e−2. Long-range
edges are selected independently, and hence,

P(A3) = P(|LN(t)| ≤ 1)3 = � (1) .

The last step follows by conditioning on Sα = 1 and Equation (2).
For calculating the last factor P(A4|A3), denote the long-range neighbor of t, at

1, bt
1 by

tl, al, and bl, respectively. It follows from dist(a, al) > 2
√

n that dist(t, al) >
√

n because
C <

√
n, and hence,

P(A4|A3) = (P(dist(tl, t) > 2
√

n|l(tl, t)))3.

Now, P(A4|A3) = � (1) is a direct consequence from Lemma 3.1. The previous results
confirm that indeed,

P(A) = P(A1|A2 ∩ A3 ∩ A4)P(A2)P(A3)P(A4|A3) = �(1).
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Thus, we have shown that

P
(
RNBO

2 (s, t) ≥ C/4
) ≥ P

(
RNBO

2 (s, t) ≥ C/4|A)
P(A) = � (1) .

Consequently, the expected routing length grows at least linearly in C as claimed, that
is, E(RNBO

2 (s, t)) = � (C).

Theorem 5.6 follows from Lemmas 5.7 and 5.9 because

E(RNBO(s, t)) = E(R1(s, t)) + E(R2(s, t)) = �(logα−1 n + C).

We have provided upper and lower bounds on the expected routing length of Next-
BestOnce. Theorems 5.1 and 5.6 assume a scale-free degree distribution. Because some
Darknets such as MCON artificially restrict the degree to reduce the dependency on
central nodes [Vasserman et al. 2009], this assumption might not be valid in practice.
If the maximal degree is indeed bound by a constant K, the first phase of the routing
is bound by the results for Kleinberg’s original model, which provide an upper bound
of O(log2 n) [Kleinberg 2000] and �(log2 n) [Martel and Nguyen 2004]. Note that the
lower bound is stated for a degree of 1 but the proof can be trivially extended to any
constant bound K. Our bound for the second phase of the routing is independent of the
degree distribution, such that for a constant maximal degree K, the routing length of
NextBestOnce is asymptotically bound by O(log2 n + C3 log n) and �(log2 n + C).

In the next section, we show that including information about neighbors of neighbors
increases the performance by more than a constant factor. More precisely, we show
that the upper bound on NextBestOnce-NoN is strictly better than the lower bound on
NextBestOnce if C is small.

6. ANALYSIS OF NEXTBESTONCE-NON

In this section, we provide an upper bound on the expected routing length of
NextBestOnce-NoN as a function of the scale-free degree distribution’s exponent α.

THEOREM 6.1. For a graph G = (V, E) ∈ D(n, 1, C, Sα), an upper bound on the maximal
expected routing length of NextBestOnce-NoN is given by

max
s,t∈V

E(RNoN(s, t)) = O
(

logδ(α)(α−1) n log log n + C3 log n
)

(17)

for δ(α) = 1 − (α − 2)(3 − α)
α

.

As for the earlier proofs, the routing is divided into two phases RNoN
1 (s, t) and RNoN

2 (s, t).
For the first phase, we determine a lower bound on the probability to halve the distance
of the currently contacted node’s closest neighbor to t in the next two steps. The distance
of the closest neighbor is used because it is decreasing during the routing in the first
phase in contrast to the distance of the current message holder. This monotonicity
then allows us to apply well-known results about decreasing integer-valued random
processes. The probability of halving the distance is obtained by (1) considering the
probability of contacting a high-degree neighbor and (2) the probability that such a
neighbor has a neighbor at half its distance to the target. The bound for the second
phase can easily be derived from the bound on NextBestOnce in Theorem 5.1. In the
end, the transition point between the two phases is determined as the result of an
extremal value problem. The expected routing length is then the minimal value of said
extremal value problem.

Formally, we first fix 1/2 ≤ r ≤ 1 and 0 ≤ k ≤ α − 2. RNoN
1 (s, t) gives the number

of steps needed to get within distance elogr n of t. RNoN
2 (s, t) is the number of steps to

cover the remaining distance. For the proof, we assume that the maximum value of Sα
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is μ = � (log n). Restricting the degree is obviously a relaxation, which avoids further
case distinctions.

We now derive the expected length of the second phase.

LEMMA 6.2. For a graph G = (V, E) ∈ D(n, 1, C, Sα); two nodes s, t ∈ V ; and 1/2 ≤
r ≤ 1, the expected routing length of NextBestOnce-NoN after reaching a node within
distance elogr n of t is

E
(
RNoN

2 (s, t)
) = O

(
logr(α−1) n log log n + C3 log n

)
.

PROOF. NextBestOnce-NoN is in expectation at least as fast as NextBestOnce using
the same procedure, only with additional information. Let u be the first node on the
routing path with dist(t, u) ≤ elogr n. By Theorem 5.1, the expected routing length to get
from u to t is

E
(
RNoN

2 (s, t)
) = O

(
E

(
RNBO(u, t)

))
= O(logα−1 elogr n log log elogr n + C3 log n)

= O
(

logr(α−1) n log log n + C3 log n
)
.

This proves the claim.

We now bound the number of hops needed during the first phase. The proof is divided
into three parts: We first determine the probability that nodes of a certain degree are
neighbors, because contacting nodes of a sufficiently high degree is essential. After-
ward, we use that result to determine the probability that the distance is halved by
considering the following scenario: the current node contacts a neighbor of degree at
least logk n, which has a neighbor of degree at least log n. This node then has a neigh-
bor within half the distance of the first neighbor to t. In the last step, we compute
the expected routing length for the first phase based on the aforementioned bound.
In the following, assume C < elog1/2n. Otherwise, E(RNoN(s, t)) = O(C3 log n) holds by
Theorem 5.1.

LEMMA 6.3. Consider a node u with d = dist(u, t) > elog1/2 n and a set W ⊂ V , so that
dist(r, t) > d for all w ∈ W. Denote by V a

d′ = {v ∈ V : v ∈ Bd′ (t), lv ≥ a} the set of all nodes
within distance d′ ≤ d of the destination and label at least a. Furthermore, assume

|W |μ
(d−d′) log n < 1/2, μ being the maximum degree. The probability that u is adjacent to a
node in V a

d′ , conditioned on lu and the absence of edges between W and Bd′ (t), is bound by

P
(
l(u, V a

d′ )|lu = l ∩ l(W, Bd′ (t))⊥
) = �

(
l

log n
[log(d + d′ − 1) − log(d − d′ + 1)]a2−α

)
.

PROOF. We first show that it suffices to derive the expected number of neighbors of u
in V a

d′ . Then, we determine said expected value as a sum of the probabilities of all nodes
in V a

d′ to be adjacent to u. Each summand can then be derived based on elementary
properties of the model.

We start by showing that the result follows from determining the expected number
Q of nodes v in V a

d′ that are adjacent to u. For each v ∈ Bd′ (t), the random variable Qv is
1 if v ∈ V a

d′ and adjacent to u. Otherwise, Qv is 0. We need to derive a lower bound on
P(Q = 1) for the sum Q = ∑

v∈Bd′ (t) Qv. It holds that P(Q = 1) ≥ 1 − e−E(Q) because

P(Q = 0) =
∏

v∈Bd′ (t)

P(Qi = 0) =
∏

v∈Bd′ (t)

(1 − E(Qi)) ≤
∏

v∈Bd′ (t)

e−E(Qi ) = e−E(Q).
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The inequality in the second-to-last step follows from 1 − x ≤ e−x for x ∈ [0, 1]. For
small E(Q), we have 1 − e−E(Q) = �(E(Q)). Hence, a lower bound on P(Q = 1) can be
obtained from deriving E(Q).

In the following, E(Q) is computed by summarizing over all nodes in Bd′(t). Note that
a node within distance d′ − 1 to t has a distance between d − d′ + 1 and d + d′ − 1 to u.
Denote the event {lu = l ∩ l(W, Bd′ (t))⊥ ∩ v ∈ Bd′ (t) ∩ dist(v, u) = i} by Ei, so that

E(Q) =
d+d′−1∑

i=d−d′+1

P(l(u, v) ∩ v ∈ V a
d′ |Ei)

=
d+d′−1∑

i=d−d′+1

∞∑
j=a

P(l(u, v) ∩ lv = j|Ei) (18)

=
d+d′−1∑

i=d−d′+1

∞∑
j=a

P(lv = j|Ei)P(l(u, v)|Ei ∩ lv = j).

We abbreviate t1
i, j = P(lv = j|Ei) and t2

i, j = P(l(u, v)|Ei ∩ lv = j). We now show t1
i, j =

�(P(lv = j)) = �( j−α). By substituting Ei and using P(A1|A2) = P(A2|A1) P(A1)
A2

and
P(A1 ∩ A2) = P(A1|A2)P(A2) for all events A1, A2 with nonzero probability, we get

t1
i, j = P(lv = j|l(W, v)⊥ ∩ v ∈ Bd′(t) ∩ dist(v, u) = i)

= P(l(W, v)⊥|lv = j ∩ v ∈ Bd′ (t) ∩ dist(v, u) = i)
P(l(W, v)⊥|v ∈ Bd′ (t) ∩ dist(v, u) = i)

P (lv = j) .

It remains to show that the numerator in the last line can be bound by �(1) and hence,
since the denominator is at most 1, we get

P(l(W, v)⊥|lv = j ∩ v ∈ Bd′ (t) ∩ dist(v, u) = i)
P(l(W, v)⊥|v ∈ Bd′(t) ∩ dist(v, u) = i)

= �(1),

and due to the scale-free degree distribution,

t1
i, j = �( j−α).

Recall from Equation (1) in Section 3.1 that two nodes v, w are adjacent with probabil-
ity

P(l(v,w)|dist(v,w) = i ∩ lv = l1 ∩ lw = l2)

= 1 − e− l1l2
iγ = �

(
l1l2
iγ

)
= �

(
l1l2

i log n

)
.

(19)

The last steps holds due to Equation (2). The probability that a node v ∈ Bd′ is adjacent
to a node in W is obtained by a union bound. We abbreviate Fi = {dist(t, W) > d ∩ v ∈
Bd′ (t) ∩ dist(v, u) = i} to obtain

P(l(v, W)|lv = j ∩ Fi)

≤
∑
w∈W

P(l(v,w)|lv = j ∩ Fi)

≤
∑
w∈W

P(l(v,w)|dist(v,w) > d − d′ ∩ lv = j ∩ dist(v, u) = i)

= �

(
j|W |

(d − d′) log n

)
.
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The last step holds by Equation (19). By assumption, |W |μ
(d−d′) log n < 1/2, and hence indeed,

P(l(W, v)⊥|lv = j ∩ v ∈ Bd′ (t) ∩ dist(v, u) = i) = �(1).

This completes the derivation of t1
i, j = �( j−α).

Since edges are chosen independently, the event l(W, Bd′ (t))⊥ does not influence t2
i, j .

So

t2
i, j = P(l(u, v)|lu = l ∩ lv = j ∩ dist(u, v) = i) = �

(
l · j
iγ

)

is a consequence of Equation (19). Substituting t1
i, j and t2

i, j in Equation (18), we obtain
the desired result:

E(Q) =
d+d′−1∑

i=d−d′+1

∞∑
j=a

t1
i, j · t2

i, j

=
d+d′−1∑

i=d−d′+1

∞∑
j=a

�

(
l

i log n
j1−α

)

= �

(
l

log n
[log(d + d′ − 1) − log(d − d′ + 1)]a2−α

)
.

We have now given a lower bound on the expected number of neighbors. Hence, the
probability to have at least one such neighbor is indeed as claimed.

In the following, we model the routing process as an integer-valued random process
X1, X2, . . . , such that Xi gives the distance of the closest neighbor of the ith node on the
path to t. The distance of the closest neighbor to t decreases in each step until a node
within distance C is reached. Let Zi denote the set of all nodes on the path before the
ith node and their neighbors. All events need to be conditioned on the fact that all nodes
within distance d = Xi are not adjacent to a node in Zi, that is, the event l(Bd, Zi)⊥. The
next result is the main part of the proof, because it enables us to derive the expected
routing length from a common result about integer-valued decreasing processes.

LEMMA 6.4. Let Xi be the distance of the closest neighbor of the ith node on the routing
path, and let

1/2 ≤ r ≤ 1, 0 ≤ k ≤ α − 2, |Zi| < 1/2
√

d log n.

The probability that the distance to t is halved in the next two steps is

P
(

Xi+2 ≤ d
2

|Zi ∩ Xi = d
)

= �

(
log d · logr+k(3−α) n

logα n

)
.

PROOF. Let u be the ith node on the path. We first condition that the distance between
u and the neighbor closest to t is not too small (in order to apply Lemma 6.3 with a
sufficiently high d− d′) or too large (so that the decrease in distance is not so unlikely).
We then derive the result by distinguishing two cases: lu < logk n and lu ≥ logk n.
For the first case, we design four events that lead to halving the distance and derive
their probability. For the second case, we design two events and point out that their
probability is at least as high as for the first four events.

We start by conditioning on the distance of u to t. The distance 
 of u is not captured
by the random process Xi, which only provides the distance of a neighbor of u. In the
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following, we condition on the event G = {d + √
d ≤ 
 ≤ 2d}, which we show to be

of constant probability and which allows us to determine the probability to halve the
distance. The first inequality in the definition of G is necessary to apply Lemma 6.3
with |Zi |

(d+√
d−d) log n

< 1/2. The bound 
 ≤ 2d ensures that dist(u, t) needs to be at most
quartered to have Xi+2 ≤ d/2. For a lower bound on the event Aof halving the distance,
P(A) ≥ P(A|G)P(G) can be applied. If P(G) = �(1), P(A) = �(P(A|G)) holds. It remains
to show P(G) = �(1). The lower bound 
 ≥ d + √

d holds with probability �(1) by
Lemma 3.1. The upper bound 
 ≤ 2d holds with probability �(1) as well, as can be seen
from the proof of Theorem 2.4 in Fraigniaud and Giakkoupis [2009]: the probability
that an arbitrary node has a neighbor at half its distance to the destination is shown
to be O( 1

logε n) for some ε > 0. Thus, the probability of not having such a neighbor is
�(1 − 1

logε n) = �(1), because 1
logε n < 1/2 for n big enough. So indeed, P(G) = �(1).

Assume lu < logk n. The following events result in Xi+2 ≤ d/2:

—A neighbor v ∈ B
(t) of u has label lv ≥ logk n .
—v has a neighbor w ∈ B
(t) with label lw ≥ log n.
—w has a link into Bd/2.
—v is the node u chooses as the next node on the routing path; denote this event by

{Z = v}.
All events are conditioned on F = l(Bd, Zi)⊥) ∩ lu ≤ logk n ∩ G. Formally, the proba-

bility is determined by

P
(
l
(
u, V logk n




) ∩ l
(
v, V log n




) ∩ l(w, Bd/2) ∩ Z = v|F)
= P

(
l
(
u, V logk n




)|F) · P
(
l
(
v, V log n




)|l(u, V logk n



) ∩ F
)

· P
(
l(w, Bd/2)|l(v, V log n




) ∩ l
(
u, V logk n




) ∩ F
)

· P
(
Z = v|l(w, Bd/2) ∩ l

(
v, V log n




) ∩ l
(
u, V logk n




) ∩ F
)

:= q1q2q3q4. (20)

We now subsequently derive q1, q2, q3, and q4. q1, the probability that u has a link to a
node of degree at least v within distance 
 of t, can be derived using Lemma 6.3 with
d = d′ = 
. Note that the probability of having a link is minimal for a node u with
lu = 1, so that

q1 = P
(
l
(
u, V logk n




)|l(Bd, Zi)⊥ ∩ lu ≤ logk n ∩ G
)

≥ P
(
l
(
u, V logk n




)|l(Bd, Zi)⊥ ∩ lu = 1 ∩ G
)

= �

(
1

log n
[log(2
 − 1) − 0] logk(2−α) n

)

= �

(
log d
log n

logk(2−α) n
)

.

The last step uses d ≤ 
 ≤ 2d. Since links are selected independently, the events
l(u, V logk n


 ) and l(v, V log n

 ) are independent. Furthermore, because labels are selected

independently, lu ≤ logk n does not influence q2 or q3. Hence, q2, the probability that v
has a neighbor of degree at least log n within distance 
 to t, is derived similarly to q1

q2 = �

(
log d
log n

logk n log(2−α) n
)

.
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To determine q3, Lemma 6.3 can be applied because Bd/2 = V 1
d/2, Furthermore, the

function log(x + d/2) − log(x − d/2), being a monotonously decreasing function for
x > d/2, assumes its minimum in the interval [d, 2d] at 
 = 2d, so that

q3 = P(l(w, Bd/2)|l(Bd, Zi)⊥ ∩ lw ≥ log n ∩ G)

≥ P(l(w, Bd/2)|l(Bd, Zi)⊥ ∩ lw = log n ∩ G)

= �

(
log n
log n

[log(
 + d/2 − 1) − log(
 − d/2 + 1)]
)

= �(log(2d + d/2 − 1) − log(2d − d/2 + 1)) = � (1) .

If u has O(logk n) neighbors at distance at least d from t, the probability that u has
a link to a certain node is asymptotically at most as high as the probability that one
of logk n arbitrary nodes have such a neighbor. Hence, the probability for the event L1
that v has a neighbor closest to t and the event L2 that any of the remaining neighbors
has the closest neighbor to t are of the same order, that is, q4 = � (1).

Combining the results for the individual terms, we get a bound for halving the
distance in case of lu ≤ logk n:

P(Xi+2 ≤ d
2

|Zi ∩ Xi = d)

= � (q1q2q3q4)

= �

(
log d logk(3−α) n

logα n
log d

)

= �

(
log d logk(3−α) n

logα n
logr n

)
.

The last step uses that log d > log elogr n = logr n. If lu ≥ logk n, we only need to consider
the event that (1) u has a neighbor w within distance 
 of t with degree at least log n,
and (2) w has a neighbor in Bd/2(t). This corresponds to the second and third events
for lu ≤ logk n. So, they are already bound by q2 and q3, respectively, and the bound
for lu ≤ logk n holds for lu ≤ logk n as well. So, we can halve the distance in one step
with probability �( log d

log n logk n log(2−α) n). As a consequence, we indeed obtain the claimed
result:

P
(

Xi+2 ≤ d
2

|Zi ∩ Xi = d
)

= �

(
log d logk(3−α) n

logα n
logr n

)
.

Now, the expected length of the first phase can be bound.

LEMMA 6.5. For a graph G = (V, E) ∈ D(n, 1, C, Sα) with C < elog1/2 n, and two nodes
s, t ∈ V , the expected routing length of NextBestOnce-NoN to reach a node within
distance elogr n of t is

E
(
RNoN

1 (s, t)
) = O

(
logα−r−k(3−α) n log log n

)
(21)

for all 1/2 ≤ r ≤ 1 and 0 ≤ k ≤ α − 2.

PROOF. We show that with high probability, |Zi| is small enough to apply Lemma 6.4
and then obtain the desired bound on the first phase. By Lemma 6.4, the probability to
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halve the distance during the next two steps is given by

P
(

Xi+2 ≤ d
2

|X1, X2, . . . , Xi = d
)

= �

(
log d · logr+k(3−α) n

logα n

)
= �

(
log d

logα−r−k(3−α) n

)
(22)

as long as d > elogr n and |Zi| <
√

d/2. The latter holds with probability at least 1 − 1
n,

as can be seen from the proof for the upper bound of the standard greedy algorithm
on the lattice [Fraigniaud and Giakkoupis 2009], which is also applicable for the first
routing phase of NextBestOnce-NoN. It is shown that routing needs at most O(log3 n)
steps with probability � (1 − 1/n). Since we assume the maximal degree μ = θ (log n) to
be bound logarithmically, |Zi| ≤ K log4 n for some constant K follows. Lemma 5.2 from
Fraigniaud and Giakkoupis [2009] gives the expected number of steps necessary for an
integer-valued decreasing random process defined by Equation (22) to reach a value
λ = elogr n, resulting in

E
(
RNoN

1 (s, t)
)

= P(|Zi| ≤ K log4 n)E
(
RNoN

1 (s, t) ||Zi| ≤ K log4 n
)

+ (1 − P(|Zi| ≤ K log4 n))E
(
RNoN

1 (s, t) ||Zi| > K log4 n
)

= O
(

logα−r−k(3−α) n log log n
) + O

(
1
n

)
O(n)

= O
(

logα−r−k(3−α) n log log n
)
.

The second-to-last step holds since elogr n > C, so that the distance is guaranteed to
decrease in each step. As a consequence, at most n/2 − elogr n = O(n) hops are needed to
complete the first phase.

Theorem 6.1 can now be shown solving a two-dimensional extremal value problem.

PROOF. It follows from Lemmas 6.5 and 6.2 that for all (k, r) ∈ [0, α − 2] × [1/2, 1],

E(RNoN(s, t)) = O
(

logα−r−k(3−α) n log log n + logr(α−1) n log log n + C2 logε n
)

Since the last summand does not depend on r or k, our minimal bound can be found as
the minimum of the function

f (k, r) = logα−r−k(3−α) n + logr(α−1) n. (23)

Computing the gradient of f gives

Df =
( −(3 − α)(log n)α−rmin−kmin(3−α)

−(log n)α−rmin−kmin(3−α) + (α − 1)(log n)rmin(α−1)

)
�=

(
0
0

)
.

So the function f takes its minimum on the border of the [0, α−2]x[1/2, 1], for example,
if either kmin = 0, kmin = α − 2, rmin = 0.5, or rmin = 1.

When kmin = 0, a node of degree at least 1 needs to be contacted first. This leads
essentially to the same scenario used to obtain the bound for NextBestOnce, and cannot
have an improved complexity. The same goes for the case rmin = 1, because elog1 n = n,
so only the second phase, for which the complexity is bounded by that of NextBestOnce,
is considered. As for rmin = 0.5, observe the exponent of the first summand of f:

α − 0.5 − k · (3 − α) ≥ α − 0.5 − (α − 2) · (3 − α) > 1.

The last step uses 2 < α < 3, and thus α − 2 < 1, 3 − α < 1, and at least one of the two
factors is maximally 0.5. So, an improved bound with regard to NextBestOnce can only
be obtained for kmin = α − 2.
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We determine rmin by minimizing:

g(r) = (log n)α−(α−2)(3−α)−r + (log n)r(α−1).

The first derivative of g is

g′(r) = − log log n(log n)α−(α−2)(3−α)−r + (α − 1) log log n(log n)r(α−1).

Setting g′(rmin) = 0, we get that

(α − 1) log log n(log n)rmin(α−1) = log log n(log n)α−(α−2)(3−α)−rmin

(log n)rmin(α−1)+rmin = 1
α − 1

(log n)α−(α−2)(3−α)

(log n)rα
min = 1

(α − 1)
(log n)α−(α−2)(3−α)

(log n)rmin = 1
(α − 1)1/α

(log n)1− (α−2)(3−α)
α .

Finally, we get

rmin =
log 1

(α−1)1/(α) + (1 − (α−2)(3−α)
α

) log log n

log log n

=
log 1

α−1)1/(α)

log log n
+

(
1 − (α − 2)(3 − α)

α

)
.

(24)

This is indeed a minimum since

g′′(rmin) = (log n)α−(α−2)(3−α)−rmin + (α − 1)2(log n)rmin(α−1) > 0.

Consider that for a = log 1
(α−1)1/(α) ,

(log n)
a

log n = 2
a log n
log n = 2a.

By this, the first summand in Equation (24) does not contribute to the asymptotic
complexity. By the second summand, the asymptotic value of r∗

min of rmin is

r∗
min = 1 − (α − 2)(3 − α)

α

for the routing bound in Theorem 6.1.
The upper bound on NextBestOnce-NoN is then obtained as

O( f (kmin, rmin) log log n + C3 log n)

= O(logδ(α)(α−1) n log log n + C3 log n)

for δ(α) = 1 − (α−2)(3−α)
α

. This completes the remaining steps in the proof of
Theorem 6.1.

We have now proven that using neighbor-of-neighbor information decreases the
expected routing length to roughly the δ(α)-th (<1) power. So, including neighbor-
of-neighbor information can significantly decrease the routing length in undirected
scale-free graphs despite a constant average degree. As for the bounds in Section 5,
our proof relies on the existence of a scale-free degree distribution. If this assump-
tion is not met, the first phase of the routing can be bound by O(log2 n) by Kleinberg
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[2000], and the total expected routing length is bound by O(log2 n + C3). In contrast
to a scale-free degree distribution, a bound degree distribution should not result in
a lower asymptotic bound for NextBestOnce-NoN than for NextBestOnce. Because the
expected number of neighbors of neighbors is bound by a constant K2, the expected
routing length for NextBestOnce-NoN cannot be less than the expected routing length
for NextBestOnce with a constant bound of K2 on the degree. So, the asymptotic advan-
tage of NextBestOnce-NoN can only be shown for a nonconstant degree distribution,
though we can expect an improvement by a factor for a constant degree as well. For
this reason, we here focus on scale-free degree distributions, which are exhibited in
social graphs and apply to Darknets without degree restrictions.

7. CONCLUSION

Darknets provide privacy by design by (1) limiting overlay connections to trusted con-
tacts, (2) obfuscating communicating parties, and (3) encrypting all communication.
In this manner, Darknets offer protection against governmental and industrial par-
ties collecting personal data. However, deployed Darknets fail to provide an adequate
performance. Due to their restricted connectivity and inherent topology obfuscation,
Darknets cannot be structured using common techniques such as DHTs. In addition,
the conventional methods for analyzing routing performance in distributed systems
cannot be applied to provide performance bounds. The consequential lack of a suitable
model for Darknet topologies has severely impeded the assessment and improvement
of Darknet routing techniques.

We thus presented three major contributions to the design and analysis of Darknets.
First, we extended Kleinberg’s model to account for the inherent inaccuracy of Darknet
embeddings. Second, we analyzed the Freenet routing algorithm and found that it does
not achieve polylog routing length. The result fortifies the experimental validation in
previous work that Freenet routing is frequently slow or even unsuccessful [Vasserman
et al. 2009]. Hence, our third contribution is the design and analysis of NextBestOnce*, a
generic algorithm with polylog routing length under weak assumptions on the accuracy
of the underlying embedding. We gave concrete bounds on the efficiency of two of its
variants in terms of the embedding accuracy.

A direct consequence of the model is the need of a polylog embedding accuracy C
for polylog routing. In the future, we thus aim to focus on the embedding accuracy.
For this purpose, we identified two important lines of work. First, we plan to derive
upper and lower bounds on the potential embedding accuracy of social graphs. These
bounds inherently depend on the primal properties of the embedding algorithm, such as
dimensionality, embedding costs, and knowledge available to the algorithm, and should
thus be expressed in terms of these properties. Second, we aim to develop new routing
and embedding algorithms. Here, we expect the insights provided by our model to
guide our design process and entail improved results for both synthetic and real-world
datasets. Our newly developed Darknet routing algorithms are then to be integrated in
a real-world network, so that users benefit from the highly privacy-preserving nature
of Darknets without suffering from their current lack of efficiency.
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