
Breaking and Provably Fixing Minx

Erik Shimshock, Matt Staats, and Nick Hopper

University of Minnesota
Minneapolis MN, USA

{eshim,staats,hopper}@cs.umn.edu

Abstract. In 2004, Danezis and Laurie proposed Minx, an encryption
protocol and packet format for relay-based anonymity schemes, such as
mix networks and onion routing, with simplicity as a primary design goal.
Danezis and Laurie argued informally about the security properties of
Minx but left open the problem of proving its security. In this paper, we
show that there cannot be such a proof by showing that an active global
adversary can decrypt Minx messages in polynomial time. To mitigate
this attack, we also prove secure a very simple modification of the Minx
protocol.

1 Introduction

In many situations, the ability to communicate anonymously is desirable. Pri-
vacy is a valued commodity among internet users, and several cryptographic
protocols rely on the existence of anonymous channels. One proposed method of
implementing anonymous channels is mix networks. First proposed by Chaum
[4], a mix network works by routing messages through a series of mixes. Each
mix in the network performs a cryptographic transformation on a received mes-
sage before resending it, thus making the tracking of messages from mix to mix
and sender to receiver very difficult. This process, which is sometimes referred
to as onion routing, focuses on routing messages encrypted in a concentric, or
layered, fashion, known as onions [9]. Each layer of an onion contains routing
information for one node, with the goal being that each node in the network
can only decrypt enough information to send the encrypted message to the next
node in the path [3,5].

Several works have proposed encryption schemes for use in this setting; one
scheme of interest is Mixminion, proposed as a successor to the popular Mix-
master scheme [7]. Since the design of Mixminion, several authors [13,3] have
proposed schemes with some form of provable security guarantees, although
these schemes do not allow for the anonymous replies supported by Mixminion.
Additionally, several schemes based on universal reencryption [11] have been
proposed; Danezis [6] has shown that several such schemes are not secure when
applied to a mixnet.

This paper is concerned primarily with Minx, a packet format and encryption
scheme proposed by Danezis and Laurie in 2004 [5]. Minx was designed to pro-
vided the same security properties provided by Mixminion but using simplicity

N. Borisov and I. Goldberg (Eds.): PETS 2008, LNCS 5134, pp. 99–114, 2008.

100 E. Shimshock, M. Staats, and N. Hopper

as a key design goal. The authors provide an informal argument for the secu-
rity of Minx, but leave its formal proof of security as an open question, to be
addressed in the future literature.

We resolve this question negatively, by showing that a theoretical algorithm
developed by H̊astad and N̊aslund [12] can be used to exploit a subtle flaw
in the Minx design and allow a global active adversary to decrypt messages
encrypted under Minx in polynomial time. However, we also present a simple
modification to Minx that prevents this attack while preserving its anonymous
reply functionality, and prove its security under a security definition derived
from the notion proposed by Camenisch and Lysyanskaya [3].

The remainder of this paper is organized as follows: Section 2 gives an overview
of the Minx protocol; Section 3 presents our attack; Section 4 proposes a sim-
ple modification to mitigate the attack; Section 5 introduces a formal security
definition for Minx; using this definition, Section 6 proves the security of our
modification; and finally Section 7 provides concluding remarks.

2 Minx

The design of Minx is motivated by the desire to provide simpler operation
and lower overhead than Mixminion without sacrificing security. Minx’s packet
format and associated mix server operation is quite simple, as it removes aspects
of Mixminion deemed too complex by Minx’s authors. These removed aspects
include integrity checks for sent messages and a “swap step” designed to thwart
attacks based upon traffic analysis [7,5].

Instead of attempting to detect tagged messages via integrity checks, Minx
nodes process and forward all packets they receive. This prevents an attacker
from tagging the end of a message in the hopes of noticing a dropped packet when
the modification to the packet format is discovered. Furthermore Minx uses error
propagating block ciphers so that tagging packets causes unpredictable changes
in routing behavior and destroys the message payload[5].

2.1 Encryption and Decryption of Minx Packets

Minx employs three cryptographic primitives to create packets containing
messages of fixed length. These are: RSA encryption [14], a symmetric “error
propagating” encryption scheme EP , and a symmetric “bidirectional error prop-
agating” encryption scheme biEP . The key properties of these schemes is that
changing bit i of the ciphertext causes pseudorandom plaintext for bits j > i
when decrypting under EP and for all bits when decrypting under biEP . Danezis
and Laurie suggest using AES in Infinite Garble Extension mode [8] for EP , and
setting biEP (x) = EP (reverse(EP (x))). We will let � denote the length of RSA
public keys, and κ the length of symmetric keys used in Minx; Danezis and Laurie
recommend using � = 1024 and κ = 80.

The Minx packet format implements a simple layered encryption scheme. The
layer intended for a node N contains three components: a session key k, a field

Breaking and Provably Fixing Minx 101

Fig. 1. Minx Packet Format

indicating the packet’s next hop, and a payload (the next inner layer) encrypted
using EP and session key k. Additionally, the first �/8 bytes–including the session
key, next-hop field, and a portion of the encrypted payload–are RSA encrypted
using node N ’s public key. This is diagrammed in Figure 1. The innermost layer
is encoded slightly differently; the next-hop field is set to a special final value to
indicate that node N is the intended destination, and the payload (the actual
message) is encrypted with the biEP block cipher instead of the EP block cipher.

A Minx packet is created as follows. Suppose sender S wishes to send message
M anonymously through n − 1 hops to a receiver at mix node Nn. S chooses
n − 1 intermediate mix nodes N1 . . . Nn−1 in the Minx network and n random
session keys, k1 . . . kn. Each mix node Ni has an RSA public key associated with
it. Let encryption of a data block D using public key of router Ni be represented
as RSANi(D), and the encryption of a data block D with EP or biEP keyed
with ki be represented as EPki (D) and biEPki(D) respectively. Similarly, let
RSA−1

Ni
(D), EP−1

ki
(D), and biEP−1

ki
(D) be the respective decryption operations.

Let | represent concatenation of bit strings, and let M [i, j] denote the byte range
from byte i to byte j (inclusive) of bit string M . Finally, let J(l) represent a
random string of bits of length l. Figure 2 shows the procedure for a sender to
encode a Minx packet as well as the procedure for a Minx node to decode and
process a Minx packet. Note that Pi and Ci represent the packet intended for
node Ni before and after the header is encrypted with node Ni’s public key. The
sender S thus sends the resulting packet C1 to node N1.

When a Minx node receives a packet Cj the decoding process is quite simple.
It decodes the first �/8 bytes of Cj and extracts the session key kj , the next hop
field, and the encrypted payload. To prevent replay attacks the node maintains
a table of observed session key hashes, and drops the offending packets. If the
next-hop field contains the special final value, the packet has reached it’s final
destination so the node decrypts the payload (with biEP−1) and processes the
enclosed message accordingly. Otherwise the field indicates the next-hop desti-
nation, so it decrypts the payload (with EP−1), pads the resulting packet up to
the proper size, and forwards it on to its next stop.

2.2 Reply Packets

A packet sender S can choose to include information allowing receiver R to reply
without revealing S′s identity. A sender wishing to allow replies creates a special
minx packet called a reply block rbS to allow receiver R to send a message to
sender S without knowing the identity of S. The reply block rbS and the first

102 E. Shimshock, M. Staats, and N. Hopper

Minx Packet Encoding Minx Packet Decoding
inputs: inputs:

message M packet Cj

node IDs N1 . . . Nn node ID Nj

session keys k1 . . . kn procedure:

procedure: kj | Nj+1 | encC =
Pn = kn | final | biEPkn(M) RSA−1

Nj
(Cj [0, �

8 − 1]) | Cj [�
8 , −]

For i from n − 1 to 1 : Check and store Hid(kj).
Pi = ki | Ni+1 | EPki(Ci+1) if Nj+1 is not final:
Ci = RSANi(Pi[0, �

8 − 1]) | Pi[�
8 , −] Cj+1 = EP −1

kj
(encC)

Pad C1 up to a set size: C1 = C1 | Jl Send padded message Cj+1|Jl to Nj+1

Return C1 else:
Process message biEP −1

kj
(encC[0, (l − 1)])

Fig. 2. On the left is the procedure for encode a message M in a Minx packet that will
travel the path N1 . . . Nn. On the right is the procedure for a Minx node Nj to decode
and process an incoming packet.

node in the path specified by rbS are included in the anonymous message sent
to the receiver. The receiver can create a reply by encrypting a message M ′ with
a globally fixed key λ and prefixing the encrypted message with the packet rbS .
The ciphertext rbS |biEPλ(M ′)|Jl is then sent to the specified first node.

As the reply block routes the packet through the network back to S, the
appended message M ′ gains layers of encryption. In order for S to recover this
appended message, she includes some extra information – the path and session
keys – inside of the original reply block rbS .

2.3 Minx’s Claimed Security Properties

The stated goal of Minx is to provide the same security properties as Mixminion.
These security goals are:

– Anonymity given the presence of a global passive adversary which controls
all but one node on the message path and can perform active attacks against
honest mix servers.

– The ability to generate secure anonymous replies.
– Mix servers, given a message, cannot determine either the total length the

message will be routed or their position along the message’s path.
– Tagging attacks are totally ineffective. Tagging attacks are defined as attacks

which modify a correct, encrypted message in an attempt to recognize the
result of the modifications at a later point during routing.

Of particular note is the claim that tagging attacks are ineffective. This claim
is based on the assumption that the cryptographic transformations above, when
used to decrypt tagged ciphertext, decrypt to something unpredictable and thus
do not allow useful information to be gained. In the next section, we show how an
active attack that carefully submits many modified messages can exploit Minx’s
use of “vanilla RSA” to recover plaintexts.

Breaking and Provably Fixing Minx 103

3 Attack on Minx

As mentioned previously, Minx does not meet its stated security goals. Specifi-
cally, it is vulnerable to a chosen ciphertext attack that allows an active adver-
sary to successively unwrap the layers of encryption from a packet and eventually
extract the enclosed message using a bit oracle constructed from the next-hop
portion of the packet header.

Our attack relies on recent theoretical work by H̊astad and N̊aslund [12].
The main theorem from this work is that all individual plaintext bits of an
RSA ciphertext are hard core bits: unless RSA can be inverted in probabilistic
polynomial time, no single bit of the plaintext can be predicted in polynomial
time with non-negligible advantage.

The theorem is proven in the contrapositive, by showing that an adversary
can decrypt an RSA ciphertext if they have the ability to predict a single bit of
an arbitrary RSA plaintext when given the corresponding RSA ciphertext. More
formally, consider an oracle Oi, which when given RSA ciphertext E(x) outputs
xi, the ith bit of x, with probablity 1

2 + 1
p(�) , for some polynomial p. H̊astad and

N̊aslund describe a probabilistic polynomial time algorithm that uses this oracle
O to decrypt an RSA ciphertext. The description of the algorithm is outside the
scope of this paper, but we note that it requires only a polynomial number of
queries to O on randomly sampled ciphertexts, and runs in expected time O(�13)
where � is the bit-length of the RSA modulus.

3.1 Constructing the Bit Oracle

Generally, obtaining an RSA bit oracle is difficult. However, the current design
of Minx allows an adversary to construct such an oracle. As described in Section
2.1, when a Minx node receives a packet, it decrypts the first �

8 bytes using it’s
RSA private key and then examines the session key and next-hop fields. If the
next-hop field specifies another node ID (that is, it doesn’t contain the special
value final), the Minx node uses the session key to decrypt the rest of the packet
and forwards it to the specified next-hop destination.

Consider a Minx node that performs no mixing, so that packets are output
sequentially in the order they are received. An adversary observing the node’s
traffic can watch a packet Pj enter and watch the processed packet Pj+1 leave
the node. Since the adversary can observe the destination of Pj+1, she knows the
corresponding bits of the next-hop field that were in the RSA encrypted header
of Pj . This gives a simple construction of a predictor for any bit in the next-
hop field of the header. Specifically, given an RSA ciphertext C the adversary
implements the oracle O as follows:

1. Create a packet P with C as the first �
8 bytes and arbitrary bits for the

remainder of the packet (so C is the encrypted header).
2. Send the packet P through the target Minx node.
3. Observe the outgoing packet and record its next-hop destination.
4. Look up the value that corresponds to the next-hop destination.
5. Return the desired bit of the next-hop field.

104 E. Shimshock, M. Staats, and N. Hopper

It is easy to see that with no mixing, the oracle’s bit predictions have 100%
accuracy. Since the security of Minx is intended to hold regardless of mixing
strategy, this will already be sufficient to prove that no asymptotic security
proof is possible.

However, even if a Minx node uses a mixing strategy it is still possible to
construct a bit oracle, with slightly reduced accuracy. Suppose that for a given
mixing strategy, the adversary can determine for any input packet P , a set S of
k packets such S contains the decryption of P with probability at least 1 − ρ.
To predict a next-hop bit in this case, the adversary can submit a packet P , and
observe the set S of k packets and their next-hop destinations. By uniformly
picking a packet from S and predicting the appropriate bit of its next-hop field,
the adversary can predict the desired bit with probability at least 1

2 + 1
2k (1− ρ).

Thus this implementation of the bit oracle meets the theorem’s requirements.

3.2 Attack Walkthrough

To follow the full attack, consider a target Minx packet P1 heading towards
next-hop Minx node N1. The adversary is interested in decoding this packet to
determine the enclosed message and its intended destination. Recall that the
first �

8 bytes of the packet P1 consist of the header encrypted with N1’s RSA
public key. The adversary proceeds to run H̊astad and N̊aslund’s algorithm to
extract the unencrypted header of packet P1. Whenever the algorithm invokes
a call to the bit oracle, the adversary follows the implementation of the bit
oracle described above. After successfully running the algorithm, the adversary
will have obtained the unencrypted header of packet P1. From the header the
adversary extracts the session key and next-hop value. If the next-hop value
indicates that N1 was the final node in the path, the adversary uses the session
key to decrypt the rest of the packet and extracts the original message. Otherwise
the next-hop value indicates the next node N2, and the session key is used to
recover the next Minx packet P2. The adversary then repeats the procedure for
packet P2 with destination N2. Eventually the adversary will reach the last node
in the path and extract the plaintext message and its destination.

In this attack, Minx nodes could occasionally drop packets that contain a
previously used session key. Since the oracle queries are chosen from an unbiased
pairwise-independent distribution, the probability of this event is negligible in
the session key length.

Although this attack is not truly practical, requiring an expected time of
O(�13) for each hop1, it is sufficient to show that there cannot be a proof of
security for Minx in the standard cryptographic security model. Furthermore, it
is interesting to note that Minx is somewhat fragile in its security against more
practical attacks: if the next-hop portion of the header had been in the most
significant bits (before the session key, rather than after it), a simple modification

1 However, it is interesting to note that in some special cases, H̊astad and N̊aslund’s
algorithm actually reveals a node’s RSA private key, thus allowing the adversary to
decrypt all messages passing through the node.

Breaking and Provably Fixing Minx 105

of Bleichenbacher’s “million message attack” [2] could be used to recover packet
plaintexts with only O(�) oracle queries for RSA moduli of length �.

3.3 Insecurity of Reply Packets

We note that, in addition to being subject to the same attacks as regular packets,
Minx reply packets are subject to an additional attack that distinguishes them
from regular packets at the first hop. As outlined in Section 2.2, reply packets
are constructed by appending the encryption, under the fixed key λ, of a message
M ′ to a reply packet rbS , creating rbS |Eλ(M ′)|J . As rbS is of fixed size and λ is
fixed and public, a global passive adversary (or dishonest first-hop mix server)
can simply attempt to decrypt the appropriate portion of any packet using key
λ. If the result is recognizable as plaintext, the packet corresponds to the first
hop of a reply message.

4 Fixing Minx

In this section we propose modifications to Minx. Our attack is possible because
routing packets leak information about bits in the packet header plaintext. Our
proposed modification is to use a cryptographically secure hash function to ob-
scure the link between the observed behavior and the packet header information,
thus removing the bit oracle present in the original Minx specification.

4.1 Details

In our modification, the session key and next-hop field are no longer explicitly
encoded in the packet header. When a node processes an incoming packet it
computes the hash of the unencrypted header and extracts the session key and
next hop from the hash output. The modifications appear in Figure 3. Note
that previously only repeated session keys were disallowed, but we now disallow
repeated headers. Also note that previously part of the payload was contained in
the RSA encrypted portion, but now the payload starts after the �

8 byte header.
The former is done to prevent replay attacks, and the latter to simplify our
proof.

The sender is now required to find random headers whose hash indicates the
correct next-hop (or final). However, this is a minimal burden on the sender as
the next-hop field is only 1 byte, and thus the expected number of headers to try
before success is only 28 = 256. In an implementation headers could be pulled
from a precomputed list, thus reducing the average cost of creating a packet.
Furthermore, if the sender does not care about which intermediate nodes are
used, they only have to check that the final next-hop value N ′

n indicates the
correct destination and that none of the intermediate values next-hop values N ′

i

encode the special final value. Also note that the sender no longer explicitly
generates session keys, as they are randomly chosen through use of the secure
hash function.

106 E. Shimshock, M. Staats, and N. Hopper

Modified Packet Encoding Modified Packet Decoding
inputs: inputs:

message M packet Cj

node IDs N1 . . . Nn node ID Nj

procedure: procedure:

do Header = Cj [0, �
8 − 1]

Headern = random �
8 bytes if Header has been seen before

(kn|N ′
n) = H(Headern) drop the packet

until N ′
n = final else

Cn = RSANn(Headern)| biEPkn (M) cache Header
For j from n − 1 to 1 : Pay = Cj [�

8 , −]
do (kj |Nj+1) = H(RSA−1

Nj
(Header))

Headerj = random �
8 bytes if Nj+1 is not final:

(kj |N ′
j+1) = H(Headerj) Cj+1 = EP−1

kj
(Pay)

until N ′
j+1 = Nj+1 Send padded message Cj+1|J to Nj+1

Cj = RSANj (Headerj)| EPkj (Cj+1) else:
Pad C1 up to a set size: C1 = C1|Jl Process message biEP−1

kj
(Pay[0, (l − 1)])

Fig. 3. On the left is our modified procedure for encode a message M in a Minx packet
that will travel the path N1 . . . Nn. On the right is our modified procedure for a Minx
node Nj to decode and process an incoming packet.

Form Reply Block(SK, N1 . . . Nn, name, IV)

do
headern = random
(kn|nextHopn) = H(headern)

until nextHop = REPLY
for j = n − 1 to 1

do
headerj = random
(kj |nextHopj) = H(headerj)

until nextHopj = Nj

secretKey = H ′(SK|IV)
M = name | IV | EPH′(SK|IV)(name |Nym | n | header1 |...| headern)
On =RSANn(headern) | biEPkn(M)
for j = n − 1 to 1

Oj =RSANj (headerj)| EPkj (Oj+1)
pad O1 up to size L′ (smaller than normal packet size)
return O1, secretKey

Fig. 4. Reply Block formation

4.2 Reply Packets

As described in Section 3.3, the use of a globally fixed key reduces the security
of Minx reply packets. If we have the anonymous sender S send a secret key
secretKey along with the reply block rbS and first node destination, then the

Breaking and Provably Fixing Minx 107

receiver can use secretKey in place of the fixed key λ. A reply message M ′ can
be created by appending EsecretKey(M ′) to the reply block.

Recall that our modified packet format no longer uses sender specified session
keys, and these session keys need to be stored in the reply block so that the
sender S can later recover R’s reply message. Thus creating the reply block
requires precomputing all the headers so that they can be included in the extra
information S sends to herself. The creation of a reply block is shown in Figure 4.

5 Formalization of Minx

In order to prove our modification to Minx is secure, we must first formally
define what it means for an onion routing encryption protocol to be “secure.”
Our formal definition of security uses a slightly modified version of the onion
routing security framework provided by Camenisch and Lysyanskaya [3]. Note
that in both this section and the subsequent proof section our discussion is in
terms of “onions” and “routers” as used by Camenisch and Lysyanskaya; these
correspond exactly to “packets” and “nodes” when discussing Minx.

Camenisch and Lysyanskaya syntactically define an onion routing scheme to
consist of two functions, ProcOnion and FormOnion. When given a private
key SK, an onion Oi and a router Ni, ProcOnion decrypts Oi and returns
the next router in the path Ni+1 and onion Oi+1 to be sent to that router.
FormOnion(m, (N1, . . . , Nn+1), (PK1, . . . , PKn+1)) creates an onion contain-
ing message m and path N1, . . . , Nn+1, using the public keys PK1, . . . , PKn+1.

Camenisch and Lysyanskaya’s framework for onion security is defined in the
adversary and challenger game format. The challenger picks a challenge router
and public key PK and gives it to the adversary A, but keeps the corresponding
private key secret. The adversary then picks an path index j, sets PKj = PK,
picks n other routers and generates public keys PK1, . . . , PKj−1, PKj+1, . . . ,
PKn+1 (and corresponding private keys). The adversary then submits to the
challenger a message m, the index j, the public keys PK1, . . . , PKn+1. The chal-
lenger then forms an onion either containing message m and path PK1, . . . , PKj ,
. . . , PKn+1 as requested by the adversary, or a random message and path PK1,
. . . , PKj. The resulting outer onion O1 is then given to A. The adversary can
then request to have any number of onions O′ �= Oj decrypted by the challenge
router using a procOnion oracle and can observe the results (A knows all the
other private keys so it doesn’t need an oracle for the other routers). Thus with-
out knowing the private key for PKj , and not being able to process the critical
onion Oj , A’s goal is to distinguish which of the two possible onions it was given
with nonnegligible advantage over random guessing.

To accommodate Minx in this framework and to simplify our proof of security
presented later, we make two simple changes to the framework.

First, in addition to disallowing A from submitting an onion identical to Oj ,
we add a further restriction and forbid the adversary from submitting any onions
with the same header as Oj . This is due to the fact that in Minx modifying the
“tail” of a packet doesn’t the next-hop information in the current header (though

108 E. Shimshock, M. Staats, and N. Hopper

it corrupts the message and the rest of the path). Thus in the context of Minx
an adversary could submit to the challenge router an onion O′

j �= Oj but with
the same header and easily determine if the challenge router was the last stop.
Also this formal restriction is consistent with Minx’s policy of dropping packets
with previously used headers.

Second, we drop the requirement in [3] that A cannot “re-wrap” Oj . Consider
the specified path of the challenge onion, and let Nj−1 be the router preceding
the challenge router Nj . In Camenisch and Lysyanskaya’s framework an adver-
sary instantly “wins” the game (thus proving the protocol insecure) if she can
construct a different onion O′ that goes through a different router N ′ �= Nj−1 yet
when processed yields the onion O′′ = Oj . This is trivial to perform in the con-
text of Minx - just encrypt Oj with a new header using a different node’s public
RSA key. Again, since Minx nodes are stateful and drop duplicate headers, this
event does not correspond to an attack in the Minx setting.

Our modified definition of security is expressed formally as follows:

1. Adversary A receives a (randomly chosen) challenge public key PK and
router name N .

2. A can send any number of onions Oi of her choosing to the challenger and
observe the output (Ni+1, Oi+1) ← ProcOnion(SKi, Oi, Ni).

3. A submits a message m, path N1...Nn+1, an index j in the path, and pub-
lic/secret keys for all routers 1 ≤ i ≤ n + 1, i �= j. The challenger randomly
selects b ∈ {0, 1}.

If b = 0, the challenger computes:
(O1, . . . , On+1) ← FormOnion(m, (N1, . . . , Nn+1), (PK1, . . . , PKn+1))

If b = 1, the challenger randomly selects r ← {0, 1}|m| and computes:
(O1, . . . , Oj) ← FormOnion(r, (N1, . . . , Nj), (PK1, . . . , PKj))

O1 is given to adversary A.

4. A can then send any onion Oi whose header differs from Oj and obtain
ProcOnion(SKi, Oi, Ni).

5. A outputs a guess b̂A, for the bit b.

We say that an onion routing scheme is secure if for every polynomial time (in the
security parameter, e.g. the length of the public key) adversary A, Pr[b̂A = b]− 1

2
is negligible in the security parameter.

Note that as is the case with Minx, Camenisch and Lysyanskaya’s framework
does not consider the mixing strategy of the onion routers. This allows analysis
of the cryptographic aspects of onion routing independently from the mixing
strategies used. Under this framework it is easy to see that Minx does not meet
this definition of security, since the adversary A can follow the attack described
in Section 3 to perfectly distinguish between the b = 0 and b = 1 cases.

6 Security Proof

In this section we formally prove the security of our modified version of Minx.
Recall the game based definition of security in Section 5, in which the adversary

Breaking and Provably Fixing Minx 109

is required to try to guess the value of b. If no polynomial time adversary can
get a non-negligible advantage over the random guessing strategy, the protocol
is considered secure. Our proof is in the random oracle model [1] and relies on
two cryptographic assumptions. First, we assume RSA is a trapdoor one-way
permutation: given a randomly chosen RSA modulus N , and EN (x) for a ran-
domly chosen x ∈ {0, 1}�log2 N�, no polynomial time algorithm can output x
with non-negligible probability. Second, we assume that EP and biEP are im-
plemented using a block cipher (such as AES) in IGE mode, as Danezis and
Laurie suggest[5], and that the underlying block cipher is a pseudorandom per-
mutation: given oracle access to a bijection, no polynomial time algorithm can
distinguish between an oracle for a uniformly chosen bijection and an oracle for
the block cipher with a randomly chosen key. This assumption implies, in par-
ticular, that the ciphertexts output by EP and biEP , when a key is used only
once, are indistinguishable from random bitstrings of the same length [8].

6.1 Outline of Hybrids

Our security proof is similar to standard hybrid arguments, such as appear
in [10]. We consider the probability that the adversary outputs 1 in a sequence
of four hybrid games:

– In Game 0 the challenger always follows the b = 0 case from the original
game, that is, Oj = RSAj(Headerj)|EP (Oj+1), with the next-hop portion
of H(Headerj) indicating router Nj+1 as the next hop.

– In Game 1 the challenger acts the same as in Game 0 except when forming
Oj . First the challenger forms Oj = RSAj(Headerj)|EP (Oj+1) as he would
in Game 0, but then replaces the encrypted header RSAj(Headerj) with
random bits to yield Oj = random|EP (Oj+1). The rest of the outer layers
are formed as normal.

– In Game 2 the challenger acts the same as in Game 0 except when forming
Oj . Instead of forming Oj as he would in Game 0, the challenger sets all the
bits of Oj to be random yielding Oj = random. The rest of the outer layers
are formed as normal.

– In Game 3 the challenger follows the b = 1 case, except when forming Oj

(note that Oj is the innermost onion in the b = 1 case). The challenger first
forms Oj as he would in the b = 1 case, so Oj = RSAj(Headerj)|BiEP (r)
where the next-hop field of H(Headerj) encodes the special Final value. The
challenger then keeps the same encrypted header, but replaces the payload
portion, BiEP (r), with random bits to yield Oj = RSAj(Headerj)|random.

– In Game 4 the challenger always follows the b = 1 case, that is, Oj =
RSAj(Headerj)|BiEP (r) where the next-hop field of H(Headerj) indicates
Final.

We argue that the difference in the probabilities that the adversary outputs 1
in each adjacent pair of games must be negligible. Then by the triangle inequality,
we will have that the difference in probabilities between Game 0 and Game 4
must also be negligible.

110 E. Shimshock, M. Staats, and N. Hopper

The adversary, knowing all private keys except the jth private key, can always
decrypt O1 to get O2, and then decrypt O2 to get O3, etc., until obtaining Oj .
Additionally, in all of the games O1...Oj−1 contain no differences, so in essence
the adversary is attempting to distinguish between the two cases for Oj .

6.2 Proof of Indistinguishability

We first provide a lemma that ProcOnion is not useful to an adversary. One might
expect calling ProcOnion would give the adversary an advantage in distinguish-
ing the games, as ProcOnion has access to the jth private key. However, since
all information returned by ProcOnion is a function of the hash function H , we
can simulate the information an adversary would gain from calls to ProcOnion
by replacing H with a random oracle and appropriately responding to its queries
to H .

Lemma 1. An adversary A cannot distinguish between normal outputs from
ProcOnion and a third party T simulating ProcOnion and the Oracle. Thus, A
gains no information from ProcOnion.

Proof. T simulates ProcOnion and the Oracle by maintaining a table with three
columns: x, y, and h, where x is a header plaintext, y = E(x) is the corresponding
header ciphertext, and h is our Oracle output for x. A row will always contain a
value in the ciphertext and Oracle output columns, but the plaintext value may
be empty/unknown.

When A makes an Oracle query x, T calculates y = E(x) and checks if
ciphertext y is in the table. If so he returns the corresponding Oracle output
listed in the table. Otherwise T returns a random value r, and places x, y, r in
the table. When A queries ProcOnion with an onion O consisting of header
ciphertext y and encrypted payload d, T checks if ciphertext y is already in the
table. If so, T looks at the Oracle output h = nextHop||sesKey. T then decrypts
d with sesKey and returns the output along with nextHop. Otherwise T picks
a random value r and makes a table entry with an empty plaintext, y as the
ciphertext, and r as the Oracle output. T then takes h = nextHop||sesKey,
decrypts d with sesKey and returns the output along with nextHop.

Since A has no information about the value of the hash at the plaintext unless
he has already queried the oracle there, and we enforce consistency in these cases,
the probability of any outcome with our simulation technique is identical to the
probability with a random oracle and a correct ProcOnion oracle.

We now show that our steps are indistinguishable, beginning with Games 0 and
1. Let Pri[z] equal the probability of event z occurring in game i. Suppose that
A can distinguish between Game 0 and Game 1 with advantage ε = Pr0[b̂A =
1] − Pr1[b̂A = 1]. Using A, we construct an algorithm M(y, PK) that decrypts
RSA ciphertext y = E(x) for a uniform x given the corresponding public key
PK. M will simulate A ’s calls to ProcOnion and the Random Oracle using a
table as explained in the previous lemma. M runs as shown in Figure 5.

Breaking and Provably Fixing Minx 111

M(y,PK)

m, path ← A(PK)
o ← y || random payload
b ← A(o , m, path, public key)
if table contains y in ciphertext column

return corresponding plaintext
else

return random x mod PK

Fig. 5. M distinguishing algorithm

Note that if the ciphertext y shows up in the table, it must be as a result
of querying the Random Oracle with a value x such that y = E(x), as A is
forbidden from querying ProcOnion with an onion that has ciphertext header
y. Let Q be the event that A queries the Random Oracle on a value x such
that y = E(x). Note that when Q does not occur, there is no difference in A’s
view of the two games: without querying at x, there is no correlation between
the encrypted header and the string EP (Oj+1). Thus we have Pr0[b̂A = b |
Q] = Pr1[b̂A = b | Q] for any bit b. Also note that regardless of what A does,
Pr1[b̂A = 1|Q] − Pr0[b̂A = 1|Q] ≤ 1. Therefore:

ε = Pr1[b̂A = 1] − Pr0[b̂A = 1]

= Pr1[b̂A = 1|Q] · Pr[Q] + Pr1[b̂A = 1|Q] · Pr[Q]

−
(
Pr0[b̂A = 1|Q] · Pr[Q] + Pr0[b̂A = 1|Q] · Pr[Q]

)

= Pr[Q] · (Pr1[b̂A = 1|Q] − Pr0[b̂A = 1|Q])
≤ Pr[Q] .

Since M succeeds with probability exactly that of Q and runs in time propor-
tional to the running time of A, and it is assumed that RSA cannot be bro-
ken with non-negligible probability, A′s advantage must be negligible, and thus
Games 0 and 1 are indistinguishable.

Now we argue that Games 1 and 2 are indistinguishable. Suppose that for some
adversary A, Pr2[b̂A = 1] − Pr1[b̂A = 1] is non-negligible. Then this adversary
can be used to create an algorithm M to distinguish between the symmetric
encryption of a chosen message (under a random, secret key) and random bits,
leading to an attack on the block cipher. M simulates the challenger in games 1
and 2, and invokes the adversary A up until the challenge message is prepared. M
prepares onion Oj+1 as the challenger in games 1 and 2 does, and then requests
a symmetric-scheme challenge-string that is either the symmetric encryption
of Oj+1 under an unknown secret key or a string of random bits. In either
case, M prepends a random header to this string and gives it to A. In case the
symmetric-scheme adversary received random bits, he outputs 1 with probability
Pr2[b̂A = 1], and otherwise he outputs 1 with probability Pr1[b̂A = 1]. Since
we assumed that the symmetric schemes EP and biEP are implemented in a

112 E. Shimshock, M. Staats, and N. Hopper

manner that makes ciphertexts (under a random key) indistinguishable from
random bits, Games 1 and 2 are indistinguishable.

The transition between Games 2 and 3 is similar to the transition between
Games 0 and 1. The only difference between Game 2 and Game 3 is the header
of Oj - Game 2 has a random header and Game 3 has a meaningful header.
As in the first transition, an adversary that could distinguish between Games
2 and 3 could decrypt an RSA ciphertext using only the public key. Under the
assumption that this is impossible for a polynomially limited adversary, Games
2 and 3 are indistinguishable.

Finally, we argue that Games 3 and 4 are in fact identically distributed. This
follows from the fact that with any fixed bijection, biEP (r) for random bits r
is uniformly distributed: each block is formed by applying a fixed bijection to a
uniformly random string. Thus Pr4[b̂A = 1] = Pr4[b̂A = 1].

Thus we have that for each i ∈ {0, 1, 2, 3}, εi = Pri+1[b̂A = 1] − Pri[b̂A = 1]
is negligible. Since Pr4[b̂A = 1] − Pr1[b̂A = 1] =

∑
i≤3 εi, and Pr[b̂A = b] =

1
2 + 1

2 (Pr4[b̂A = 1] − Pr0[b̂A = 1]), we have that any A must have negligible
advantage against our modified version of Minx.

6.3 Reply Packets

In order to prove that reply packets are secure, we must first define what security
property we want from them. Recall that reply onions under Minx are designed
to be indistinguishable from standard onions. A natural question is to ask to
whom they should be indistinguishable: the sender can clearly differentiate the
reply onion until its first hop. And the receiver, if he retains the secret keys,
can do so at any hop (e.g. by looking for the encrypted headers). While it is
an interesting question whether a reply-onion scheme exists that avoids these
issues, we do not address it in this paper. (Nor does the original Minx design)

We define security by a simple game: the challenger picks public keys PK1, . . . ,
PKn and gives them to the adversary, who then picks a message M that could fit
in a reply block. The challenger then flips a coin b ∈ {0, 1}; if b = 0, he encrypts
M in a standard onion, and if b = 1, he encrypts M in a reply onion. The resulting
onion is given to the adversary, who then outputs a guess b̂A. A reply onion scheme
is secure if for every polynomial time adversary, Pr[b̂A = b] − 1

2 is negligible.
Under this definition, it should be clear that our modified reply onions are se-

cure: the only difference between the cases b = 0 and b = 1 is that for a reply
onion, the “ciphertext” after the final header E(headern) is an encryption under
EP of a “short” string followed by an encryption under EP of M using a different
key; whereas for a “standard” onion this ciphertext is an encryption under EP of
M followed by padding. Since ciphertexts produced by EP are indistinguishable
from random bits, the triangle inequality implies the security of our construction.

7 Conclusions and Future Work

Our work here represents two contributions of note. First, we have described a
novel attack which demonstrates how leaking one bit in an encrypted message

Breaking and Provably Fixing Minx 113

can have significant security ramifications. We hope that our demonstration of
this will influence the design of future protocols. Second, we have described a
modification to Minx that prevents this attack, and have provided a formal proof
that our solution meets the protocol’s original security goals.

One shortcoming of our suggested modification is that it wastes message space
by appending a full RSA modulus worth of random bits for every layer of en-
cryption; Minx avoids this by encrypting the key, the next hop, and a portion
of the next encrypted onion in the RSA header. The design of a scheme that
reduces this overhead is an interesting question for future research.

Acknowledgements

We would like to thank Johan H̊astad and Mats N̊aslund for their correspon-
dences regarding their algorithm. This work has been partially supported by
NSF grant CNS-0546162, NASA Ames Research Center Cooperative Agreement
NNA06CB21A, NASA IV&V Facility Contract NNG-05CB16C, and the L-3 Ti-
tan Group.

References

1. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. ACM Press, New York (1993)

2. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the rsa
encryption standard pkcs #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

3. Camenisch, J., Lysyanskaya, A.: A Formal Treatment of Onion Routing. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005)

4. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 24(2), 84–88 (1981)

5. Danezis, G., Laurie, B.: Minx: a simple and efficient anonymous packet format. In:
Proceedings of the 2004 ACM workshop on Privacy in the electronic society, pp.
59–65 (2004)

6. Danezis, G.: Breaking four mix-related schemes based on universal re-encryption.
In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006.
LNCS, vol. 4176, pp. 46–59. Springer, Heidelberg (2006)

7. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type iii anony-
mous remailer protocol. In: SP 2003: Proceedings of the 2003 IEEE Symposium on
Security and Privacy, Washington, DC, USA, p. 2. IEEE Computer Society, Los
Alamitos (2003)

8. Gligor, V., Donescu, P.: Infinite Garble Extension. Contribution to NIST (2000)
9. Goldschlag, D., Reed, M., Syverson, P.: Onion routing. Commun. ACM 42(2), 39–

41 (1999)
10. Goldwasser, S., Bellare, M.: Lecture notes on cryptography. Summer Course Cryp-

tography and Computer Security at MIT 1999, 1999 (1996)
11. Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for

mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178.
Springer, Heidelberg (2004)

114 E. Shimshock, M. Staats, and N. Hopper

12. H̊astad, J., N̊aslund, M.: The security of all rsa and discrete log bits. J. ACM 51(2),
187–230 (2004)

13. Möller, B.: Provably secure public-key encryptionfor length-preserving chaumian
mixes. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 244–262. Springer,
Heidelberg (2003)

14. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications (1978)

	Introduction
	Minx
	Encryption and Decryption of Minx Packets
	Reply Packets
	Minx's Claimed Security Properties

	Attack on Minx
	Constructing the Bit Oracle
	Attack Walkthrough
	Insecurity of Reply Packets

	Fixing Minx
	Details
	Reply Packets

	Formalization of Minx
	Security Proof
	Outline of Hybrids
	Proof of Indistinguishability
	Reply Packets

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

