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Abstract. Private information retrieval (PIR) allows clients to retrieve records
from online database servers without revealing to the servers any information
about what records are being retrieved. To achieve this, the servers must typically
do a computation involving the entire database for each query. Previous work by
Ishai et al. has suggested using batch codes to allow a single client (or collaborat-
ing clients) to retrieve multiple records simultaneously while allowing the server
computation to scale sublinearly with the number of records fetched.
In this work, we observe a useful mathematical relationship between batch codes
and efficient matrix multiplication algorithms, and use this to design a PIR server
algorithm that achieves sublinear scaling in the number of records fetched, even
when they are requested by distinct, non-collaborating clients; indeed, the clients
can be completely unaware that the servers are implementing our optimization.
Our multi-client server algorithm is several times faster, when enough records are
fetched, than existing optimized PIR severs.
As an application of our work, we show how retrieving proofs of inclusion of
certificates in a Certificate Transparency log server can be made privacy friendly
using multi-client PIR.

1 Introduction

Private Information Retrieval, or PIR, was introduced in the seminal work of Chor et al.
in 1995 [3]. In PIR, a client wishes to retrieve information from online database servers
while revealing to the database operators no information about what data she seeks. That
this is even possible is counterintuitive, but consider the trivial download scheme: the
database server sends the entirety of the database to the client, who searches it herself.
This is clearly private, but comes at a high communication cost for large databases.
Non-trivial PIR schemes aim to achieve the same level of privacy while transmitting
far less data. The simplest PIR schemes assume that the database consists of an array
of equal-sized blocks, and that the client knows the index of the block she wishes to
retrieve. However, previous work showed that this simple query mechanism can be



used as a black box to realize more expressive database search functionality, including
search by keywords [4] and private SQL queries [16].

Chor et al.’s original 1995 work showed one cannot have both information-theoretic
privacy (i.e., privacy even when the server is computationally unbounded) and a sub-
linear (in the size of the database) communication cost if only one server is employed.
However, information-theoretic PIR (IT-PIR) schemes circumvent this impossibility re-
sult by using multiple database servers and a noncollusion assumption—that at most a
bounded number of servers (less than the total number) will collude against the client.
They achieve a communication cost much smaller than the size of the database, and
modern ones additionally achieve robustness—even if some of the servers are unre-
sponsive, buggy, or actively malicious, the client can nonetheless retrieve her informa-
tion (and identify the misbehaving servers) [2, 7, 9].

If information-theoretic privacy is not required, computational PIR (CPIR) schemes
can be used. These schemes rely on computational or cryptographic assumptions to
guarantee privacy against a single database server at low communication cost [14].
Devet and Goldberg [6] also recently proposed a hybrid PIR scheme that combines
a CPIR scheme with an IT-PIR scheme to achieve some of the desirable properties
of both, while hedging against violations of either the computational or noncollusion
assumptions.

While much effort has gone into reducing the communication costs of PIR proto-
cols, it is also important to consider the computational cost. A PIR server typically must
process the entirety (or at least a significant fraction) of the database when handling
each query, lest it learn information about what the client is likely not seeking.

Not all PIR schemes can beat the trivial download approach. Sion and Carbunar [20]
found that it would always be faster to simply download the entire database than to use
Kushilevitz and Ostrovsky’s CPIR scheme [14]. Later, Olumofin and Goldberg [17]
noted that a more modern CPIR scheme by Aguilar Melchor and Gaborit [1], as well as
a number of IT-PIR schemes, are orders of magnitude faster than the trivial download
scheme. However, the computation costs are still nontrivial, requiring on the order of
1 s of CPU time3 per gigabyte of database size, for each IT-PIR query.

In order to reduce the per-query CPU cost, a number of authors have proposed batch
techniques, in which a PIR server performs a computation over the database and a batch
of simultaneous queries, resulting in less work than computing over the database once
for each query separately. Henry et al. [12] propose a batching method based on ramp
schemes particular to Goldberg’s IT-PIR scheme [9], while Ishai et al. [13] use batch
codes (discussed in more detail below) to provide multi-query computational speedups
for any PIR scheme.

Both of these proposals, however, require that the clients construct their queries in
a special way to achieve the batching speedups. This means that these works only help
in those scenarios where single clients (or closely cooperating groups of clients) are
fetching large batches of queries at the same time.
Our contributions. In this work, we address the more general case in which a PIR
server wishes to process a batch of queries simultaneously, whether they were received

3 However, this CPU time is almost completely parallelizable if multiple cores or servers are
available.



all from the same client, each query from a unique client, or anything in between. We
approach this problem by first observing a mathematical relationship between Ishai et
al.’s method of applying batch codes to speed up IT-PIR and a special case of matrix
multiplication where the left matrix has a specific structure (§3). We then generalize
this observation to the case of general matrix multiplication. In doing so, we remove
all restrictions on the structure of the queries to be batched. We accept a more mod-
est batching speedup to remove the single (or coordinated) client restriction and the
potentially large amount of communication induced by Ishai et al.’s method.

We apply our new technique to the setting of Certificate Transparency (§4), in which
web clients fetch information about TLS certificates from log servers, but should hide
from the log servers which certificate’s information it fetches. This appears to be a
perfect opportunity to employ PIR, but the large number of non-cooperating clients
expected to use the system makes multi-client batching imperative. We note that while
batching queries reduces the total computation time at the cost of increasing the latency
for individual queries, this extra latency is not an issue in this particular application.
We implement and measure our new technique on top of the open-source Percy++ PIR
library [10] (§5).

While our practical improvements—a little more than a 4-fold speedup—are mod-
est, we do offer sublinear scaling in the number of queries for independent clients,
something simpler improvements cannot offer. Additionally, any other system-level op-
timizations can easily be used on top of our algorithmic ones.

2 Background

Our construction combines Goldberg’s robust IT-PIR scheme [9] with fast matrix mul-
tiplication techniques inspired by batch codes. Therefore, we first review and compare
these notions.

2.1 Goldberg’s robust IT-PIR scheme

Goldberg models the database as an r×smatrix D over a finite field F. Every row in D
corresponds to a single block in the database; every block consists of s field elements. To
request block j (non-privately) the client could simply send j to the server. However,
as a first step, we express the PIR operation as a vector-matrix multiplication before
producing a true privacy-friendly scheme. The client constructs the jth standard basis
vector ej of Fr (i.e., the vector of length r with all zeros except for a 1 in the jth position)
and sends it to the server. The requested block j is then obtained by calculating the
vector-matrix product ej ·D.

To make the query privacy friendly, the client in Goldberg’s scheme creates a (t +
1)-out-of-` Shamir secret sharing [19] of this standard basis vector ej . It sends one
share to each of the ` database servers, which compute the vector-matrix product with
the database and return the result. Lagrange interpolation of the shared vectors gives
the standard basis vector; since matrix multiplication and Lagrange interpolation are
linear, interpolation of the results yields the jth block of the database. The secret sharing



scheme guarantees that as long as at most t servers collude, they learn nothing about
the target block.

Goldberg’s scheme is robust [7, 9]. It permits some of the servers to misbehave,
while still enabling the client to recover her record and identify the misbehavers.

Communication cost. To read a single block, the client sends r field elements to, and
receives s field elements from, each server. For a fixed database size of n field elements,
it is best to select r = s =

√
n. Henry et al. [12] show how to build on this simple fixed-

block-size PIR primitive to handle more realistic databases with variable-sized records.

Serving multiple simultaneous queries. Suppose a server receives multiple queries
v1, . . . , vq simultaneously. It could answer them by computing the q vector-matrix prod-
ucts vi ·D individually. However, it can also first group the queries into one matrix Q
where row i consists of query vi. Then the server computes the matrix-matrix product
Q ·D. Row i of the result is the response to the ith query.

With a naive matrix multiplication algorithm the work the server needs to do is the
same in both cases: about 2qrs operations (qrs multiplications, and about the same
number of additions). However, as we will see, using better matrix-multiplication tech-
niques will significantly improve the situation.

Ramp scheme. Henry et al. [12] replace the Shamir secret sharing in Goldberg’s PIR
scheme with a ramp scheme. In this way, a single client can encode more information
in each server request, and can retrieve q blocks instead of just 1 without increasing the
per-server computation or communication cost at all. The large drawback to this scheme
(in addition to only being useful for single clients making multiple queries, and not for
multiple clients making single queries) is that it must trade some of the robustness of
Goldberg’s scheme for extra parallel queries, or conversely, that it requires q − 1 extra
servers in order to maintain the same level of robustness.

2.2 Batch Codes

Batch codes can be used to answer multiple queries efficiently. The idea, proposed by
Ishai et al. [13], is to encode the database in a special way, so that a single client can
efficiently make multiple queries. This idea is best illustrated using an example. As in
the rest of this paper, we apply the batch codes to Goldberg’s IT-PIR scheme.

Suppose we want to prepare a database with r rows for two simultaneous queries.
We create three separate databases: D1, containing the first r/2 rows; D2, containing
the last r/2 rows; and D3 = D1 ⊕D2. Any two queries, say for blocks i1 and i2, can
be answered by making at most one PIR query to each of the Di: if blocks i1 and i2 are
not in the same half of the database, the queries can be answered by making one PIR
query to D1 and one to D2. Suppose, on the other hand, that i1 and i2 are both in the
first half. Then block i1 can be retrieved directly, while block i2 is obtained by making
one query to D2 and one to D3. Taking the XOR of the latter two results yields the
desired row in the first half. Two queries for the second half are handled similarly.

This procedure reduces the computational cost for the server. As we saw in the
previous section, a naive method requires 4rs field operations; in contrast, the batch



Table 1. Summary of batch codes with parameters [13]. The subcube code is parametrized by k
and ` ≥ 2, while the subset code is parametrized by `, r′ and 0 < α < 1

2
, where w = α`. The

parameters r and r′ scale the codes to support more blocks, without essentially changing their
structure.

Subcube Subset

Number of blocks (r) r r′
(
`
w

)
Sum of subdatabase sizes (N )

(
`+1
`

)k
r r′

∑w
j=0

(
`
j

)
Number of queries (q) 2k ≥ 2w

Number of subdatabases (m) (`+ 1)k
∑w

j=0

(
`
j

)

code solution only requires 3rs field operations. (Again, half multiplications and half
additions.)

Note that to hide which indices the client is querying she needs to make a query to
each of the three parts, even if two would suffice to get the answer. This means that the
client sends 3

2r elements to, and receives 3s elements from, each server. In the naive
case she sends 2r elements and receives only 2s elements.

In general, an (r,N, q,m) batch code will take a database of r blocks and create m
subdatabases, such that the total number of blocks in the subdatabases is N . The code
can be used to answer q queries by making one request to each of the m subdatabases.
The example we sketched before gives an (r, 32r, 2, 3) batch code.

Suppose we use an (r,N, q,m) batch code to speed up PIR queries to a database
with r blocks, each consisting of s field elements. Let N1, . . . , Nm be the number of
blocks in the m subdatabases (so that

∑
iNi = N ). To make q queries a client needs

to make one PIR query to each of the m subdatabases with respectively N1, . . . , Nm

blocks. The query to subdatabase i costs 2Nis field operations. Therefore the total com-
putational load on the server is 2Ns. The client sends N group elements, and receives
ms elements.

Subcube batch code Ishai et al. [13] generalize the sketch above as follows. First,
instead of splitting the database into 2 parts, it can be split into ` parts. A final ` + 1th

part is added, being the XOR of all the previous parts. Again, any two items can be
obtained using `+ 1 queries, one to each of the subdatabases—if the two items happen
to be in the same part it is necessary to retrieve and calculate the XOR of all the other
items. This gives rise to an (r, `+1

` r, 2, ` + 1) batch code. Obviously, this is good for
computation, as the server only needs to do 2 `+1

` rs field operations. While the sending
cost drops to `+1

` r elements, the receiving cost rises to (` + 1)s elements. (Note that
the client always needs to retrieve the `+ 1 records to protect her privacy.)

For simplicity, let us return to the case where ` = 2. The scheme can be applied
recursively to answer more queries. Suppose the client makes q = 4 queries. Group
these into two pairs. Each pair can be answered by making only one query to each of
the three parts D1,D2,D3. In total, two queries are made to each Di, so we can apply
the above scheme again, but now on the smaller databases.



Table 2. Comparison of multi-query PIR schemes. We show counts of per-server field operations,
as well as the number of field elements sent to and received from each server, the number of extra
servers the scheme requires to maintain the same robustness level as for a single query, and an
indication of whether independent clients can use the method, or whether all queries must be sent
by a single client (or coordinated clients). The database consists of r blocks, each containing s
field elements. The number of simultaneous queries, q, is assumed to be a power of 2, and much
smaller than either r or s. Note that our work achieves sublinear scaling of computation in the
number of queries q, while also admitting independent clients.

Naive Ramp [12] Subcube Batch Codes [13] Our work

F multiplications qrs rs qlg((`+1)/`)rs q0.80735rs

F additions q(r − 1)s (r − 1)s (`2−1)
`

qlg((`+1)/`)rs 8
3
q0.80735rs

Send qr r qlg((`+1)/`)r qr

Receive qs s qlg(`+1)s qs

Extra servers 0 q − 1 0 0

Independent clients X × × X

Recursively applying this scheme gives a system that can handle q = 2k queries.
Table 1 summarizes the important parameters of this scheme. By taking ` large, this
scheme gets arbitrarily close to the optimal processing time for the server: it can an-
swer 2k queries with only slightly more processing than is required for a single query.
However, the price is a higher communication cost for the client.

The subset batch code Ishai et al. also describe another batch code that has more
favourable properties: the subset batch code. It is, however, also more complex. We
only summarize the results in Table 1, and refer to their paper [13] for a full description
of this scheme. The scheme is parametrized by `, r′, and 0 < α < 1

2 . The value w is
then given by α`.

It can be shown that for this code doing q queries is approximately (1−α)/(1−2α)
times more expensive than doing a single query. Thus, picking a small α brings the com-
putational overhead for the server arbitrarily close to optimal. Contrary to the subcube
codes the communication overhead is also polynomial in q, however, in practice the
overhead turns out to be rather high, especially when α is small.

Consider the following example. We want α to be somewhat small, so we take
` = 20 so that with α = 0.2 we get w = 4. Suppose we make q = 16 queries,
Then, N/r = 1.279 so the computation cost for 16 queries is only 27.9% more than
for 1 query. However, we need to receive m/q = 387 times more data than the naive
approach for q = 16 queries. So, using this code at low computational cost can incur
extremely high communication costs.

Challenges The two main drawbacks of using batch codes for PIR are: (1) the re-
quirement that all of the queries be generated by a single client (or by closely coop-



erating clients); and (2) the increased communication cost, which becomes especially
prohibitive for large databases.

We will address both of these issues in this work. See Table 2 for a comparison of
multi-query PIR schemes. Although we only list the subcube batch code and not the
subset batch code in the table for conciseness, the two salient challenges listed above
are the same for both types.

2.3 Matrix multiplication algorithms

Naive matrix multiplication of a matrix Q of size q× r with a database D of size r× s
requires qrs multiplications and at least q(r− 1)s additions (although most implemen-
tations will actually use qrs additions). For two square matrices of size n×n this boils
down to an O(n3) complexity.

Faster matrix multiplication algorithms exist that have an asymptotic complexity
with a better exponent. In this paper we focus on Strassen’s algorithm [21] because
of its relative simplicity. This algorithm achieves a time complexity of O(nlg 7) =
O(n2.8074). Faster algorithms exist, such as that of Coppersmith and Winograd [5],
which achieves an even better bound of O(n2.3729). However, this comes at the cost of
a much larger multiplicative constant.

Strassen’s algorithm is extremely simple. It splits each matrix into four, equal-sized
submatrices. A naive block-matrix multiplication of these would require 8 multiplica-
tions of the smaller sized matrices. However, using Strassen’s algorithm, only 7 are
needed. This technique is then applied recursively to the multiplications of the smaller
matrices. (See Appendix A for more detail.)

3 Batch codes as matrix multiplication

We have seen that answering multiple PIR queries in Goldberg’s protocol requires cal-
culating the matrix-matrix product Q·D, as the rows of the resulting product are exactly
the responses to the given queries. At the same time, batch codes speed up this com-
putation. Hence, batch codes are in some way implementing fast matrix multiplication.
In this section we identify this relation, explain the limitations of batch codes in this
application, and demonstrate the similarities with Strassen’s algorithm. For simplicity
of exposition (and because this is the typical case in practice), we will use F of charac-
teristic 2, so that additions are just XORs.

3.1 An example

In Section 2.2 we showed how a batch code can be used to reduce two queries for the
full database to three half-sized queries. In terms of matrix multiplication, the client
constructs its three half-sized queries q1, q2, q3 and sends them to the server. The server

expresses the database D as a concatenation of two parts, D =

(
D1

D2

)
, and constructs



the matrices

Q =

 q1 0 0
0 q2 0
0 0 q3


3× 3

2 r

and M =

 I 0
0 I
I I


3
2 r×r

, so that M·D =

 D1

D2

D1 ⊕D2


3
2 r×s

,

where Q is the block-diagonal matrix of the queries, I is the identity matrix, and M
is the matrix form of the batch code (representing the linear combinations of the parts
that make up the resulting subdatabases). (Note that we annotate the matrices with their
dimensions.) The server now computes the linear combinations of the parts, M ·D, and
multiplies queries Q by them. This results in the familiar response structure

Q
3× 3

2 r
·M 3

2 r×r
·Dr×s = Q

3× 3
2 r
·

 D1

D2

D1 ⊕D2


3
2 r×s

=

 q1 ·D1

q2 ·D2

q3 · (D1 ⊕D2)


3×s

.

After receiving the results, the client combines the three rows as appropriate to recover
the answers to her two original queries.

3.2 General batch codes as matrix multiplication

When using general batch codes to speed up PIR we see a similar structure. Recall that
an (r,N, q,m) batch code can answer q queries to a database of r rows by splitting the
computation across m subdatabases K1, . . . ,Km containing a total of N rows. In the
preceding example—an (r, 32r, 2, 3) batch code—these subdatabases were K1 = D1,
K2 = D2 and K3 = D1 ⊕ D2. For general batch codes these subdatabases will be
more complicated linear combinations of the parts Di. The N × r matrix M represents
these linear combinations.

Again, the client first uses the batch code to convert her q queries into m subqueries
q1, . . . , qm, where each qi is a row vector of length equal to the number of rows in Ki.
She sends these to the server. The server constructs the linear combinations of the parts,
M ·D, and applies the queries to them

Qm×N · (MN×r ·Dr×s) =

 q1 0
. . .

0 qm


m×N

· (MN×r ·Dr×s) .

The server can quickly compute this product using the block-diagonal structure of Q.
The result is an m-row response. The client can combine those m rows to produce her
desired q blocks.

Note that it is the special structure of Q = Q ·M that enables the server to speed up
the matrix multiplication Q ·D. In the PIR setting, this necessitates that Q be produced
by a single client, or by cooperating clients.



3.3 Comparison with Strassen’s algorithm

Strassen’s algorithm is similar to the matrix multiplication form of the batch codes
above. In particular it also

1. partitions the database into parts Di,
2. forms linear combinations of the Di to construct the subdatabases Ki,
3. multiplies parts of the queries with the subdatabases, and
4. computes linear combinations of the products to produce the final result.

However, there are also differences. First, batch codes require the queries to be
preprocessed by the client, or alternatively that the query matrix Q is given by Q ·M as
above. Strassen’s algorithm on the other hand works with any matrix Q. Second, batch
codes are essentially one dimensional; as a result, steps 1, 2 and 3 above for batch codes
only operate on complete rows, while Strassen’s algorithm subdivides and takes linear
combinations of rows in addition to taking subsets of rows (in both Q and D).

While Strassen’s algorithm has a higher server computational cost than batch codes,
the fact that Strassen’s algorithm can deal with any matrix Q is of tremendous benefit. In
our PIR setting, this means that clients do not need to coordinate their queries. Indeed,
they do not need to be aware that the server is implementing this optimization at all.

4 Application of multi-client PIR: Certificate Transparency

We now examine an application where multi-client PIR is particularly useful: Certificate
Transparency. Websites use digital certificates to tie possession of a particular private
key to their domain name. These certificates are signed by certificate authorities (CAs).
To verify the validity of a website the user’s browser checks that a CA it trusts signed
the certificate (or that there is a certificate chain from a trusted CA leading to the certifi-
cate). Events in recent years, like the hack of the Dutch CA DigiNotar [8], have shown
that CAs cannot be trusted unconditionally. When a CA is compromised it can be used
to issue false certificates that allow third parties to eavesdrop on the communication
between a user and a website. The browser will not detect this as long as the compro-
mised CA is still trusted. Certificate Transparency, as described in RFC 6962 [15], aims
to timely detect wrongly issued certificates without introducing extra trust assumptions.
It roughly works as follows.

1. Before a certificate is issued it is recorded by one or more log servers. Each of these
log servers creates a signed certificate timestamp (SCT) for this certificate and will
eventually add the certificate to an append-only data structure.

2. When presenting a certificate the website will also send along the SCTs from the
log servers. The browser will verify that at least one trusted log server signed the
certificate description.

3. The following consistency checks are done asynchronously:
(a) An auditor, usually the browser, will check that the log server signed certifi-

cates do indeed appear in the append-only log of the log server.
(b) Auditors and monitors check that the logs are consistent; i.e., that no certificates

have been changed or retroactively inserted into the log.
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Fig. 1. An example Merkle hash tree for 7 certificates c0, . . . , c6 encoded into the leaves. For
certificate c3 the proof of inclusion consists of all the dotted nodes: c2, a and e. This proof can
be checked as follows. First, calculate the hash of the certificate to get c3. Then, b is the hash of
c2 and c3; c is the hash of a and b; and, finally, f is the hash of c and e. If the calculated root f
matched the signed root the auditor is convinced that the tree contains c3.

(c) CAs and webservers monitor the log to detect inconsistencies such as two cer-
tificates, by different CAs, for the same domain.

It is essential that the first check is done, because monitors can only detect falsely issued
certificates when they appear in the log. However, the first check also reveals to the log
server which websites the user is visiting. We will use multi-client PIR to allow many
independent clients to query a log server for the proofs of inclusion of certificates.

4.1 Proving that a certificate is included in the log

The certificates are recorded in a Merkle hash tree. A Merkle hash tree is a binary tree,
in which every leaf contains the hash of a certificate, while every internal node contains
the hash of its children. The root then captures information about all the children. Pe-
riodically, log servers will add all the newly logged certificates to the tree and sign the
new root.

The number of leaves, n, determines the structure of the Merkle hash tree. Let k be
the largest power of 2 smaller than n, so that k < n ≤ 2k. Then the left subtree of the
Merkle hash tree of n nodes is the full binary tree with k leaves, while the right subtree
is the Merkle hash tree of the remaining n− k nodes. See Figure 1 for an example.

This format allows log servers to construct a proof of inclusion of a certificate for an
auditor. The auditor already has the certificate, and thus also the leaf corresponding to
the certificate. The log server gives the auditor those node hashes needed to recalculate
the root of the tree starting with the certificate. The extra nodes needed for this proof
are all the siblings on the path from the leaf to the root; see Figure 1. Finally, the auditor
compares the calculated root with the signed root from the server.

The length of the proof is no larger than the height of the tree. Therefore, the size of
the proof only grows logarithmically in the number of leaves. The specification requires
SHA256 as the hash function for the internal nodes. Therefore, a node contains 32 bytes
of data.



4.2 The number of SSL certificates

To determine the feasibility of retrieving the proofs of inclusion using PIR, we need to
estimate the number of active and valid SSL certificates—it does not make much sense
to retrieve proofs for expired certificates. We estimate the number of SSL certificates
based on the following sources.

EFF SSL Observatory The EFF SSL observatory4 observed about 1.4 million valid
certificates in 2010.

Public Netcraft Data In their public sample of May 2013,5 Netcraft claimed that Sym-
antec at that time had produced more than one third of all certificates. In their April,
2012 press release6 Symantec quotes 811, 511 installed certificates. This gives an
estimate of approximately 2.4 million certificates in 2012.

Pilot CT server As of early July 2014, Google’s pilot certificate transparency server
had logged about 4.5 million certificates.7 It is not clear how reliable this number
is, since currently there is no incentive to add all certificates to this list. Also, the
log is append-only, so this number is probably higher than it should be.

Given these data points, we estimate that the number of valid SSL certificates is cur-
rently around 222 or approximately 4 million.

4.3 Retrieving proofs of inclusion using PIR

To make privacy-friendly retrieval of the proofs of inclusion possible, we store the
proofs as records in a database and use PIR to retrieve them. To retrieve the proof
the client needs to know in which record the proof is stored. In the original system the
proof is usually retrieved from the log server by using the hash of the certificate itself,
but that would violate our privacy requirements. Instead, we propose that the record
indexes are included in the final X.509 certificate, just like the SCTs are. Alternatively,
an index structure such as a B+ tree could be used in the typical way that PIR lookups
by keywords is done [4, 16].

To check a proof, the auditor needs three things: the certificate itself, the list of
sibling hashes, and the signed root. We assume that the auditor has already retrieved
the certificate in question. The signed root can be directly retrieved as it does not give
any information about the specific certificate. Therefore, the proofs that are stored in
the database consist solely of the hashes that help in reconstructing the signed root. We
will next consider how these proofs are stored in the database.

4 https://www.eff.org/observatory
5 http://www.netcraft.com/internet-data-mining/ssl-survey/,

accessed July 2014
6 http://investor.symantec.com/investor-relations/press-
releases/press-release-details/2012/Symantec-Achieves-
Highest-Number-of-SSL-Certificates-Issued-Globally/default.
aspx

7 Obtained by querying the server’s API: https://ct.googleapis.com/pilot/ct/
v1/get-sth



Storing proofs in the PIR database We first count the number of proofs that need to
be stored. The log is append-only, and will therefore keep growing. However, expired
certificates can safely be removed from the database of proofs. Regular clients will not
query for expired certificates, so a fallback to identifying methods is not a problem.
Therefore, we assume that the database only contains proofs for valid certificates. We
estimated this to be about 222 proofs.

In the following we consider a tree containing 2`−1 < n ≤ 2` items. The length of
the inclusion proofs in such a Merkle tree is at most ` hashes. However, it can be less;
for example, the inclusion proof of c6 in Figure 1 consists only of the nodes d and c.
For simplicity, we allocate the full ` hashes for every proof in the database, resulting in
proofs of 32` bytes.

Goldberg’s PIR scheme is most efficient when the number of blocks equals the
number of field elements per block [12]. It thus makes sense to bundle multiple proofs
into a single block (as the number of proofs is exponential in `, while the length of a
proof is only linear in `). The location of a proof is then given by its block, and its index
within the block (the size of the tree fixes the length of the proofs). When this location
is stored in the X.509 certificate it should remain fixed while the certificate is valid.

Given the size of a proof and the estimated number of valid SSL certificates we get
a storage requirement of 32 · 22 · 222 ≈ 0.7 · 232 bytes, or about 3 GiB. Therefore, in
the following section, we evaluate our algorithm on databases of sizes 1–4 GiB.

We also note that, if the client is willing to reveal a subset of the database that con-
tains the certificate she seeks, she can reduce the server’s computational load at the cost
of revealing some information about her query [18]. While trivially downloading the
entire subset is one approach, PIR offers a lower communication cost—only about one
block of information is sent to and from each PIR server—without leaking information
about which certificate within the entire subset the client is querying for.

5 Implementation and Evaluation

We implemented fast matrix multiplication using Strassen’s algorithm as an extension
to the Percy++ open-source PIR library [10]. We implemented Strassen for the small
fields GF (28) and GF (216) as well as the integers modulo p. All measurements were
taken in Ubuntu 12.04.4 LTS running on a machine with eight Intel(R) Xeon(R) E7-
8870 CPUs, but each PIR server, which only used one core, was assigned to a different
CPU.

5.1 Implementation

Strassen’s algorithm works perfectly when multiplying matrices where all the dimen-
sions are powers of two. In the PIR setting, however, this need not hold. Whenever one
or more of the three matrix dimensions (q, r, or s) is odd, we split off the single excess
row(s) and/or column(s) and use the naive matrix multiplication algorithm for those
products. The resulting dimensions are all even, so that we can do another Strassen
recursive step.
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Fig. 2. Normalized CPU time per query (seconds per GiB of database size) for a 1 GiB database
consisting of 32768 32768-byte records over GF (28). We plot different Strassen levels (i.e.,
depth of recursion in the Strassen algorithm) and two numbers of queries, 64 and 128. Consider
the q = 64 case. After 6 Strassen steps, the problem size has been reduced to a 1 × 512 matrix
times a 512 × 512 matrix, and the algorithm bottoms out. In both cases it is better to skip this
final reduction step. Error bars are shown, but most are small, and may be difficult to see.

Dealing with dimensions that are non-powers of two can be costly. For example, a
dimension of 2k−1 will incur extra calculations at every step, resulting in a larger com-
putation time than if the dimension were 2k instead. Hence, our algorithm is designed
to dynamically increase the number of queries (by inserting a dummy all-zeroes query)
if this yields better performance.

Every recursion step yields a small overhead. Part of this is mitigated by not allo-
cating memory every time, but at small sizes the overhead still trumps the gain possible.
We have analyzed when this happens; see Figure 2 for an example. We then tuned our
implementation to stop recursing at the optimal depth.

5.2 Experiments

For q less than about 165, the number of additions in Strassen’s algorithm is slightly
larger than for the naive algorithm due to the multiplicative constant of 8

3 (see Table 2).
However, as explained above, every recursive Strassen step reduces the number of mul-
tiplications by a factor of 7/8 or 12.5%, starting with the very first. The small fields
and the integers modulo p have in common that multiplication is a lot more expensive
than addition; therefore, we expect that even one or two recursive steps of Strassen’s
algorithm would have a measurable effect on the performance, and the measurements
in Figure 2 bear this out. The initial dimensions of the problem dictate how many re-
cursive steps of Strassen’s algorithm can be applied, as each dimension is cut in half
at each step. In practice, we expect that it is the number of queries that is the limiting
factor (that is, q will be much smaller than either r or s), so that is what we focus on.

Figure 3 compares the performance of our new algorithm with the one in the 0.9.0
release of Percy++. All measurements are done over GF (28), as that is the most ef-
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Fig. 3. Comparison between the original GF (28) PIR implementation in Percy++ and our new
version using Strassen. For the first part of the graph, the new and original algorithms give the
same results, as the Strassen code is not invoked for small problem sizes. We can also easily
see the effect of the hand-optimized loop in Percy++ for handling q ≤ 3. We also compare our
algorithm to the best theoretical improvements that using Strassen’s algorithm can provide, using
the fastest per-query time of the original Percy++ code (q = 3) as a reference point. Error bars are
shown, but most are small, and may be difficult to see. The peak memory usage of our algorithm
(for q = 256) was 1422 MiB, whereas Percy++ used 1060 MiB.

ficient field supported by Percy++. We notice that Percy++ slows down considerably
when more queries are used (we suspect cache issues may be to blame for this, but
it was a completely repeatable effect). Our scheme does not suffer from this problem,
and indeed produces the desired decrease in per-query cost as the number of queries
increases. We observe a 4.4-fold performance improvement over Percy++ for q = 256
simultaneous queries.

We have also drawn the analytical improvements we expect from using Strassen’s
algorithm. Figure 3 shows the theoretical bound of the optimal Strassen gain that would
be possible, measured against the fastest per-query time (obtained at q = 3) measured
for the original Percy++ code. For example, for 256 queries, this gain would be ( 78 )

8 ≈
0.344. We see that we are quite close to this value, even though we always skip the final
Strassen step.

For each Strassen recursion step, our algorithm incurs an extra subproblem of 1/4
the size, which needs to be stored in memory. The extra memory consumption as a
result of this is at most a factor of 1

4 +( 14 )
2+ · · · = 1

3 . This is confirmed by the memory
usage given in Figures 3 and 4.
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Fig. 4. We repeat the experiment of Figure 3, but with a 4 GiB database consisting of 65536
65536-byte records. The peak memory usage of our algorithm (for q = 256) was 5556 MiB,
whereas Percy++ used 4148 MiB.

Certificate Transparency. Figure 4 shows performance measures for a 4 GiB database,
a size that nicely matches up with a log server’s database of inclusions proofs. Again
we see that using Strassen’s algorithm gives a significant performance gain over just
using single queries.

While batching queries results in a significantly lower processing time per query, the
latency does increase. However, this is not a problem for auditing proofs of inclusion,
as they are performed asynchronously. In particular, the goal is to detect misbehaving
log servers, and not to protect users against falsely issued certificates directly. Some
latency is therefore acceptable.

If a lower latency is required, the algorithm can easily be parallelized. Each of the
seven Strassen subproblems is completely independent from the others, and creating
these and recombining the result is very cheap. While we did not implement paral-
lelization, we expect the overhead of doing so to be extremely small.

6 Conclusions

In this paper we showed how we can significantly speed up PIR queries if we allow the
server to batch queries, and answer them simultaneously. Such an idea was proposed
earlier in the setting of batch codes, but that proposal required coordination among the
clients, which is not desirable in the PIR setting.



We analyzed batch codes in the setting of Goldberg’s PIR scheme and have shown
that essentially they provide a fast method for doing matrix multiplication under specific
constraints on the matrices. However, since multi-client PIR in Goldberg’s scheme is
essentially a matrix multiplication, we can use our method to obtain sublinear scaling
in the number of queries without requiring the queries to have been created by a single
client or cooperating clients.

We described how multi-client PIR can be used to make certificate transparency
more privacy friendly. We implemented Strassen’s algorithm as part of Percy++ and
have shown that we indeed manage to get a significant speedup when batching multi-
client queries. While further system-level optimizations to Percy++ (which is already
heavily optimized) might conceivably give comparable speedups in absolute terms,
these will almost surely be a constant factor, whereas our algorithmic improvements
increase with the number of simultaneous queries. Furthermore, any such system-level
optimizations are likely to be able to be combined with our algorithmic improvements
to yield compounded benefits.

Our implementation is open source and has been incorporated into the 1.0 release
of Percy++ [11].
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A Strassen’s algorithm

Strassen’s algorithm is best explained by looking at matrix multiplication from a block-
matrix perspective. For simplicity, assume that all matrices have size n× n where n is
even. If

Q =

(
Q11 Q12

Q21 Q22

)
and D =

(
D11 D12

D21 D22

)
,

then the matrix product R = Q ·D is given by

R =

(
R11 R12

R21 R22

)
,



where

R11 = Q11 ·D11 +Q12 ·D21

R12 = Q11 ·D12 +Q12 ·D22

R21 = Q21 ·D11 +Q22 ·D21

R22 = Q21 ·D12 +Q22 ·D22.

It thus reduces to 8 matrix multiplications of size n/2. In Strassen’s algorithm the fol-
lowing 7 matrix products are calculated first (note that in fields of characteristic 2, the
+ and − operations are of course the same):

M1 = (Q11 +Q22) · (D11 +D22)

M2 = (Q21 +Q22) ·D11

M3 = Q11 · (D12 −D22)

M4 = Q22 · (D21 −D11)

M5 = (Q11 +Q12) ·D22

M6 = (Q21 −Q11) · (D11 +D12)

M7 = (Q12 −Q22) · (D21 +D22).

The matrix product is then given by:

R11 = M1 +M4 −M5 +M7

R12 = M3 +M5

R21 = M2 +M4

R22 = M1 −M2 +M3 +M6.

Using this algorithm, only 7 matrix multiplications of size n/2 are necessary. Applying
this trick recursively gives a complexity of O(nlg 7).


