
Effective Attacks and Provable Defenses for Website Fingerprinting

Tao Wang1, Xiang Cai2, Rishab Nithyanand2, Rob Johnson2 and Ian Goldberg1

1University of Waterloo
2Stony Brook University

Abstract
Website fingerprinting attacks allow a local, passive
eavesdropper to identify a user’s web activity by lever-
aging packet sequence information. These attacks break
the privacy expected by users of privacy technologies,
including low-latency anonymity networks such as Tor.
In this paper, we show a new attack that achieves sig-
nificantly higher accuracy than previous attacks in the
same field, further highlighting website fingerprinting as
a genuine threat to web user privacy. We test our attack
under a large open-world experimental setting, where the
client can visit pages that the attacker is not aware of. We
found that our new attack is much more accurate than
previous attempts, especially for an attacker monitoring
a set of sites with low base incidence rate. We can cor-
rectly determine which of 100 monitored web pages a
client is visiting (out of a significantly larger universe)
at an 85% true positive rate with a false positive rate of
0.6%, compared to the best of 83% true positive rate with
a false positive rate of 6% in previous work.

To defend against such attacks, we need provably ef-
fective defenses. We show how simulatable, determinis-
tic defenses can be provably private, and we show that
bandwidth overhead optimality can be achieved for these
defenses by using a supersequence over anonymity sets
of packet sequences. We design a new defense by ap-
proximating this optimal strategy and demonstrate that
this new defense is able to defeat any attack at a lower
cost on bandwidth than the previous best.

1 Introduction

Privacy technologies are becoming more popular: Tor,
a low-latency anonymity network, currently has 500,000
daily users and the number has been growing [21]. How-
ever, users of Tor are vulnerable to website fingerprinting
attacks [4, 17, 23]. Users of other privacy technologies
such as SSH tunneling, VPNs and IPsec are also vulner-
able to website fingerprinting [10].

When a client browses the web, she reveals her desti-
nation and packet content to intermediate routers, which
are controlled by ISPs who may be susceptible to ma-
licious attackers, eavesdroppers, and legal pressure. To
protect her web-browsing privacy, the client would need
to encrypt her communication traffic and obscure her
destinations with a proxy such as Tor. Website finger-
printing refers to the set of techniques that seek to re-
identify these clients’ destination web pages by passively
observing their communication traffic. The traffic will
contain packet lengths, order, and timing information
that could uniquely identify the page, and website fin-
gerprinting attacks use machine classification to extract
and use this information (see Section 2).

A number of attacks have been proposed that would
compromise a client’s expected privacy, and defenses
have been proposed to counter these attacks (see Sec-
tion 3). Most previous defenses have been shown to fail
against more advanced attacks [4, 6, 15]; this is because
they were evaluated only against specific attacks, with no
notion of provable effectiveness (against all possible at-
tacks). In this paper, we will show an attack that further
highlights the fact that clients need a provably effective
defense, for which an upper bound on the accuracy of
any possible attack can be given. We will then show how
such a defense can be constructed. Only with a prov-
ably effective defense can we be certain that clients are
protected against website fingerprinting.

The contributions of our paper are as follows:

1. We propose a significantly improved attack that
achieves a higher accuracy with a training and test-
ing time that is orders of magnitude lower than the
previous best. Our attack is a k-Nearest Neigh-
bour classifier applied on a large feature set with
weight adjustment. Our attack is designed to find
flaws in defenses and achieve high success rates
even with those defenses, and we demonstrate that

1



several known defenses have almost no impact on
our attack. We describe this attack in Section 4.

2. Using this attack, we tackle a large open-world
problem, in which the attacker must determine
which of 100 monitored pages the client is visiting,
but the client can visit a large number of pages that
the attacker cannot train on. We demonstrate that
the attack is still truly effective in this realistic sce-
nario in Section 5.

3. We show that simulatable, deterministic defenses
can be turned into provably private defenses. We
found that the best possible (least bandwidth cost)
defense is to transmit sequences using superse-
quences over anonymity sets. We construct a prin-
cipled defense using approximations of the small-
est common supersequence problem and clustering
techniques in Section 6 and evaluate it in Section 7.

We follow up with a discussion on realistic applica-
bility and reproducibility of our results in Section 8 and
conclude in Section 9.

2 Basics

2.1 Website Fingerprinting on Tor

Website fingerprinting (WF) refers to the process of at-
tempting to identify a web-browsing client’s behaviour—
specifically, which web pages she is visiting—by observ-
ing her traffic traces. We assume that the client is using a
proxy to hide her true destination, as well as encryption
to hide her packet contents, as without these basic de-
fenses she reveals her destination to a trivial eavesdrop-
per. Users of Tor have these defenses.

More recent attacks can successfully perform web-
site fingerprinting with an attacker that only has local
observation capacity; i.e. the attacker merely observes
the traffic traces of the client without any interference.
The attacker is located on the client’s network, such as
the client’s ISP, or he has gained control of some router
near the client. Attacks requiring more capabilities have
been proposed, such as attacks which leverage active
traffic-shaping strategies [8], remote ping detection [9]
and, sometimes, involve tempering with the client’s de-
vice [12]. Our attack achieves high accuracy with only a
local, passive attacker.

In general, the attacker’s strategy is as follows. The
attacker collects packet traces from several web pages
that he is interested in monitoring. Then, the attacker
observes packet traces generated by the client during her
web browsing, and compares these traces with the ones
he collected by performing supervised classification. We

note two assumptions that all previous works on WF have
made of the attacker:

1. Well-defined packet traces. It is assumed that the
attacker knows where the packet trace of a single
page load starts and ends. If the client takes much
longer to load the next page after the current one is
loaded, this assumption can be justified.

2. No other activity. We assume the client is not per-
forming any other activity that could be confused
for page-loading behaviour, such as downloading a
file.

These assumptions are used by all previous works on
WF as they simplify the problem, though it should be
noted that these assumptions are advantageous for the at-
tacker. We discuss how the attacker can carry out a suc-
cessful attack without these assumptions in Section 8.

Website fingerprinting is harder on Tor than simple
SSH or VPN tunneling [10]. This is because Tor uses cell
padding, such that data is sent in fixed-size (512-byte)
cells. In addition, Tor has background noise (circuit con-
struction, SENDME packets, etc.) which interferes with
website fingerprinting [23]. As Tor has a large user base
and an extensive architecture upon which defenses can
be applied, recent works and our work are interested in
attacking and defending Tor, especially as Tor develop-
ers remain unconvinced that website fingerprinting poses
a real threat [19].

2.2 Classification
Given a packet sequence, the attacker learns the client’s
destination web page with a classification algorithm
(classifier). The attacker first gathers packet sequences
of known pages that he is interested in monitoring (the
training set). This is known as supervised training as the
true labels of these packet sequences are known to the
attacker. We can test the effectiveness of such a classifier
by applying it to a data set of packet sequences that the
attacker did not train on (the testing set), and measuring
the accuracy of the classifier’s predictions.

Central to the classifier is a notion of distance between
packet sequences. A larger distance indicates that the
two packet sequences are less likely to be from the same
page. Previous authors have used varying formulae for
distance, ranging from comparing the occurrence counts
of unique packet lengths to variations of Levenshtein dis-
tance. The distance used reflects how features are used to
distinguish web pages. These features are, explicitly or
implicitly, extracted from packet sequences to compare
them with each other.

Our attack is based on the important observation that
a class representing a web page is multi-modal. Several

2



factors cause a web page to vary: network conditions,
random advertisements and content, updating data over
time, and unpredictable order of resources. Client con-
figuration may also affect page loading.1 An attacker can
deal with multi-modal data sets by gathering enough data
to have representative elements from each mode. For ex-
ample, an attacker can gather two modes of a page, one
for low-bandwidth connections, and another for high-
bandwidth connections.2 We use a classifier designed
for multi-modal classes, for which different modes of
the class do not need to have any relationship with each
other.

3 Related Work

This section surveys the related work on website finger-
printing (WF). We classify attacks into those which de-
pend on revealed resource lengths (HTTP 1.0), revealed
packet lengths (HTTP 1.1, VPN, SSH tunneling, etc.),
and padded packet lengths (Tor). We also survey the pre-
vious work on defenses in this section.

3.1 Resource length attacks
In HTTP 1.0, web page resources (images, scripts, etc.)
are each requested with a separate TCP connection. This
implies that an attacker who is able to distinguish be-
tween different connections can identify the total length
of each resource. The earliest attacks were performed
in this scenario: Cheng et al. in 1998 [5], Sun et al.
in 2002 [20], and Hintz in 2003 [11]. These works
showed that observing resource lengths can help iden-
tify a page. HTTP 1.1 uses persistent connections, and
therefore more recent browsers and privacy technologies
are not susceptible to resource length attacks.

3.2 Unique packet length attacks
Liberatore and Levine in 2006 [14] showed how unique
packet lengths are a powerful WF feature with two at-
tacks: one using the Jaccard coefficient and another us-
ing the Naı̈ve Bayes classifier. Under the first attack,
the classifier mapped each packet sequence to its set
of unique packet lengths (discarding ordering and fre-
quency). Then, it used the Jaccard coefficient as a mea-
surement of the distance between two packet sequences.
The Naı̈ve Bayes classifier used packet lengths and their
occurrence frequencies as well, but also discarded order-
ing and timing. The Naı̈ve Bayes assumption is that the
occurrence probabilities of different packet lengths are

1On the Tor Browser changing the browser configuration is discour-
aged as it makes browser fingerprinting easy.

2Data collection on Tor will naturally result in such a situation be-
cause of random circuit selection.

independent of each other. Later, Herrmann et al. [10]
proposed a number of improvements to this attack by in-
corporating techniques from text mining.

Bissias et al. in 2006 [2] published an attack based
on cross-correlation with interpacket timings, but it is
less accurate than the Naı̈ve Bayes attacks. Lu et al.
in 2010 [15] published an attack that heavily focuses on
capturing packet burst patterns with packet ordering, dis-
carding packet frequencies and packet timing.

3.3 Hidden packet length attacks

Herrmann et al. were not able to successfully perform
WF on Tor [17], where unique packet lengths are hid-
den by fixed-size Tor cells. In 2009, Panchenko et al.
showed an attack that succeeded against web-browsing
clients that use Tor. As unique packet lengths are hidden
on Tor, Panchenko et al. used other features, which are
processed by a Support Vector Machine (SVM). These
features attempted to capture burst patterns, main docu-
ment size, ratios of incoming and outgoing packets, and
total packet counts, which helped identify a page. Dyer
et al. in 2012 [6] used a similar but smaller set of features
for a variable n-gram classifier, but their classifier did not
perform better in any of the scenarios they considered.

Cai et al. in 2011 improved the accuracy of WF on Tor.
Using the edit distance to compare packet sequences,
they modified the kernel of the SVM and showed an
attack with significantly increased accuracy on Tor [4].
Wang and Goldberg in 2013 further improved the accu-
racy of Cai et al.’s scheme on Tor by modifying the edit
distance algorithm [23]. These modifications were based
on observations on how web pages are loaded. As the
attack by Wang and Goldberg is the current state of the
art under the same attack scenario, we will compare our
attack to theirs.

3.4 Defenses

Defenses are applied on the client’s connection in or-
der to protect her against website fingerprinting attacks.
We present a new classification of defenses in this sec-
tion. First, defenses can be “simulatable” or “non-
simulatable”. A simulatable defense can be written as
a defense function D that takes in a packet sequence and
outputs another packet sequence. The function does not
look at the true contents of the packets, but only their
length, direction and time. An advantage of simulatable
defenses is the implementation cost, as non-simulatable
defenses would need to be implemented on the browser
and would have access to client data, which may be diffi-
cult for some clients to accept. The implementation of a
simulatable defense, on the other hand, requires no more

3



access to information than a website fingerprinting at-
tacker would typically have.

Secondly, defenses can be “deterministic” or
“random”—for deterministic defenses the function D
always returns the same packet sequence for each input
packet sequence p.3 Our goal is to design a provably
private defense that has an upper bound on the accuracy
of any attack. Random defenses (noise) have the disad-
vantage that choosing a good covering is not guaranteed,
and an attacker that can link together different page
loads can use this information to partially remove the
noise. Implementation of random defenses must be
careful so that noise cannot be easily distinguished from
real packets.

Non-simulatable, random: This includes Tor’s packet
ordering randomization defense. Responding to
Panchenko’s attack, Tor developers decided to en-
able pipelining on Tor and randomize pipeline size
and request orders [18]. The randomization was
further increased after Wang and Goldberg’s at-
tack [19]. We test our attack against the more ran-
domized version that is built into Tor Browser Bun-
dle 3.5.

Non-simulatable, deterministic: This includes por-
tions of HTTPOS [16]. The HTTPOS defense is
built into the client’s browser, allowing the client
to hide unique packet lengths by sending an HTTP
range request strategically.

Simulatable, random: This includes traffic morph-
ing [24], which allows a client to load a web
page using a packet size distribution from a differ-
ent page, and Panchenko’s background noise [17],
where a decoy page is loaded simultaneously with
the real page to hide the real packet sequence.

Simulatable, deterministic: This includes packet
padding, which is done on Tor, and BuFLO,
presented and analyzed by Dyer et al. [6]. BuFLO
sends data at a constant rate in both directions
until data transfer ends. In this work, we will show
that defenses in this category can be made to be
provably private,4 and we will show such a defense
with a much lower overhead than BuFLO.

4 Attack

In this section, we describe our new attack, which is de-
signed to break website fingerprinting defenses. Our at-
tack is based on the well-known k-Nearest Neighbours

3Using a random procedure to learn D does not make D itself ran-
dom.

4BuFLO is not provably private on its own.

(k-NN) classifier, which we briefly overview in Sec-
tion 4.1. The attack finds flaws in defenses by relying
on a large feature set, which we describe in Section 4.2.
We then train the attack to focus on features which the
defense fails to cover and which therefore remain use-
ful for classification. We describe the weight adjustment
process in Section 4.3.

4.1 k-NN classifier
k-NN is a simple supervised machine learning algorithm.
Suppose the training set is Strain and the testing set is
Stest . The classifier is given a set of training points
(packet sequences) Strain = {P1,P2, . . .}. The training
points are labeled with classes (the page the packet se-
quence was loaded from); let the class of Pi be denoted
C(Pi). Given a testing point Ptest ∈ Stest , the classifier
guesses C(Ptest) by computing the distance D(Ptest ,Ptrain)
for each Ptrain ∈ Strain. The algorithm then classifies Ptest
based on the classes of the k closest training points.

Despite its simplicity, the k-NN classifier has a number
of advantages over other classifiers. Training involves
learning a distance between pairs of points; the classi-
fier could use a known (e.g. Euclidean) distance, though
selecting the distance function carefully can greatly im-
prove the classification accuracy. Testing time is very
short, with a single distance computation to each train-
ing point. Multi-modal sets can be classified accurately,
as the classifier would only need to refer to a single mode
of each training set.

The k-NN classifier needs a distance function d for
pairs of packet sequences. The distance is non-trivial for
packet sequences. We want the distance to be accurate
on simple encrypted data without extra padding, but also
accurate when defenses are applied that remove features
from our available feature set. We therefore start with a
large feature set F = { f1, f2, . . .}. Each feature is a func-
tion f which takes in a packet sequence P and computes
f (P), a non-negative number. Conceptually, each feature
is designed such that members of the same class are more
likely to have similar features than members of different
classes. We give our feature set in Section 4.2. The dis-
tance between P and P′ is computed as:

d(P,P′) = ∑
1≤i≤|F |

wi| fi(P)− fi(P′)|

The weights W = {w1,w2, . . . ,w|F |} are learned as in
Section 4.3, where we describe how useless weights,
such as those corresponding to features that a defense
successfully covers, are reduced. As weight learning pro-
ceeds, the k-NN distance comes to focus on weights for
features that are useful for classification.

We tried a number of other distances, including the
edit distance used by Cai et al. [4] and Wang and Gold-

4



berg [23], which they used to compute the kernel of
SVMs. The results for using their distances on the k-
NN classifier are similar to those using the SVM. As we
shall see in Section 5, using our proposed distance al-
lows a significant improvement in accuracy over these
distances, with or without extra defenses.

4.2 Feature set
Our feature set is intended to be diverse. The construc-
tion of the feature set is based on prior knowledge of how
website fingerprinting attacks work and how defenses
fail.

Our feature set includes the following:

• General features. This includes total transmission
size, total transmission time, and numbers of incom-
ing and outgoing packets.

• Unique packet lengths. For each packet length be-
tween 1 and 1500, and each direction, we include
a feature which is defined as 1 if it occurs in the
data set and 0 if it does not. This is similar to the
algorithms used by Liberatore and Levine [14] and
Herrmann et al. [10], where the presence of unique
packet lengths is an important feature. These fea-
tures are not useful when packet padding is applied,
as on Tor.

• Packet ordering. For each outgoing packet, we add,
in order, a feature that indicates the total number of
packets before it in the sequence. We also add a
feature that indicates the total number of incoming
packets between this outgoing packet and the previ-
ous one. This captures the burst patterns that helped
Cai et al. achieve their high accuracy rates.

• Concentration of outgoing packets. We count the
number of outgoing packets in non-overlapping
spans of 30 packets, and add that as a feature. This
indicates where the outgoing packets are concen-
trated without the fineness (and volatility) of the
packet ordering features above.

• Bursts. We define a burst of outgoing packets as a
sequence of outgoing packets, in which there are no
two adjacent incoming packets. We find the maxi-
mum and mean burst length, as well as the number
of bursts, and add them as features.

• Initial packets. We also add the lengths of the first
20 packets (with direction) in the sequence as fea-
tures.

Some feature sets, such as packet ordering, have vari-
able numbers of features. We define a maximum number

of features for the set, and if the packet sequence does not
have this many features, we pad with a special character
(X) until it reaches the maximum value. Recall that our
distance is the weighted sum of absolute differences be-
tween features; let us denote the difference as d fi(P,P

′).
For each feature fi, if at least one of the two values is X,
then we define d fi(P,P

′) to be 0, such that the difference
is ignored and does not contribute to the total distance.
Otherwise, we compute the difference as usual.

We treat all features equally. However, we note that as
the general features are amongst the strongest indicators
of whether or not two packet sequences belong to the
same mode of a page, we could use them with a search
algorithm to significantly reduce testing time (i.e. reject
pages with significantly different values in the general
feature without computing the whole distance).

The total number of features is close to 4,000 (3,000
of which are just for the unique packet lengths). If a
defense covers some features and leaves others open (e.g.
traffic morphing retains total transmission size and burst
features), our algorithm should be successful in adjusting
weights to focus on useful features.

We design our attack by drawing from previous
successful attacks, while allowing automatic defense-
breaking. In particular, we note that there exists a choice
of weights for which our attack uses a similar distance
metric as the attacks proposed by Cai et al. [4] and Wang
and Goldberg [23], as well as the Jaccard coefficient
by Liberatore and Levine [14]. However, we will find
better choices of weights in the next subsection. We
drew the inspiration for some features from the work
by Panchenko et al. [17], in particular, those concern-
ing the start of the page (which may indicate the size of
the HTML document). We note that unlike Panchenko
et al. [17], we do not add the entire packet sequence as
features.

4.3 Weight initialization and adjustment

In this subsection, we describe how we learn W =
{w1,w2, . . . ,w|F |}, the weights that determine our dis-
tance computation. The values of these weights deter-
mine the quality of our classifier. We learn the weights
using an iterative, local weight-learning process as fol-
lows. The weight-learning process is carried out for
R rounds (we will see how the choice of R affects the
accuracy later). For each round, we focus on a point
Ptrain ∈ Strain (in order), performing two steps: the weight
recommendation step and the weight adjustment step.

Weight recommendation. The objective of the
weight recommendation step is to find the weights that
we want to reduce. During the weight recommendation
step, the distances between Ptrain and all other P′ ∈ Strain
are computed. We then take the closest kreco points

5



(for a parameter kreco) within the same class Sgood =
{P1,P2, . . .} and the closest kreco points within all other
classes Sbad = {P′1,P′2, . . .}; we will focus only on those
points.

We denote d(P,S), where S is a set of packet se-
quences, as the sum of the distances between P and each
sequence in S.

Let us denote

dmaxgoodi = max({d fi(Ptrain,P)|P ∈ Sgood})

For each feature, we compute the number of relevant
bad distances, nbadi , as

nbadi = |{P
′ ∈ Sbad |d fi(Ptrain,P′)≤ dmaxgoodi}|

This indicates how bad feature fi is in helping to dis-
tinguish Sbad from Sgood . A large value of nbadi means
that feature fi is not useful at distinguishing members of
Ptrain’s class from members of other classes, and so the
weight of fi should be decreased; for example, features
perfectly covered by a defence (such as unique packet
lengths in Tor) will always have nbadi = kreco, its maxi-
mum possible value. Conversely, small values of nbadi

indicate helpful features whose weights should be in-
creased.

Weight adjustment. We adjust the weights
to keep d(Ptrain,Sbad) the same while reduc-
ing d(Ptrain,Sgood). Then, for each i such that
nbadi 6= min({nbad1 ,nbad2 , . . . ,nbad|F |}), we reduce
the weight by ∆wi = wi · 0.01. We then increase all
weights wi with nbadi = min({nbad1 ,nbad2 , . . . ,nbad|F |})
equally such that d(Ptrain,Sbad) remains the same.

We achieved our best results with two more changes
to the way weights are reduced, as follows:

• We further multiply ∆wi = wi · 0.01 by nbadi/kreco.
Therefore, a weight with greater nbadi (a less infor-
mative weight) will be reduced more.

• We also further multiply ∆wi by the overall badness
of the point. The overall badness Nbad is defined as:

Nbad = |{P′ ∈ Sbad |d(Ptrain,P′)≤ dmaxgood}|

Specifically, we multiply ∆wi by 0.2+Nbad/kreco.
Nbad can be considered an overall measure of how
poorly the current point is classified, such that
points which are already well-classified in each iter-
ation have less of an impact on the weights. The ad-
dition of 0.2 indicates that even perfectly classified
points still have some small impact on the weights
(so that the weight adjustment will not nullify their
perfect classification).

Both of these above changes improved our classifica-
tion accuracy. We achieved our best results with kreco =
5.

We initialized the weight vector W randomly by
choosing a random value for each wi uniformly between
0.5 and 1.5. Adding randomness gave us a chance of
finding better solutions than a deterministic algorithm
as we could avoid local maxima that bind our classifier
away from the global maximum.

Note that we are not claiming these particular choices
of parameters and constants yield an optimal attack, and
further work may yet uncover improved attacks against
defenses without provable privacy guarantees.

5 Attack evaluation

Our attack is specifically designed to find gaps in de-
fenses, and in this section we will demonstrate its effi-
cacy with experimentation on real web traffic. We will
first begin by showing the effectiveness of our scheme
against Tor with its default packet padding and order ran-
domization defense in Section 5.1. This setting is a good
standard basis of comparison as WF is a threat to the
privacy guarantees provided by Tor, and several of the
latest state-of-the-art attacks are designed for and evalu-
ated on Tor. We will see that our attack performs better
than the best known attacks. The parameters of our at-
tack can be modified to decrease the false positive rate at
the cost of decreasing the true positive rate, and we ex-
amine the tradeoff in Section 5.2. Then, we show that our
attack is also more powerful than known attacks on vari-
ous known and published defenses in Section 5.3, with a
number of defenses shown to be nearly completely inef-
fective against our scheme.

5.1 Attack on Tor
We validate our attack in two experimental settings to
demonstrate the effectiveness of our attack on Tor.

First, we perform experiments in an open-world exper-
imental setting. Even though the number of pages in the
world wide web is far too large for us to train on, we can
achieve realistic results by limiting the objective of the
attacker. Here, the attacker wants to identify whenever
a monitored page is loaded and which one it is (classify
as C1,C2, ...), but the attacker does not wish to identify
other, non-monitored pages except to know that they are
non-monitored (classify as C0). Using the open-world
experimental setting gives us realistic results for an at-
tacker who is, for example, interested in knowing which
sensitive pages a client is visiting.

We use a list of 90 instances each of 100 sensitive
pages as well as 1 instance each of 5,000 non-monitored
pages. We note that this problem is more difficult for
the attacker than any that has been evaluated in the field,
as other authors have evaluated their schemes on either
strictly closed-world settings or very small open-world

6



problems (a few monitored pages). It is a realistic goal
for the attacker to monitor a large set of pages in the
open-world setting.

Our list of 100 monitored pages was compiled from a
list of blocked web pages from China, the UK, and Saudi
Arabia. These include pages ranging from adult content,
torrent trackers, and social media to sensitive religious
and political topics. We selected our list of 5,000 non-
monitored pages from Alexa’s top 10,000 [1], in order,
excluding pages that are in the list of monitored pages
by domain name. Page loading was done with regular
circuit resetting, no caches and time gaps between mul-
tiple loads of the same page (as suggested by Wang and
Goldberg [23]).

Training the k-Nearest Neighbour classifier is required
to learn the correct weights. We learn the weights by
splitting part of the training set for weight adjustment and
evaluation as above. We perform weight adjustment for
R = 6000 rounds on 100 pages and 60 instances each,
which means that every instance is cycled over once.
Then, accuracy is computed over the remaining 30 in-
stances each, on which we perform all-but-one cross val-
idation. The use of cross validation implies that the at-
tacker will never train on the same non-monitored pages
that the client visits.

For our attack, we decided that a point should be clas-
sified as a monitored page only if all k neighbours agree
on which page it is, and otherwise it will be classified as
a non-monitored page. This helped reduce false positives
at a relatively small cost to the true positives. We vary the
number of neighbours k from 1 to 15 as well as the num-
ber of non-monitored training pages |C0| used from 10 to
5000,5 and we show our results in Figure 1. We measure
the True Positive Rate (TPR), which is the probability
that a monitored page is correctly classified as that partic-
ular monitored page, and the False Positive Rate (FPR),
which is the probability that a non-monitored page is in-
correctly identified as being monitored.6 We can achieve
TPR 0.85±0.04 for FPR 0.006±0.004, or respectively
TPR 0.76±0.06 for FPR 0.001±0.001.

We compare these values to Wang and Goldberg’s
classifier, which we apply to our data set as well, and
show the results in Figure 2. Increasing the number of
non-monitored pages |C0| increases true positives and re-
duces false positives. After |C0| > 2500, we could not
see a significant benefit in adding more elements. At
|C0|= 5000, the classifier achieves a TPR of 0.83±0.03
and a FPR of 0.06±0.02.

5We note that the choice of |C0| does not represent a world with
fewer pages available to the client—it is the attacker’s decision on how
much he wishes the bias towards non-monitored sites to be. The visited
sites are always drawn from Alexa’s top 10,000.

6If a monitored page is incorrectly classified as a different moni-
tored page or as a non-monitored page, it is a false negative.

 0.001

 0.01

 0.1

 1

 0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

True Positive Rate

Figure 1: Best results while varying the attacker’s strat-
egy on choosing number of neighbours as well as bias
towards the non-monitored data set. Only the y-axis is
logarithmically scaled.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

A
c
c
u
ra

c
y

Number of non-monitored pages

TPR
FPR

Figure 2: True Positive Rate and False Positive Rate
changes in Wang and Goldberg’s classifier as the open
set size increases. There is almost no change in either
value after |C0|> 2500.

 0.4

 0.5

 0.6

 0.7

 0.8

 0  400  800  1200  1600

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Rounds

Figure 3: TPR when varying the number of rounds used
for training, with k = 5, |C0| = 500. FPR is not shown
because there is very little change over time.

We see that Wang and Goldberg’s classifier cannot
achieve FPR values nearly as low as ours, and it may be
considered impractical for the attacker to monitor large
sets in the open-world setting with the old classifier, es-
pecially if the base incidence rate is low. For example,
if the base incidence rate of the whole sensitive set is
0.01 (99% of the time the client is visiting none of these
pages), and our new classifier claims to have found a sen-
sitive site, the decision is correct at least 80% of the time,
the rest being false positives. For Wang and Goldberg’s
classifier, the same value would be about 12%. The dif-
ference is further exacerbated with a lower base inci-
dence rate, which may be realistic for particularly sen-
sitive web sites.

7



 0.001

 0.01

 0.1

 1

 0.84  0.85  0.86  0.87F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

True Positive Rate

|C0| = 50    

|C0| = 3000    

Figure 4: Results for FPR vs. TPR while varying bias
towards non-monitored data set C0. k = 2.

The training and testing time for our classifier (weight
adjustment) is very small compared to previous state-of-
the-art classifiers. The number of rounds, R, determines
the quality of our weights. We show in Figure 3 how
the true positive rate changes with R on |C0|= 500 non-
monitored sites and k = 5 neighbours. We see that the ac-
curacy levels off at around 800 rounds. This result does
not depend on k and |C0| because these values do not af-
fect weight learning. We also point out that the accuracy
does not drop after 800 rounds; indeed, we tried up to
30,000 rounds, and the accuracy did not drop.

The weight training time scales linearly with R and
also scales linearly with the number of instances used
for weight training. The training time is around 8 ·10−6 ·
|Strain| · R CPU seconds, measured using a computing
cluster with AMD Opteron 2.2 GHz cores. This amounts
to around 120 CPU seconds for 1000 rounds in our set
with |C0|= 5000. This can be compared to around 1600
CPU hours on the same data set using Wang and Gold-
berg’s classifier and 500 CPU hours using that of Cai et
al. Training time also scales quadratically with the num-
ber of training instances with these previous classifiers.

The testing time amounts to around 0.1 CPU seconds
to classify one instance for our classifier and around 800
CPU seconds for Wang and Goldberg’s classifier, and
450 CPU seconds for that of Cai et al. The testing time
per instance scales linearly with the number of training
elements for all three classifiers. We can reduce the train-
ing and testing time for our classifier further by around
4 times if we remove the unique packet length features,
which are useless for Tor cells.

We also perform experiments on the closed-world ex-
perimental setting. Under the closed-world experimental
setting, the client is not allowed to visit non-monitored
pages. We use the same data set of sensitive pages as
above for these experiments. Although the closed-world
setting does not carry the same realistic implications as
the open-world setting, it focuses attention on the ability
of the classifier to distinguish between pages and it has
been a useful basis of comparison in the field. We tested
our classifier on the data set used by Wang and Gold-
berg to facilitate a more direct comparison, and the accu-
racy was 0.95± 0.02 compared to 0.91± 0.06 reported

 0.001

 0.01

 0.1

 1

 0.5  0.6  0.7  0.8  0.9  1

F
a
ls

e
 P

o
s
it
iv

e
 R

a
te

True Positive Rate

k = 2    

k = 6    

Figure 5: Best results for FPR vs. TPR while varying
number of neighbours k. |C0|= 500.

by Wang and Goldberg and 0.88±0.03 for Cai et al. We
also compared them on our new data set, and the accu-
racy was 0.91± 0.03 for ours and 0.90± 0.02 for Wang
and Goldberg’s. There appears to be no significant differ-
ence in the closed-world scenario, although the superior
accuracy of our classifier under the open-world scenario
is clear.

5.2 Training confidence

The numbers for true and false positive rates as shown
above may not be desirable for some cases. The optimal
numbers depend on the expected base rate of the moni-
tored activity as well as the application intended by the
attacker. Parameters of our attack can be adjusted to in-
crease true positive rate at the cost of increasing false
positive rate, or vice versa.

We can vary the size of the non-monitored training
page set to affect accuracy as our implementation of the
k-Nearest Neighbour classifier is susceptible to bias to-
wards larger classes. We fix the number of neighbours at
k = 2, vary the number of non-monitored training pages
|C0| from 10 to 5000 and show the results in Figure 4.

We can also vary k, the number of neighbours. We
fix the number of non-monitored pages, |C0|, at 500, and
vary k from 1 to 15, showing the results in Figure 5. De-
creasing |C0| and decreasing k each increases both true
positives and false positives.

We can see that varying the number of neighbours
used is much more important for determining TPR and
FPR than varying the size of C0, the set of non-monitored
pages. In fact, almost all of the graph in Figure 1 can be
drawn only by varying k with |C0| = 5000, suggesting
that it is advantageous for the attacker to have a large
number of non-monitored training pages.

5.3 Attack on Other Defenses

Our attack is specifically designed to break WF defenses
that leave features open for classification. The analysis in
previous sections was performed on Tor packets, which
already uses padding, pipelining and order randomiza-

8



Table 1: Accuracy of our attack on various defenses.
Closed-world simulation is used to enable comparison
with previous known results.

Defense Accuracy Bandwidth
overhead

Traffic morphing [24] 0.82±0.06 50%±10%
HTTPOS split [16] 0.86±0.03 5.0%±0.6%
Decoy pages [17] 0.30±0.06 130%±20%
BuFLO [6] 0.10±0.03 190%±20%

tion. We add further defenses to those. The list of de-
fenses we evaluate in this section are as follows:

• Traffic morphing [24]. Traffic morphing maps
packet sizes from one site to a packet distribution
drawn from another site, in an attempt to mimic the
destination site. In our implementation, each site at-
tempted to mimic google.com as it is reasonable
to assume that the client wishes to mimic the most
popular page.

• HTTPOS split [16]. Although HTTPOS has a large
number of features, one of its core features is a ran-
dom split on unique packet lengths by cleverly uti-
lizing HTTP range requests. We analyze HTTPOS
by splitting incoming packets and also padding out-
going packets.7

• Panchenko’s decoy pages [17]. As a defense against
their own attack, Panchenko et al. suggested that
each real page should be loaded with a decoy page.
We chose non-monitored pages randomly as decoy
pages.

• BuFLO [6]. Maximum size packets are sent in
both directions at equal, constant rates until the
data has been sent, or until 10 seconds have passed,
whichever is longer.

We implement these defenses as simulations. For
Panchenko’s noise and BuFLO we implement them us-
ing Tor cells as a basic unit in order to reduce unneces-
sary overhead from these defenses when applied on Tor.
We apply our attack, and show the results in Table 1.
This can be compared to a minimum accuracy of 0.01 for
random guessing. We see that even with large overhead,
the defenses often fail to cover the page, and our attack
always performs significantly better than random guess-
ing. For BuFLO, our particular data set gave a larger
overhead than previous work [22] because most packet

7HTTPOS has been significantly modified by its authors since their
original publication, in part due to the fact that Cai et al. were able to
break it easily [4].

sequences could be loaded within 10 seconds and there-
fore required end-of-sequence padding to 10 seconds. In
particular, traffic morphing and HTTPOS split have al-
most no effect on the accuracy of our attack.

6 Defense

In this section, we design a provably private defense—
a defense for which there exists an upper bound on the
accuracy of any attack (given the data set). As Tor is
bandwidth-starved [21], we attempt to give such a de-
fense with the minimum bandwidth cost. This is an ex-
tension of the idea proposed by Wang and Goldberg [22]
for their defense, Tamaraw.

In Section 6.1, we first show how such an upper bound
can be given for simulatable, deterministic defenses—
that is, this class of defenses can be made to be provably
private. We then show in Section 6.2 that the optimal de-
fense strategy (lowest bandwidth cost) in such a class is
to compute supersequences over sets of packet sequences
(anonymity sets). We try to approximate the optimal de-
fense strategy, by describing how these sets can be cho-
sen in Section 6.3, and how the supersequence can be
estimated in Section 6.4.

6.1 Attacker’s upper bound
We describe how we can obtain an upper bound on the
accuracy of any attack given a defended data set. The at-
tacker, given an observation (packet sequence) p, wishes
to find the class it belonged to, C(p).

To calculate the maximum success probability given
the testing set, we assume the greatest possible advan-
tage for the attacker. This is where the attacker is al-
lowed to train on the testing set Stest while knowing that
it will be the testing set.8 In this case the attacker’s op-
timal classification strategy is to record the true class of
each observation, (p,C(p)). The attacker will only ever
make an error if the same observation is mapped to sev-
eral different classes. We denote the possibility set of
p as the multiset of classes with the same observation
p, Q(p) = {C1,C2, . . .} (C(p) ∈ Q(p)), where the occur-
rence count of a class is the same as in the testing set with
observation p.

The attacker’s optimal strategy is to find the class Cmax
that occurs the most frequently for the same observation
p, and during classification the attacker will return Cmax
for the observation p. This will induce an accuracy value
upon p:

Acc(p) =
|{C ∈ Q(p)|C =Cmax}|

|Q(p)|
8Our testing set is in fact a multiset as repeated observation-class

pairs are possible.

9



This method returns the best possible accuracy for a
given testing set as it makes the lowest possible error for
observations mapping to multiple classes.

Cai et al. [3] have proposed two different ways to de-
note the overall accuracy of a set of packet sequences:

• Non-uniform accuracy. This is the mean of accura-
cies Acc(p) for p ∈ Stest .

• Uniform accuracy. This is the maximum accuracy
Acc(p) for p ∈ Stest

Tamaraw can only achieve non-uniform accuracy. In
this work, we design a defense for uniform accuracy, but
the defense can be extended to other notions as well.
While we will use different sets to train our defense and
test it on client behaviour, we will say that the defense
has a maximum uniform accuracy as long as it does so
on the training set (as it is always possible to construct
a testing set on simulatable, deterministic defenses on
which at least one page has an accuracy of 1). A defense
that achieves a maximum uniform accuracy of Au auto-
matically does so for non-uniform accuracy, but not vice-
versa. In the following we work with a uniform prior on
a fixed-size testing set to facilitate comparison with pre-
vious work.

6.2 Optimal defense

In this section, we show the bandwidth-optimal simu-
latable, deterministic defense. As we work with Tor
cells, in the following a packet sequence can be con-
sidered a sequence of -1’s and 1’s (downstream and up-
stream packets respectively), which is useful for hid-
ing unique packet lengths [22]. We say that sequence
q is a subsequence of sequence p (or that p is a su-
persequence of q) if there exists a set of deletions of -
1 and 1 in p to make them equal (maintaining order).
With abuse of notation, we say that if S is the input
packet sequence multiset, then D(S) = {D(p)|p ∈ S} de-
notes the output packet sequence multiset after appli-
cation of the defense. The cost (bandwidth overhead)

of D(p) is B(D(p)) =
|D(p)|− |p|
|p|

, and similarly for

a set of packet sequences the overhead is B(D(S)) =
∑p∈S |D(p)|−∑p∈S |p|

∑p∈S |p|
. Given S, we want to identify D

such that B(D(S)) is minimal.
For each packet sequence p1, let us consider the set of

packet sequences that map to the same observation after
the defense is applied, which we call the anonymity set
of p1. We write the set as A(p1) = {p1, p2, . . . , pE}; i.e.
D(p1) = D(pi) for each i. The shortest D(p1) that sat-
isfies the above condition is in fact the shortest common

supersequence, written as fscs(A(p1)) = D(pi) for each
1≤ i≤ E.

In other words, the optimal solution is to apply the
shortest common supersequence function to anonymity
sets of input sequences. However, finding such an opti-
mal solution requires solving two hard problems.

Anonymity set selection. First, given the set of all pos-
sible packet sequences, we want to group them into
anonymity sets such that, for a given bound on at-
tacker accuracy, the overhead will be minimized.

The shortest common supersequence (SCS) problem.
Then, we must determine the SCS of all the packet
sequences in the anonymity set. This is in general
NP-hard. [13]

In the next two sections we describe our solutions to the
above problems.

6.3 Anonymity set selection

We note that the client is not always able to choose
anonymity sets freely. For example, the client cannot
easily know which anonymity set a page load should be-
long to before seeing the packet sequence. While the
client can gain information that assists in making this de-
cision (the URL, previous page load data, training data,
information about the client network, the first few pack-
ets of the sequence, etc.), the mere storage and usage of
this information carries additional privacy risks. In par-
ticular, the Tor Browser keeps no disk storage (including
no cache except from memory), so that storing extrane-
ous information puts the client at additional risk. In this
section, we describe how realistic conditions impose re-
strictions on the power of the client to choose anonymity
sets.

We formalize this observation by imposing additional
limits on anonymity set selection in the defense D trained
on testing set Stest . We define four levels of information
for a client applying a simulatable, deterministic website
fingerprinting defense:

1. No information. The client has no information at all
about the packet sequence to be loaded. This means
A(p) = Stest , that is to say all sequences map to a
single anonymity set.

2. Sequence end information. The client knows when
the sequence has ended, but this is the only infor-
mation the client gets about the packet sequence.
This means that D can only vary in length; for any
p, q, such that |D(p)| ≥ |D(q)|, then the first |D(q)|
packets of D(p) are exactly D(q), that is, we say
that D(q) is a prefix of D(p).

10



Table 2: Relationship between different levels of information and how we train and test our supersequences. Under
“Supersequence”, we describe what supersequences we would use at this level of information. Clustering is done if
we want multiple supersequences.

Information Supersequence Training and Testing
No information One supersequence Different sites, instances
Sequence end information One supersequence, stopping points Different sites, instances
Class information Multiple supersequences, stopping points Same sites, different instances
Full information Multiple supersequences Same sites, instances

3. Class-specific information. Only the identity of the
page is known to the client, and the client has loaded
the page before with some information about the
page, possibly with offline training. The client can-
not distinguish between different packet sequences
of the same page (even though the page may be
multi-modal). This is the same as the above restric-
tion but only applied if p and q are packet sequences
from the same web page.

4. Full information. No restrictions are added to D.
The client has prescient information of the full
packet sequence. Beyond class-specific informa-
tion, the client can gain further information by look-
ing into the future at the contents of the packet se-
quence, learning about her network, and possibly
using other types of extraneous information. This
level is not generally of practical interest except for
serving as a bound for any realistic defense.

We use clustering, an unsupervised machine learning
technique, to find our anonymity sets. We show how the
above levels of information affect how supersequences
will be computed and how testing needs to be performed
in Table 2.

Optimality under the above levels of informa-
tion requires the computation of supersequences over
anonymity sets. If we have only sequence end informa-
tion, there is only one supersequence, and we do not need
to perform clustering. Instead, possible outputs of the de-
fense simply correspond to a prefix of the one superse-
quence, terminating at one of a specified set of stopping
points. We find the stopping points by selecting the earli-
est points where our maximum uniform accuracy would
be satisfied. All packet sequences sent under this defense
will be padded to the next stopping point. This is similar
to a strategy suggested by Cai et al. [3]

If we have class-level information, we need to per-
form two levels of anonymity set selection. On the
first level, we cluster the packet sequences within each
class to decide which supersequence the client should
use. For this level of clustering, we first decide on the
number of supersequences in the set. Then, we ran-
domly choose a number of “roots” equal to this num-
ber of supersequences. We cycle over every root, as-

signing the closest packet sequence that has not yet been
classified. For this we need to define a distance be-
tween each pair of packet sequences p and q. Suppose
p′ and q′ are the first min(|p|, |q|) packets of p and q
respectively. The distance between p and q is given as
2| fscs(p′,q′)| − |p′| − |q′|. We use this distance to mea-
sure how different two packet sequences are, without
considering their respective lengths, which would be ad-
dressed by the second level. On the second level, we find
stopping points, with the same strategy as that used un-
der sequence end information. The use of an additional
first level of clustering reduces the number of stopping
points available for use, given a fixed number of clusters,
so that using too many clusters may in fact have a higher
bandwidth overhead (see Section 7).

For full information, we perform clustering with the
distance between two packet sequences p and q as
2| fscs(p,q)|− |p|− |q|. Here we select roots with evenly
spread out lengths.

6.4 SCS approximation
For the SCS of two packet sequences there is an exact
solution that can be found using dynamic programming;
however, the SCS of multiple sequences is in general NP-
hard [13]. We proceed in this section by discussing how
we find efficient approximate solutions to the SCS prob-
lem.

We first present a simple algorithm that approximates
a solution to the shortest common supersequence prob-
lem. To approximate fscs({p1, p2, . . . , pn}), we define
a counter for each packet sequence c1,c2, . . . ,cn, which
starts at 1. We count the number of sequences for which
the ci-th element of pi is an outgoing packet. If the num-
ber exceeds n/4, we append an outgoing packet to the
common supersequence, and increment all ci for which
the ci-th element of pi is an outgoing packet by 1. Else,
we append an incoming packet, and increase the cor-
responding counts by 1. We do this iteratively until
each counter ci becomes |pi|+ 1, and the algorithm ter-
minates. The choice of n/4 is because for web page
loading, there are fewer outgoing packets than incoming
packets, and this strategy reduces our overhead signifi-
cantly.

11



 0

 30

 60

 90

 120

 150

 0  0.05  0.1  0.15  0.2

B
a
n
d
w

id
th

 o
v
e
rh

e
a
d
 (

%
)

Maximum uniform accuracy

Seq. end
Class

Full

Figure 6: Bandwidth overhead for three levels of in-
formation: sequence end information (Seq. end), class-
specific information (Class), and full information (Full).
Using no information results in a bandwidth overhead
that is much higher than that shown in the graph.

 50

 60

 70

 80

 90

 0  2  4  6  8  10

B
a
n
d
w

id
th

 o
v
e
rh

e
a
d
 (

%
)

Number of Supersequences

Figure 7: Bandwidth overhead for class-specific infor-
mation if more than 2 superclusters are used, at 20 clus-
ters. The number of stopping points available decreases,
but the total number of superclusters times the number of
stopping points is always at least 20.

We note that it is easy to construct cases where the
above algorithm performs very poorly. In fact, it is
known that any polynomial-time approximation algo-
rithm of shortest common supersequences cannot have
bounded error [13].

7 Defense evaluation

In this section we evaluate our defense for bandwidth
overhead, as well as its effectiveness in stopping our new
attack.

We implemented our defenses with different levels of
information as seen above. We used the same data set
used to test our attacks—100 sites, 30 instances each—
and attempted to protect them. The defender attempts to
achieve a given maximum uniform accuracy (by deter-
mining the number of clusters or stopping points). We
show the results in Figure 6. For class-level information,
we used 2 supersequences and N/2 stopping points in
each supersequence. We can see the full information set-
ting has a much lower bandwidth overhead than sequence
end information or class-level information. With our
clustering strategy, using 2 supersequences under class-
level information is only sometimes beneficial for the

overhead. It is possible that a clever clustering strategy
for class-level information could achieve lower band-
width overheads.

For class-level information, we used 2 supersequences
as above. It is interesting to know if increasing the num-
ber of supersequences (and correspondingly lowering the
number of stopping points) will give better bandwidth
overhead. In other words, we want to know if it is worth
suffering greater overhead for padding to stopping points
to have more finely tuned supersequences. We fix the tar-
get maximum uniform accuracy to 20%. The results are
shown in Figure 7. We can see that using more than 2 su-
persequences only increases the bandwidth overhead. It
is possible that if the defender can tolerate a higher max-
imum uniform accuracy, then it would be optimal to use
more than 2 supersequencs.

Finally, we apply our new attack to a class-level de-
fense with a maximum uniform accuracy of 0.1, where
the overhead is approximately 59%± 3%. We achieved
an accuracy of 0.068± 0.007. This can be compared to
Table 1, where we can see that the attack achieved an ac-
curacy of 0.30±0.06 for Panchenko’s decoy pages with
an overhead of 130%± 20% and an accuracy of 0.10±
0.03 for BuFLO with an overhead of 190%±20%. Fur-
thermore, we do not know if there exist better attacks for
these defenses, but we know that no attack can achieve a
better accuracy than 0.1 on our defense (using the same
data set). We also compared our work with Tamaraw,
which had a 96%±9% overhead on the same data set for
non-uniform accuracy. Our attack achieved an accuracy
of 0.09± 0.02, although highly non-uniformly. Indeed,
on 16 sites out of 100, the accuracy of the attacker was
more than 0.2, and the most accurately classified site had
accuracy 0.6.

8 Discussion

8.1 Realistically applying an attack
Like other website fingerprinting works in the field, we
make the assumption that the attacker has an oracle that
can answer whether or not a particular sequence is gen-
erated from a single page load, and that the user does not
prematurely halt the page load or perform other types of
web activity. Here we discuss a few strategies to deal
with possible sources of noise when applying website
fingerprinting to the real world.

The attacker can use a number of signals to identify
the start of a packet sequence. We found that the start
of a packet sequence generally contains around 3 times
more outgoing packets than the rest of the sequence. If
the user is accessing a page for which she does not have
a current connection (i.e. most likely the user is visit-
ing a page from another domain), then the user will al-

12



ways send one or two outgoing connections (depending
on the browser setting) to the server, followed by accep-
tance from the server, followed by a GET request from
the main page, and then by data from the server. This
particular sequence is easily identifiable.

Unfortunately for Tor users, website fingerprinting is
made easier due to a number of design decisions. On
Tor, users are discouraged from loading videos, using
torrents, and downloading large files over Tor, which are
types of noise that would interfere with website finger-
printing. It is hard to change user settings on the Tor
Browser; the configuration file is reset every time the
Tor Browser is restarted, which implies that different
Tor users have similar browser settings. As there is no
disk caching, Tor users have to log in every time the Tor
Browser is restarted before seeing personalized pages.
For example, Facebook users on Tor must go through the
front page, which has no variation and is easily identifi-
able. All of these Tor conditions are meant to preserve
privacy, but they also make website fingerprinting easier.

8.2 Realistic consequences of an attack

Here we discuss how our attack can be used realistically
to break the privacy of web users. Our attack is not all-
powerful; it is not likely to find a single sensitive page
access among millions without error. The quality of the
results depends on the base incidence rate of the client’s
access. With our classifier, if an attacker wishes to iden-
tify exactly which of a set of 100 pages a client is vis-
iting, and she almost never visits those pages (less than
0.1% of page visits), then false alarms will overwhelm
the number of true positives. We note that many sensi-
tive pages have high rates of incidence as they are within
Alexa’s top 100 (torrent sites, adult sites, social media),
especially if the client feels it necessary to use Tor.

We envision our attack as a strong source of informa-
tion that becomes more powerful with the use of other or-
thogonal sources of information. For instance, a govern-
ment agency observes that a whistleblower has released
information on a web page, or that she has just posted a
sensitive or incendiary article on a blog, and it is known
that this whistleblower is likely to use Tor. The agency
will only need to search amongst Tor streams in the last
few minutes within the nation (or a smaller local area).
As Tor streams are easily identifiable [7], the number of
Tor users at any given moment is small enough for our
accurate attack to lead to the capture of a Tor-using dis-
sident. This strongly suggests that some sort of defense
is necessary to protect the privacy of web clients.

8.3 Reproducibility of our results
To ensure reproducibility and scientific correctness, we
will make the following publicly available as our results
are published:

• The code for our new attack. This includes our fea-
ture set, parameters used for our weight learning
process, and a number of weight vectors we learned
which succeeded at classification against specific
defenses, including the Tor data set.

• The code for our new defense. This includes the
clustering strategy and the computation for stop
points, as well as the supersequences we eventually
used to achieve the results in this paper.

• Our implementations of known attacks and de-
fenses, which we compared and evaluated against
ours.

• The data sets we used for evaluation. This includes
the list of sites we visited over Tor, and the TCP
packets we collected while visiting those sites and
which we processed into Tor cells. We also include
the feature vectors we computed over this data set.

9 Conclusion

In this work, we have shown that using an attack which
exploits the multi-modal property of web pages with the
k-Nearest Neighbour classifier gives us a much higher
accuracy than previous work. We use a large feature
set and learn feature weights by adjusting them based on
shortening the distance towards points in the same class,
and we show that our procedure is robust. The k-NN
costs only seconds to train on a large database, com-
pared to hundreds of hours for previous state-of-the-art
attacks. The attack further performs well in the open-
world experiments if the attacker chooses k and the bias
towards non-monitored pages properly. Furthermore, as
the attack is designed to automatically converge on un-
protected features, we have shown that our attack is pow-
erful against all known defenses.

This indicates that we need a strong, provable defense
to protect ourselves against ever-improving attacks in the
field. We identify that the optimal simulatable, determin-
istic defense is one with supersequences computed over
the correct anonymity sets. We show how to construct a
class of such defenses based on how much information
the defender is expected to have, and we evaluate these
defenses based on approximations over supersequence
computation and anonymity set selection. We show a sig-
nificantly improved overhead over previous simulatable,
deterministic defenses such as BuFLO and Tamaraw at
the same security level.

13



References

[1] Alexa — The Web Information Company.
www.alexa.com.

[2] G. D. Bissias, M. Liberatore, D. Jensen, and B. N.
Levine. Privacy Vulnerabilities in Encrypted HTTP
Streams. In Privacy Enhancing Technologies,
pages 1–11. Springer, 2006.

[3] X. Cai, R. Nithyanand, and R. Johnson. New
Approaches to Website Fingerprinting Defenses.
arXiv, abs/1401.6022, 2014.

[4] X. Cai, X. Zhang, B. Joshi, and R. Johnson. Touch-
ing from a Distance: Website Fingerprinting At-
tacks and Defenses. In Proceedings of the 19th
ACM Conference on Computer and Communica-
tions Security, pages 605–616, 2012.

[5] H. Cheng and R. Avnur. Traffic Anal-
ysis of SSL-Encrypted Web Browsing.
http://www.cs.berkeley.edu/˜daw/
teaching/cs261-f98/projects/
final-reports/ronathan-heyning.ps.

[6] K. Dyer, S. Coull, T. Ristenpart, and T. Shrimpton.
Peek-a-Boo, I Still See You: Why Efficient Traffic
Analysis Countermeasures Fail. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy,
pages 332–346, 2012.

[7] D. Fifield, N. Hardison, J. Ellithorpe, E. Stark,
D. Boneh, R. Dingledine, and P. Porras. Evading
censorship with browser-based proxies. In Privacy
Enhancing Technologies, pages 239–258, 2012.

[8] Y. Gilad and A. Herzberg. Spying in the Dark: TCP
and Tor Traffic Analysis. In Privacy Enhancing
Technologies, pages 100–119. Springer, 2012.

[9] X. Gong, N. Kiyavash, and N. Borisov. Fingerprint-
ing Websites using Remote Traffic Analysis. In
Proceedings of the 17th ACM Conference on Com-
puter and Communications Security, pages 684–
686. ACM, 2010.

[10] D. Herrmann, R. Wendolsky, and H. Federrath.
Website Fingerprinting: Attacking Popular Pri-
vacy Enhancing Technologies with the Multino-
mial Naı̈ve-Bayes Classifier. In Proceedings of the
2009 ACM Workshop on Cloud Computing Secu-
rity, pages 31–42, 2009.

[11] A. Hintz. Fingerprinting Websites Using Traf-
fic Analysis. In Privacy Enhancing Technologies,
pages 171–178. Springer, 2003.

[12] S. Jana and V. Shmatikov. Memento: Learning se-
crets from process footprints. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy,
pages 143–157. IEEE, 2012.

[13] T. Jiang and M. Li. On the approximation of
shortest common supersequences and longest com-
mon subsequences. SIAM Journal on Computing,
24(5):1122–1139, 1995.

[14] M. Liberatore and B. Levine. Inferring the Source
of Encrypted HTTP Connections. In Proceedings
of the 13th ACM Conference on Computer and
Communications Security, pages 255–263, 2006.

[15] L. Lu, E.-C. Chang, and M. C. Chan. Website Fin-
gerprinting and Identification Using Ordered Fea-
ture Sequences. In Computer Security–ESORICS
2010, pages 199–214. Springer, 2010.

[16] X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang,
and R. Perdisci. HTTPOS: Sealing Information
Leaks with Browser-side Obfuscation of Encrypted
Flows. In Proceedings of the 18th Network and Dis-
tributed Security Symposium, 2011.

[17] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel.
Website Fingerprinting in Onion Routing Based
Anonymization Networks. In Proceedings of the
10th ACM Workshop on Privacy in the Electronic
Society, pages 103–114, 2011.

[18] M. Perry. Experimental Defense for Web-
site Traffic Fingerprinting. https:
//blog.torproject.org/blog/
experimental-defense-website-
traffic-fingerprinting, September
2011. Accessed Feb. 2014.

[19] M. Perry. A Critique of Website Traffic Fingerprint-
ing Attacks. https://blog.torproject.
org/blog/critique-website-
traffic-fingerprinting-attacks,
November 2013. Accessed Feb. 2014.

[20] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell,
V. N. Padmanabhan, and L. Qiu. Statistical Iden-
tification of Encrypted Web Browsing Traffic. In
Proceedings of the 2002 IEEE Symposium on Se-
curity and Privacy, pages 19–30. IEEE, 2002.

[21] Tor. Tor Metrics Portal. https://metrics.
torproject.org/. Accessed Oct. 2013.

[22] T. Wang and I. Goldberg. Comparing
website fingerprinting attacks and de-
fenses. Technical Report 2013-30, CACR,
2013. http://cacr.uwaterloo.ca/
techreports/2013/cacr2013-30.pdf.

14



[23] T. Wang and I. Goldberg. Improved Website Fin-
gerprinting on Tor. In Proceedings of the 12th
ACM Workshop on Privacy in the Electronic Soci-
ety, 2013.

[24] C. Wright, S. Coull, and F. Monrose. Traffic
Morphing: An Efficient Defense against Statistical
Traffic Analysis. In Proceedings of the 16th Net-
work and Distributed Security Symposium, pages
237–250, 2009.

15


