
Onions Based on Universal Re–Encryption - Anonymous
Communication Immune Against Repetitive Attack ? ??

Marcin Gomułkiewicz, Marek Klonowski, and Mirosław Kutyłowski

Institute of Mathematics, Wrocław University of Technology,
Wybrzėze Wyspiánskiego 27

50-370 Wrocław, Poland
Marcin.Gomulkiewicz@pwr.wroc.pl , klonowski@im.pwr.wroc.pl ,

Miroslaw.Kutylowski@pwr.wroc.pl

Abstract. Encapsulating messages in onions is one of the major techniques pro-
viding anonymous communication in computer networks. To some extent, it pro-
vides security against traffic analysis by a passive adversary. However, it can be
highly vulnerable to attacks by an active adversary. For instance, the adversary
may perform a simple so–calledrepetitive attack: a malicious server sends the
same massage twice, then the adversary traces places where the same message ap-
pears twice – revealing the route of the original message. A repetitive attack was
examined for mix–networks. However, none of the countermeasures designed is
suitable for onion–routing.
In this paper we propose an “onion-like” encoding design based on universal re-
encryption. The onions constructed in this way can be used in a protocol that
achieves the same goals as the classical onions, however, at the same time we
achieve immunity against a repetitive attack. Even if an adversary disturbs com-
munication and prevents processing a message somewhere on the onion path,
it is easy to identify the malicious server performing the attack and provide an
evidence of its illegal behavior.

Keywords: anonymous communication, unlinkability, onion, universal re–encryption,
repetitive attack

1 Introduction

1.1 Anonymous Communication

Providing anonymous communication in public networks is a problem of growing im-
portance. Demands for anonymity emerge both in the personal sphere and in e-commerce.
In recent years a lot of papers about safe (or even provably anonymous) communica-
tion have appeared. Many protocols have been proposed - the most significant ones
are DC-networks and MIX networks introduced by David Chaum [4, 3]. Later Rackoff

? Partially supported by the EU within the 6th Framework Programme under contract 001907
(DELIS).

?? Copyright: Springer-Verlag, this paper appears in Lecture Notes of Computer Science in a
volume devoted to WISA’2004 (Workshop on Information Security Applications)

and Simon proposed a fairly practical scheme providing anonymity based on an idea of
Chaumian MIXes [14]. That was the first time when onions were explicitly used how-
ever, not under this name. This scheme was examined in details [13, 11] in different
adversary models.

The idea of onions was used in a number of protocols, e.g. Babel [12] - a protocol
aimed at anonymous email transfer, or Onion Routing protocol [7–9] - a protocol in
which the connection between two peers is established via an anonymous path: servers
on the path get information only on immediate predecessors and successors on the path.
Recently, Fairbrother [6] has proposed a scheme based on onions for sending long mes-
sages (however, the scheme has turned out to be insecure). The onion mechanism is
used also in TOR protocol (the second generation onion routing) [5] as one of the basic
building blocks.

1.2 Active Attacks - Repetitive Attack

In many papers (i.e. [14]) it is assumed that an adversary can only eavesdrop the net-
work and observe messages coming in and out of the servers, but cannot decode the
packets, initiate new messages and/or destroy the old ones. While the assumption about
an inability to read messages can be easily fulfilled using encryption techniques, pre-
venting creation or deletion of messages is extremely difficult (for obvious reasons we
cannot rely on the mechanisms such as PKI.)

If an adversary is given the possibility to send new messages of his choice, he can
often compromise anonymity in the system. In order to trace the route of any given
message it suffices to send it again, and search for double occurrences of identical mes-
sages, which shall ultimately reveal the identity of the final recipient. This attack is
called a “repetitive attack”: it was proposed to compromise mix-networks ([3].) In that
case the problem is well studied and resolved: to avoid such an attack several solu-
tions have been suggested. Unfortunately, these methods might be inadequate for the
protection of the onion communication protocols.

In Onion–Routing a repetitive attack is always effective when an adversary controls
all links between servers and no precautions have been used.

1.3 New Results

In this paper we propose a new simple encoding scheme of “onions” immune against
a repetitive attack and similar attacks leading to tracing messages. We call them URE-
onions, since our solution is based on an extension of Universal–Re-Encryption by
Golle, Jakobsson, Juels and Syverson described in [10]. By using this technique we
are fairly able to limit the possibility of a repetitive attack – if a message is sent for the
second time, it is re-encrypted at random at each point of the path. Therefore, the ad-
versary cannot detect any repetition. Moreover, in the case when a server inserts faults
into messages transmitted, it can be detected with an overwhelming probability and the
evidence can be provided easily.

The new way of encoding the onions does not solve the problems that arise due
to the traffic analysis of dynamic connections based on onions – these problems are

2

a major issue for anonymous communication protocols – but it seems no encoding
scheme can solve them.

2 Onions And Their Weaknesses

2.1 Onion Encoding

The goal of the onions is to protect communication so that the recipients and the sender
cannot be linked by an adversary analyzing the network traffic. In the scheme we con-
sider a network consisting ofn servers. We assume that each server can communicate
directly with other servers (like in P2P networks.)

Each server has a public and a private key, all public keys are widely accessible.
The simplest version of the onion protocol looks as follows: in order to send a message
m to serverD, serverS chooses intermediate servers at random, sayJ1, . . . , Jλ, and
then encodesm as anonion(EncX means encryption with the public key ofX):

EncJ1(EncJ2(. . . (EncJλ
(EncD(m), D), Jλ) . . .), J3), J2) .

This onion is sent byS to J1. NodeJ1 decrypts the message - the plaintext obtained
consists of two parts: the second one isJ2, the first one is an onion with one layer peeled
off:

EncJ2(. . . (EncJλ
(EncD(m), D), Jλ) . . .), J3) .

ThenJ1 sends this onion toJ2. NodesJ2, . . . , Jλ work similarly, the onion is “peeled
off” until it finally arrives atD.

The general idea is that a server processing an onion (and an adversary tracing
the traffic) cannot read the content of an onion, only the consecutive decoding with
appropriate private keys gives each intermediate server sufficient information to route
the message.

In fact, additional countermeasures must be taken to avoid some simple attacks (see
for instance [3]):

– For an outgoing sub-onionO sent by serverJi, an adversary may attach “Ji” to
O, encrypt the result with the public key ofJi, and compare the result with the
messages received byJi a step before to find out the source ofO. One can prevent
such an attack by attaching a random string at every layer of an onion or by using
a probabilistic encryption scheme.

– The length of the onions should be fixed (otherwise the size could reveal the route
of a message); some kind of padding can be used to cope with this problem.

The onion protocol acts similarly to a network of mixes: if two onions enter the same
(honest) server simultaneously, an adversary cannot determine the relation between in-
coming and outgoing onions. Determining the number of rounds necessary for the pro-
tocol to ensure anonymity in this way is a challenging problem. Some discussion on the
topic can be found in [14, 1, 11].

3

2.2 Adversary Model

The goal of an adversary might be a communication interruption and/or an unauthorized
access to information. Our concern here is an anonymity breach, that is linking the
senders and recipients of encoded messages in an anonymous communication protocol.
In many papers only passive adversaries are considered: they can observe (eavesdrop)
some communication links and servers, but cannot interfere with the traffic in any way.
Unfortunately, in a real world, this assumption is often too strong, e.g. in a typical
Ethernet network sending packets without authorization is relatively very easy. Such
“pirate” packets, geared at confusing legitimate parties of the protocol, may even appear
to be sent according to the original protocol.

In our paper we assume that an adversary controls all links and some servers. This is
quite a pessimistic model. Moreover, the adversary is “global,” which means he always
has the knowledge of all corrupted system components and can use them arbitrarily. In
particular he has an access to all the private keys of controlled servers.

2.3 Repetitive Attack For Onions

The goal is to establish a connection between the sender and the recipient of a message.
To carry out this attack an adversary sends a traced message twice from a controlled
server and then observes the traffic on all links. When a certain message show up twice
somewhere, it could be the message duplicated by the adversary (partially decoded
according to the onion protocol). Then an adversary can immediately see the route of
the message. An adversary can also send a copy of a message any time later and trace
its route by comparing traffic in controlled links when the original message and its copy
were sent.

2.4 Ways To Protect Against Repetitive Attack

In the case of onions, invariant elements are the onions that have to be sent further and
the random strings (included in the onion to cope with the attack that was mentioned at
the end of Section 2.1.) Unfortunately, we cannot remove the random strings or recode
all layers of the onion simultaneously – at least for the classical onions. The reason is
that such a recoding procedure should be performed without the knowledge of public
keys, and certainly must be performed without the knowledge of private keys. More-
over, re-coding should be performed on internal parts of an onion, while on the other
hand an intermediate server has no access to the internal parts of the onion processed.
In fact, this is a fundamental feature of the encoding scheme.

For mixing networks there are some simple countermeasures against a repetitive
attack. The first one requires the sender to prove his knowledge of what he is sending;
obviously, since the layers are peeled off one by one, and we do not want to disclose
their contents in any way, such a proof is not possible directly in the case of onions.

The second countermeasure is discarding any duplicate messages. Unfortunately,
since an adversary may re-send a message at any later time, this would require from
every server a lot of space for storing all traffic (or at least some fingerprints) that
passes through it. There would also be a time overhead in processing the traffic - each

4

single onion would be checked for re-occurrence. Perhaps the most worrying aspect is
that recording traffic by servers would make eavesdropping much easier than before –
coping the records could be much easier.

The second technique can be enhanced by appending to each package some infor-
mation about the intervals of time when it should arrive at subsequent servers. In this
solution packages “out of date” are simply discarded, so the servers can collect data
from a short period of time only. This approach presented in [2] demands quite precise
synchronization of time (otherwise one can mount an attack based on observing which
messages get discarded).

MIX-networks work in “rounds.” In such systems we can propose to change keys
or parameters in order to make a repetitive attack impossible. Unfortunately, it is not
a practical solution for distributed communication systems which have to work contin-
uously.

Handshake based solutions, like the one used in TOR protocol, have a disadvantage
of a large latency and bidirectional communication.

3 Onions Based on Universal Re-Encryption

3.1 Universal Re–Encryption

Let us recall El-Gamal encryption scheme:p is an appropriate prime number (with
a hard discrete logarithm problem),g is a generator ofZ∗

p, a random, nonzerox < p−1
is the private key, the corresponding public key isy, wherey = gx mod p. A message
m < p is encrypted in the following way. First a numberk, 0 < k < p − 1, is chosen
uniformly at random. Then we putr := gk mod p ands = m · yk mod p. The pair
(s, r) is a ciphertext ofm.

The El-Gamal cryptosystem has a very useful property: the same message encrypted
for the second time yields a different ciphertext. Moreover, given two ciphertexts, it is
impossible to say whether they were encrypted under the same key (unless, of course,
the decryption key is given). This property is calledkey-privacy(see [10]). El-Gamal
cryptosystem has yet another interesting feature. Everyone can re-encrypt a ciphertext
(α, β) so that any relation between the old and the new ciphertext(α′, β′) is hidden
for the observer not equipped with the decryption key. Namely, ify is the public key
used for ciphertext creation, one can choosek′ at random and setα′ := α · yk′

mod p,
β′ := β · gk′

mod p. Obviously,(α′, β′) is a ciphertext of the same plaintext as before,
but both its parts are “blinded” by random factorsyk′

andgk′
.

It is an astonishing feature that the above re-encryption trick can be modified slightly
so that the public key does not need to be known ([10]): the inventors of the scheme,
Golle, Jakobsson, Juels and Syverson, call ituniversal re-encryption, or URE for short.
The scheme looks as follows:

– Preliminaries A cyclic groupG is chosen such that the discrete logarithm problem
is computationally hard (e.g.Z∗

p for an appropriate prime numberp). An arbitrary
generator ofG (sayg) is chosen. ThenG andg are published.

– Key setupAlice chooses a private keyx at random; then the corresponding public
keyy is computed asy = gx.

5

– Encryption To encrypt messagem for Alice, Bob generates numbers0 < k0, k1 <
|G| uniformly at random. Then, the ciphertext ofm is computed as a quadruple:

(α0, β0;α1, β1) :=
(
m · yk0 , gk0 ; yk1 , gk1

)
In fact, this is an El-Gamal encryption made twice: the encrypted messages arem
and1, respectively.

– Decryption Alice computes

m0 :=
α0

βx
0

and m1 :=
α1

βx
1

,

and accepts messagem = m0 , if and only if m1 = 1.
– Re-encryption Random valuesk′

0 and k′
1 are chosen. Re-encrypted message is

described by the following formula:(
α0 · α

k′
0

1 , β0 · β
k′
0

1 ;αk′
1

1 , β
k′
1

1

)
.

During re-encryption all four components of a ciphertext change in a provably secure
way (see [10]).

3.2 Extension of Universal Re–Encryption

Let us assume that we have chosen a path ofλ servers. We would like to encrypt a mes-
sage so that it must be processed by the servers from the path and according to the order
on the path. Simultaneously, we would like to retain the outstanding features of regular
URE.

– Key setupLet xi be the private key of theith server (1 ≤ i ≤ λ). Let yi = gxi

be the corresponding public key;yi is published. Obviously each server determines
his keys on its own and does not need to cooperate with others in this phase.

– Encryption To encrypt a messagem, two random valuesk0 andk1 are generated.
The ciphertext has the following form:

Ex1,x2,...,xλ
(m) = (α0, β0;α1, β1) =

=
(
m · (y1y2 . . . yλ)k0 , gk0 ; (y1y2 . . . yλ)k1 , gk1

)
Hence,

Ex1,x2,...,xλ
(m) =

m · g
k0·

λP
i=1

xi

, gk0 ; g
k1·

λP
i=1

xi

, gk1

 .

So Ex1,...,xλ
(m) is a ciphertext with decryption key

∑λ
i=1 xi, and therefore it can

be re-encrypted in the usual way. At any moment such a ciphertext can be partially
decrypted. For instance, the first server can do it as follows:

Ex2,...,xλ
(m) =

(
α0

βx1
0

, β0;
α1

βx1
1

, β1

)
It is obvious that it is still a correct URE ciphertext with decryption key

∑λ
i=2 xi, and

therefore it can also be re-encrypted as it was mentioned above.

6

4 Modified Onion Protocol

In this section we show how to introduce non-determinism into processing of onions.
For this purpose we modify the encoding used and propose so calledURE-onions. We
use a notation similar to those used in the previous section. Letxi denote a secret
key of serverSi; the corresponding public keyyi = gxi is widely known. Also,g is
a public parameter, it is a generator of a group such that finding discrete logarithms is
computationally hard. LetEx(m) denote a ciphertext of a messagem obtained with a
public key corresponding tox according to schema of Golleet al.

As a first step, a random path of servers is chosen:Si1 , Si2 , . . . , Siλ
. Then a URE-

onion consists ofλ ciphertexts, calledblocks. Thejth block, for1 ≤ j ≤ λ− 1, has the
form:

Exi1+···+xij
(“send toSij+1”)

The last block has the form
Exi1+···+xiλ

(m)

The main difference between URE-onions and the classical onions is that we de-
viate from the original encapsulation idea: the messages for different routing steps are
included in separate ciphertexts.

Another feature that differs this approach from the classical one is that we exclude
any random contents from the intermediate messages. Obviously, random strings in-
cluded in a message would betray duplication of messages and hence also some in-
formation on the route. The general rule is that auxiliary messages may contain only
information that could be available for an adversary analyzing the traffic.

4.1 Routing

First, all blocks described above are sent together to serverSi1 . When a serverSj

receives a URE-onion, it partially decrypts, re-encrypts, and changes the order of its
blocks:

Partial Decryption Phase: each block(α0, β0;α1, β1) is replaced by

Dxj

(
Exj

(mi)
)

=
(

α0

(β0)xj
, β0;

α1

(β1)xj
, β1

)
.

Re-Encryption Phase: now Sj re-encrypts each block. So in place of the original
block (α0, β0;α1, β1) we obtain for some randomly chosenk1, k2:(

α0

(β0)xj
·
(

α1

(β1)xj

)k1

, β0 · (β1)k1 ;
(

α1

(β1)xj

)k2

, (β1)k2

)
.

Permutating Phase: All blocks are permuted at random.

After the decryption phase, exactly one block should contain the next destinationS,
unless the URE-onion has reached its target. It is easy to notice that the length of the
URE-onion remains fixed and the server processing a URE-onion cannot say how many

7

hops remain. Also, re-encryption guarantees that the address ofS, the next server on
the route, remains hidden for all servers exceptSj .

At the next step the URE-onion is sent to the destinationS retrieved from a block
at a partial decryption phase.

4.2 Immunity against Repetitive Attack

Let us argue shortly why a repetitive attack does not work for the proposed protocol.
Assume that there is at least one honest server “on the path” between two malicious
servers controlled by an adversary. Then the adversary cannot detect the repetition of
an onion, since the honest server re-encrypts each onion processed at random.

We have also eliminated all the information available for intermediate servers ex-
cept the next destination. Sending a URE-onion multiple times would only increase the
number of URE-onions with message “send toSi,” and so an adversary can only hope
to provide additional data to the traffic analysis, which is not our concern here. Note
that a URE-onion provides no more data for the traffic analysis than the regular onions.

4.3 Attempts to Change the Route

Since the blocks on a URE-onion are given, a malicious server can reorder them, elim-
inate some of them, or inject its own blocks:

Reordering: Since at each phase (except the last one) there is exactly one block that
represents a valid server name, the order of the blocks is irrelevant. This has no
effect on the protocol security.

Inserting own blocks: certainly, one can inject a number of blocks encoding initial
servers on a path. This is possible, since encoding is based on public keys only.
Then the URE-onion will be routed through such a “detour”. The problem is that if
at least one server on this detour is honest and performs partial decryption then the
original blocks will be partially decrypted unnecessarily. Consequently, the blocks
of the original URE-onion become unreadable. If the additional blocks are inserted
somewhere in the middle then the processing will go on until the first inserted block
is encountered. Then the inserted block will be unreadable as well due to partial
decryptions that have occurred in between.

Removing a block: if a block is removed then at some point some server, saySij
will

not find the ciphertext

Exij
(“send toSij+1”)

in the delivered blocks. Certainly, the serverSij
cannot find the next server on the

path so it must stop processing this URE-onion. Potentially an adversary can also
remove some blocks and then insert new ones. We address this problem in the next
subsections.

Modification of a block: in fact, it is possible to change the contents of a block with-
out decrypting it. We also discuss this problem in the next subsection.

8

4.4 Multiplicative Attack

An adversary can carry out an a bit more sophisticated attack than a repetitive attack.
We call it a “multiplicative attack.”

Let a URE-onion contain blocksEki(mi) for i ≤ λ. Each of them, except a single
one, is dedicated to a particular server and keeps information about its successor on the
path. Let

Eki
(mi) = (α0, β0;α1, β1) = (mi · yk0 , gk0 ; yk1 , gk1)

A malicious server processing the URE-onion can choose some block blindly, say the
blockEki(mi) = (α0, β0;α1, β1), and replaceα0 by α0 · γ for an arbitraryγ. In such
a situation one of the further servers on the path obtainsγ · mi instead ofmi. If this
server is also under the adversary’s control, it knows the valueγ so it can easily recover
the valuemi and can carry on the protocol. If this server is not under control of the
adversary, thenmi remains scrambled and the server finds that the address decoded is
faulty.

During the attack described an adversary can manage to get some information about
an onion path. However, if the first of the attacking servers misses an opportunity to
disturb a proper block, the URE-onion will not be delivered to the final destination.
So the multiplicative attack is less efficient than the repetitive attack for the regular
onion protocol, but it is still unacceptable. For this reason we propose an “investigation”
subprotocol to defend the scheme against the mentioned attack.

4.5 Investigation – Finding out Dishonest Servers

If an honest server obtains an invalid URE-onion (i.e. none of blocks or more than one
decrypted block represent the name of the next server on the route or a valid message) it
can complain about the previous server from the path. In such a situation both servers -
the previous server as well as the complaining one – must prove that they have behaved
correctly, otherwise one of them is recognized guilty. If they manage to prove their
compliance with the protocol, the next predecessor on the path is interrogated. The
procedure is repeated until a cheater is detected. The main goal is to build an appropriate
procedure for verifying a server. We assume that each server knows from whom it gets
each packet and that it can prove it to other servers. The evidence might come for
instance from the signed hash values of the traffic transmitted.

Let us consider a single serverSj from the path. It has a private keyxj such that
yj = gxj . Each block(α0, β0;α1, β1) of the URE-onion should be processed bySj in
two phases – a partial decryption phase and a re-encryption phase. Assume also thatSj

is asked to prove its honest behaviour. It must show that the URE-onion obtained from
(α0, β0;α1, β1) through the partial decryption and re-encryption is correctly built i.e. it
has the form:

(α̂0, β̂0; α̂1, β̂1) =

(
α0

(β0)xj

(
α1

(β1)xj

)k1

, β0(β1)k1 ;
(

α1

(β1)xj

)k2

, (β1)k2

)
for some randomly chosenk1, k2. For verification, the numbersk1 andk2 are revealed,
as well as

(α′
0, β0;α′

1, β1) =
(

α0

(β0)xj
, β0;

α1

(β1)xj
, β1

)
.

9

but of coursexj must remain secret. The re-encryption phase can be checked in a straight-
forward way. For examining partial decryption we use a zero-knowledge protocol for
showing the equality of discrete logarithms[15]: recall that the aim of a protocol called
EQDL(A,B, C; a, b, c) is to prove that there is a numberx such thatA = ax, B =
bx, C = cx. So the server proving its behaviour presents a proof

EQDL(α0/α′
0, α1/α′

1, yj ;β0, β1, g) .

Sinceyj = gxj the proof should convince thatα0/α′
0 = β

xj

0 andα1/α′
1 = β

xj

1 which
was our goal.

Let us note that the EQDL proof scheme is not really interactive, so it is better suited
for showing honesty afterwards.

A server is immediately rejected from the protocol if it fails to prove its correct
behaviour. The only drawback of this method is the necessity of storing all random
parameters that have been used by re-encryption (or ability to reconstruct them from
a random seed). Fortunately, the time of storing them can be limited to some time bound
within which an onion normally reaches its target.

5 Concluding Remarks

Thanks to Universal Re-Encryption scheme URE-onions are immune to a repetitive
attack. Any attempt of a multiplicative attack can be detected with a probability propor-
tional to the ratio of honest servers in the whole network. Also changing a block leads
to detection of a dishonest server with a significant probability so active tracing of an
URE-onion becomes a very risky business. Moreover, URE-onions do not require ad-
ditional interaction except for the case of “cheating investigation,” and even in this case
the interaction is kept minimal. Of course the described scheme does not automatically
ensure security against all theoretically possible active attacks.

The new onions might be more expensive than the original ones regarding process-
ing time: each server must performλ decryptions ofλ blocks instead of one decryption
of a large block, as it happens for the regular onion protocol.

A serious disadvantage is that an URE-onion cannot be combined with symmetric
encryption in the same way as it can be done for regular onions. So it might be suited
for small (e.g. control) messages only. On the other hand, URE-onions offer much more
flexibility that can be used for diverse purposes.

References

1. Berman, R., Fiat, A., Ta-Shma, A.:Provable Unlinkability Against Traffic Analysis, Financial
Cryptography’2004, Lecture Notes in Computer Science 3110, Springer-Verlag

2. Büschkes, R., Egner, J., Kesdogan, D.:Stop-and-Go-MIXes Providing Probabilistic
Anonymity in an Open System, Information Hiding Workshop ’1998 Lecture Notes in Com-
puter Science 1525, Springer-Verlag, pp. 83-98

3. Chaum, D.:Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms, Com-
munications of ACM 24(2) (1981) pp. 84-88

10

4. Chaum, D.:The Dining Cryptographers Problem: Unconditional Sender and Recipient Un-
traceability, Journal of Cryptology 1.1 (1988), 65-75

5. Dingledine, R., Mathewson, N., Syverson, P.:Tor: the Second Generation Onion Router,
USENIX Security, 2004

6. Fairbrother, P.:An Improved Construction for Universal Re-encryption, Privacy Enhancing
Technologies ’2004, Lecture Notes in Computer Science , Springer-Verlag.

7. Goldschlag, D. M., Reed, M. G., Syverson, P. F.:Hiding Routing Information, Information
Hiding Workshop ’1996, Lecture Notes in Computer Science 1174, Springer-Verlag, 137-
150

8. Goldschlag, D. M., Reed, M. G., Syverson, P. F.:Private Web Browsing, Journal of Computer
Security, Special Issue on Web Security 5 (1997), 237-248

9. Goldschlag, D. M., Reed, M. G., Syverson, P. F.:Anonymous Connections and Onion Rout-
ing, IEEE Journal on Selected Areas in Communication, 1998, 16(4):482-494

10. Golle, P., Jakobsson, M., Juels, A., Syverson, P.:Universal Re-encryption for Mixnets, RSA
Conference, Cryptographers’ Track, 2004, 163-178

11. Gomułkiewicz, M., Klonowski, M., Kutyłowski, M.:Provable Unlinkability Against Traffic
Analysis Already AfterO(log(n)) Steps!, 7th Information Security Conference (ISC’2004),
Lecture Notes in Computer Science , Springer-Verlag

12. Gülcü, C., Tsudik, G.:Mixing E-mail with BABEL, ISOC Symposium on Network and Dis-
tributed System Security, IEEE 1996, 2-16

13. Jakobsson, M., Juels, A.:An optimally robust hybrid mix network, 20 ACM Symposium on
Principles of Distributed Computing 2001, 284-292

14. Rackoff, C., Simon, D. R.:Cryptographic Defense Against Traffic Analysis, 25 ACM Sym-
posium on Theory of Computing (1993), pp. 672-681

15. Schnorr, C.P.:Efficient signature generation by smart cards, Journal of Cryptology 4, 1991:
161-174

11

