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ABSTRACT

We design and analyze the first practical anonymous pay-
ment mechanisms for network services. We start by report-
ing on our experience with the implementation of a routing
micropayment solution for Tor. We then propose micro-
payment protocols of increasingly complex requirements for
networked services, such as P2P or cloud-hosted services.

The solutions are efficient, with bandwidth and latency
overheads of under 4% and 0.9 ms respectively (in ORPay for
Tor), provide full anonymity (both for payers and payees),
and support thousands of transactions per second.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General

General Terms

Security, Performance

Keywords

Anonymity, Privacy, Micropayments, Onion routing

1. INTRODUCTION
With increasingly complex webs of networked, interacting

entities, efficient payment mechanisms become paramount.
And while traditional electronic payment and e-cash systems
serve well for sizable cash amounts, they feature impractical
overheads for small, penny-level payments, due to expensive
infrastructure and protocol level constructs.

Yet, small online cash (or non-cash – e.g., quality of service
– tokens) transactions are becoming increasingly popular.
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Users can download MP3 music from websites (e.g. iTunes
store[1]) for tens of pennies. Providing network services such
as routing [16] and P2P file sharing [33] feature sub-penny
service costs per routed unit or shared file. In such settings,
simple and efficient micropayment mechanisms are required
with lower overheads than existing payment protocols. This
is possible because – unlike in traditional e-cash protocols –
the minute nature of payments often allows for increased ef-
ficiency under more relaxed guarantees – e.g., upper-capping
double-spending instead of full prevention.

In existing micropayment mechanisms, efficiency and cor-
rectness have been two of the main driving design thrusts.
Often however micropayment schemes need to also provide
anonymity, a property that is quintessential for more tradi-
tional e-cash but seems harder to achieve here due to effi-
ciency requirements. In e-cash, anonymity is provided by de-
ploying clever yet expensive cryptography or tailored secret
splitting. In micropayments however, achieving efficiency,
correctness and anonymity at the same time is challenging
in no small measure due to the apparently conflicting re-
quirements. For example, often to prevent double-spending
(correctness), the identity of payers is included in payments
(loss of anonymity). Double-spending could also be pre-
vented by assuming an online bank, however this would be
inefficient and probably not anonymous etc. Yet, while it
seems reasonable to sacrifice some accuracy to get efficiency,
the price of privacy is inestimable.

Here we introduce a set of efficient, correct and anony-
mous micropayment mechanisms and proof of concept im-
plementations. Users can make untraceable, anonymous mi-
cropayments to each other and several micropayments can
be aggregated and cashed once. Illicit behavior such as over-
spending is detected quickly after no more than a tunable
small amount of cash has been involved. In such a case only,
perpetrator identities can be revealed. The mechanisms are
practical with minimal overheads and support thousands of
transactions per second.

2. PRELIMINARIES
Let B denote the“bank”, any authority that manages pay-

ment accounts. It does not need to be centralized and in
real deployments this functionality can be delegated to a
pre-existing trusted service such as a distributed directory
1. Let U denote a payer and V be a service payee (e.g.,
a vendor). B is trusted to correctly withdraw and deposit
payments upon valid requests. U and V can be honest or

1In ORPay, the bank is a small component attached to the
main Tor Directory service.



malicious, by all means to break the protocol. Let Id(X)
denote the unique identity associated with participant X.
Let U denote the set of active payers – payers with open
accounts with a positive balance. Let [U ] denote the knowl-
edge of a party U , including the bank. [U ] consists of all
the messages sent and received by U and any knowledge de-
rived from them. We denote with {M}k the encryption of
message M with key k. X →֒R D is a random choice of
value X from domain D. The notation PrX(Y ) denotes the
probability of event Y given the input X.

2.1 Tools
We require several cryptographic primitives with all the

associated semantic security [19] properties: (i) a secure,
collision resistant hash function which builds a distribution
from its input that is indistinguishable from a uniform ran-
dom distribution (we use the notation H(x)), (ii) a semanti-
cally secure [19] encryption (a computationally bounded ad-
versary has a negligible advantage at determining whether
a pair of encrypted items of the same length represent the
same or unique items), (iii) Merkle (hash) trees [26], and (iv)
a pseudo random number generator (PRNG) whose output
is indistinguishable from a uniform random distribution over
the output space (we use the notation G(x)). We note that
assumptions (i) and (iv) are equivalent in both semantics
and execution costs.

We assume the existence and security of cut and choose
blind signature protocols [10]2. We assume the existence of a
simple threshold splitting mechanism [19, 24, 20] that takes
as input a value X and generates n “shares” thereof, such
that any m + 1 or more shares are enough to re-construct
X. No probabilistic polynomial time algorithm exists that
can re-construct X out of less than m + 1 shares.

2.2 Payment Chains.
A micropayment scheme is a set of protocols

µP = {BKGen, UKGen, InitChain, Spend, Deposit}.
Payment chains were first introduced in PayWord [30] by

Rivest and Shamir. A payer generates a long one-way hash
chain, where the end-element (“the root”) is signed and pro-
vided to the payee. Individual chain elements are then used
in inverse order (to prevent forgery – due to one-wayness of
the hash) as coins. Payees can verify coin validity for each in-
dividual payment by re-hashing the received value and com-
paring it with the previously received payment. The number
of so far received coins from a chain represents the value of
the total payment. To cash this payment the payee only
needs to present to the bank the payer-authenticated root
of the hash chain and the last-received chain element. By
re-generating the hash chain portion from this value to the
root in natural order, any party can verify that the chain is
authentic. Basic primitives for PayWord [30] are as follows.

BKGen(1k, params) The bank B invokes this to generate
its public/private key pair, (pkB, skB).

UKGen(1k, params) Each payer U calls UKGen to gener-
ate its public/private key pair, (pkU , skU ).

InitChain(U(skU ), V (skV , pkB)). This is run between U
and V to allow U to initialize a micropayment chain. The

2Naturally, we are aware of the existence of more efficient
blind signature schemes but we need the cut and choose
properties. We note that cut and choose has been used for
digital payment mechanisms before [10].

protocol is implemented as follows. Let wm →֒R {0, 1}k be a
random number chosen by U . U generates a micropayment
chain µCHN = w0, w1...wm as discussed above, where wi =
h(wi+1), for i = m − 1..0. w0 is called the root of the chain
and w1, ...wm are called PayWords. U commits to the chain
by sending V the value CMT = {V, w0, D, . . .}skU

, where
D is an expiration date, and a bank signed certificate. V
verifies the certificate and U ’s signature on the CMT value.
If this fails, V generates ERROR.

Spend(U(skU , µCHN, k, n), V (skV , CMT, k, n)). This is
run between a payer U and a payee V after the InitChain
protocol has completed and k micro-coins from CHN have
been spent by U to V . It allows U to spend another n
micro-coins to V . To this end U sends to V the nth Pay-
Word, wn. V verifies that hn(wk+n) = wk. If it fails, V
generates ERROR.

Deposit(V (skV , CMT, wk, pkB), B(pkV , skB)). This is run
between a payee V and the bank B and allows V to de-
posit k micro-coins into its bank account. V sends the com-
mitment CMT and the last micro-coin received, wk, to B
which checks the “well-formed’-ness of CMT and also that
hk(wk) = w0. If either check fails, the bank generates ER-
ROR. Otherwise, it credits V ’s account and debits U ′s ac-
count with k.

2.3 Adversaries and Deployment.

Adversary. We assume a computationally bounded PPT
adversary that may collude with or masquerade as any num-
ber of vendors, payers and the bank. Banks are trusted to
perform the bank-side protocol correctly (even though they
might be curious). This adversary is more powerful than the
one assumed in Tor – to preserve anonymity, Tor assumes
the adversary does not control the first and the last node
in a circuit. Moreover Tor only guarantees unlinkability of
parties and not full anonymity (we define this as “transac-
tion k-unlinkability” below). It is also at least as strong as
in related work [4] where “users can only observe the traffic
going through them and a limited amount of the rest of the
network traffic”.
Deployment. Naturally, micropayments should be ef-
ficient: computation and communication costs should be
much lower than transacted values. Execution times should
allow acceptable high transaction rates. Bank involvement
should be minimal. For most practical applications this
means that the Bank should not be required to be online
at transaction time. Moreover, it might be desirable to al-
low multiple micropayments to be aggregated into a single
large payment which can be cashed in one operation.

Correctness mandates preventing illicit spending and coin
forgery. Often, for efficiency, these requirements can be re-
laxed to only upper-cap the amount of illicitly handled cash
before probabilistic detection thereof. This is appropriate
especially given the “micro” nature of the payments’ values.

Finally, to be useful, often micropayment schemes need
to provide anonymity, a property that is quintessential for
more traditional e-cash but seems harder to achieve here due
to efficiency requirements. Payers’ privacy is not the only
concern here. Payments should also be un-traceable to pay-
ees and different payments from the same payer should not
be linkable. This is a stronger definition of anonymity

for payments than in existing research [7, 6] – most im-
portantly because it also considers payee’s privacy.



Properties. The above can be summarized as follows.

P1.1. Payment k-unlinkability. Given a micropayment
instance p and the set U of k active users, there is no PPT
algorithm Alg that can distinguish the payer from U that has
generated the micropayment. That is, the following value is
negligible [19] |Pru→֒RU(Alg(u, p, [B])) − 1/k|.

P1.2. Transaction k-unlinkability. Given a micropay-
ment instance p, the payee V that has been paid with p,
and the set U of k active users, there is no PPT algo-
rithm Alg that can distinguish the payer from U that has
spent p with V . That is, the following value is negligible
|Pru→֒RU (Alg(u, p, [B], [V ])) − 1/k|, even when Alg has ac-
cess to the knowledge of the bank and the payee.

P1.3. Payment k-indistinguishability. Given a micro-
payment chain instance p, the set µP of existing k valid
(non-double spent) micropayment chains, the set U of all
users, and a polynomial function f , there is no PPT algo-
rithm Alg that can distinguish p from other payments in µP ,
some of which are potentially generated by the same payer.
That is, the following value |Prp′ →֒RµP (Alg(p, p′, [B], [U ]))−
1/f(k)| is negligible,even when Alg has access to the Bank’s
and all the users’ knowledge.

P1.4. Payee k-unlinkability. Given a micropayment in-
stance p and the set U of k active users, there is no PPT
algorithm Alg that can distinguish the payee from U that
deposits p with the bank. That is, the following value is neg-
ligible |Pru→֒RU (Alg(u, p, [B])) − 1/k|, even when Alg has
access to the knowledge of the bank.

P2. Offline verification. The solution should not re-
quire the online availability of any participant, including any
trusted party such as the bank. This implies that the payee
should be able to verify the validity of the payment without
having to interact with the bank.

P3. Aggregation. Micropayments can be combined into
a macro-payment. The macro-payment can be redeemed
with the bank for an amount equivalent to the sum of all
combined micropayments.

P4. Double and Over Spending Prevention No pay-
ment instance should be spent more than once and no par-
ticipant should be able to spend more than its account bal-
ance (either through coin forgery or otherwise). If double
(spending same payment multiple times) or overspending
(spending more coins from the payment than allowed) oc-
curs, the identity of the culprit should be revealed. For
efficiency, in this paper we are re-formulating this in terms
of a tunable statistical upper-bound on the amount that can
be double/over-spent before detection.

P5. Low overheads. The micropayment transaction pro-
tocols have to be computation and communication efficient
relatively to their deployment environment.

We will describe the XPay protocols below in the context
of PayWord, introduced in Section 2.2. PayWord is a good
starting point because it naturally satisfies P2-P5. Dur-
ing Spend transactions, the bank is offline (P2). Since the
spender’s identity is included in the payment, overspending
is natively discouraged and immediately discovered (P4).
Moreover, P3 is satisfied since payees only redeem the last
micropayment received. Finally, the costs include one sig-
nature generation and verification per micropayment chain
and one hash computation per micropayment spent. Thus,
P5 is also satisfied.

Yet, PayWord does not satisfy anonymity properties P1.1

- P1.4. This is because in InitChain, the payer commits to
the root of the micropayment chain by signing it with its
private key. Thus, payers can be identified and linked to
any generated micropayment as well as to any transaction
in which they participate. The payee’s identity will also be
revealed during the Deposit procedure.

3. BACKGROUND
Micropayments. A number of micropayment schemes
have been proposed. These include PayWord [30], MicroMint
[30], PayTree [21], Peppercorn [29], Millicent [25], Netcard
[3], Lipton and Ostrovsky’s coin flipping-based scheme [23],
Payfair [34], PPay [33], PAR [4]. In the following we will
detail a few.

PayWord [30] deploys hash chains for implementing the
basic unit payment and only require a signature per session
as detailed in section 2.2. Payments can be aggregated. To
prevent overspending, the payer identity is included in the
payments, thus defeating anonymity. PayTree [21] is build-
ing upon PayWord to further reduce the number of required
expensive crypto signatures by building a Merkle Tree to
efficiently authenticate multiple chains.

MicroMint [30] coins are hash-colliding values in a model
where the bank is assumed to have an advantage in produc-
ing hash collisions over other parties. The solution achieves
its purpose to eliminate public key operations yet requires
the bank to keep track of all coins to prevent double spending
and coin forgery. This comes at the expense of practicality
and anonymity.

Micropayments have also been built on electronic lottery
primitives. In Peppercorn [29]“one cent”consists of a lottery
ticket with a 1% probability of winning one dollar. This re-
sults in a reduction of bank-side overheads at the expense of
absolute fairness – payees get paid “on average” and with no
anonymity. Specific application-oriented (non-anonymous)
schemes have also been proposed. In PPay [33] – targeted
at P2P networks – the symmetric nature of the inter-peer
relationships (peers can be both payees and payers) is de-
ployed to reduce bank overhead.
E-cash. The use of blind signatures and of the cut-and-
choose protocol for providing untraceable electronic cash
payments was proposed in [9] [11] [12] [13]. The problem of
transferable e-cash was analytically studied first by Chaum
and Pedersen [14]. The work of Brands [5] proposes a prim-
itive called restrictive blind signatures to replace the high
cost of blind signatures that use the cut-and-choose tech-
nique. While in our work we have used the latter technique
to illustrate our protocol, for real implementations, Brands’s
solution could be employed.

Franklin and Yung [18] propose the use of a trusted en-
tity (trustee) that collaborates with the bank at withdrawal
and deposit to provide a computation efficient on-line cash
system. Trustees (either on-line or off-line) were proposed
to provide variable degrees of anonymity for e-cash [32] [15]
[8] [17]. Stadler et al. [32] introduced the notion of coin
tracing and introduced several tracing mechanisms, requir-
ing the trustee to be on-line at withdrawal. Camenisch et al.
[8], Frankel et al. [17] and Davida et al. [15] proposed payer
and coin tracing mechanisms using off-line trustees. In our
work however, the payer and payee anonymity is essential
and requires the bank to be unable to link the payer and
payee even when colluding with one of them.



Camenish et al. [6] propose an efficient off-line anonymous
e-cash protocol that offers also user exculpability: the bank
can expose double spenders to third parties. In addition, a
user can withdraw not one, but 2l coins, where each coin
can be spent unlinkably. The result is interesting in that
the storage required for the 2l coins is only O(l + k), where
k is a security parameter. Moreover the solution also allows
traceability of coins without a trusted third party. That is,
once a user double spends any of its coins, all its spendings,
of any of the 2l coins, can be traced. The coin storage cost
of this extension is only O(lk).

In [7] Camenish et al. proposed the notion of endorsed
e-coins: a lightweight endorsement x and the rest of the
coin which is meaningless without x. Endorsed e-coins al-
low users to exchange e-cash by exchanging endorsements.
Two practical scenarios are studied, an optimistic and un-
linkable fair exchange of e-cash for digital goods and services
and onion routing with incentives and accountability for the
routers. We note that this work discusses a weaker form
of anonymity, specifically not considering payees. This is
often undesirable e.g. for anonymous services, rendez-vous
points [16] etc, where payees need to preserve their privacy.
In our work we also consider payee privacy and provide a
solution based on the use of anonymous accounts.

Furthermore, compact and endorsed e-cash are likely not
suitable for micro-transactions. For instance, the endorsed
e-coin generation algorithm requires multiple modular expo-
nentiations, being thus several orders of magnitude costlier
than the XPay suite (cryptographic hash evaluations). This
is essential for micropayments.

Simon [31] proposes a simple e-cash protocol in a network
where anonymous communication is possible. The payer
generates the e-cash by having the bank sign f(x) where x
is the payer’s secret and f is a one-way function. The e-
cash can be transferred by revealing x to the payee. The
payee can then either cash the money with the bank or fur-
ther transfer it by providing the bank with x and asking
it to sign f(y) for which it knows y. If the communication
between the payee and the bank is anonymous, the payee re-
mains anonymous and can transfer the money further. The
bank can link the start and end points of a transfer chain,
however, for long chains this information may be meaning-
less. Moreover, the end point of a transfer chain may repeat
this protocol with itself, to artificially increase the length of
the chain.

A recent result, PAR [4] allows for a certain degree of
“Tor”-anonymity for payments in Tor networks under the
assumption that “ users can only observe the traffic going
through them and a limited amount of the rest of the net-
work traffic”. Sender anonymity is preserved partly through
propagating payments constructed by allowing nodes to only
pay their immediate neighbors. PAR deploys two types of
coins: A-coins (anonymous coins) and S-coins (signed coins).
S-coins contain identities and can be used by malicious insid-
ers and the bank to compromise anonymity. A-coins are im-
plemented using a variant of traditional e-cash that can often
become too expensive (in both cost and execution times) for
arbitrary small micropayments. The paper does not evalu-
ate the cost for generating A-coins. Moreover, it is not clear
how PAR can be extended to work for arbitrary micropay-
ment scenarios (e.g., payments outside of Tor, where there
are no intermediate nodes to preserve sender’s anonymity).
Finally, expensive modular arithmetic operations for each

individual payment coin are unnecessary and often impracti-
cal in scenarios requiring high throughputs – a very probable
deployment for micropayments.

Ngan et al. [27] introduced an incentive design for Tor. Al-
though it is not a payment protocol, it achieves the purpose
of rewarding ”good” relays by having the globally trusted di-
rectory servers to actively and secretly measure the perfor-
mance of each Tor router and give high performance routers
gold stars on the router list. And personal traffic initiated
from those routers will have higher priority in the Tor net-
work. However, the accuracy of this scheme depends on the
frequency of the measurement. As the Tor network grows,
this may place a big burden on the directory servers.

While a number of the above micropayment mechanisms
satisfy some of the correctness and efficiency properties out-
lined in Section 2.3, in the following we introduce a first
set of practical micropayment mechanisms with increasing
degrees of anonymity.

4. ORPAY: ONION ROUTING PAYMENTS
We start by investigating the use of micropayments in

Tor [16] as a means to provide quality of service and motivate
system participation. This will constitute a first step to
assess their feasibility and efficiency in real deployments.

Conceptually, Tor routers will be rewarded with micropay-
ments for correct traffic relaying – these can then be aggre-
gated and deposited through a“banking”service provided by
Tor’s directory. The accounts’ balance can be used as actual
cash in webclick-like incentive schemes, in QoS enforcement,
e.g., by prioritization of traffic or in reputation-based mech-
anisms. For example, routers can specify in their router
description that they only accept connections (and traffic)
from routers whose balance exceeds a threshold.

We first note that Tor only guarantees unlinkability of
parties and not full anonymity (we named this transaction
k-unlinkability P1.2). Moreover, naturally, by its very na-
ture, such an incentive mechanism will not hide identities
(of payers or payees).

Yet, it is important to at least not compromise these ex-
isting k-unlinkability properties. We will achieve this by
coupling the fact that routers are simultaneously part of
multiple circuits with a design in which routers pay on their
own for forwarded traffic. These properties then guarantee
the ability to hide traffic origins as well as source/destination
associations in the Tor adversarial model.

4.1 Protocol
The protocol proceeds as follows. Initially, the bank ser-

vice runs BKGen to establish system parameters and each
participant, either Tor client or router calls UKGen to gen-
erate its key pair.

Next, a user who needs to send data through Tor (the
source) starts by creating a circuit consisting of n routers (n
defaults to 3). Tor builds circuits incrementally; in a first
step the source creates a connection to the first Tor router.
This is the stage where the two (the source and first router)
run InitChain to establish a micropayment chain for future
use. The first router then extends the circuit to the sec-
ond router and similarly these two routers run InitChain
to establish another micropayment chain. This process is
performed n times, once for each link in the Tor circuit (the
final link is between the last router and the intended desti-
nation and there is no payment activity involved).



During the actual data transfer, conceptually the source
will include n micropayments in each packet it sends to the
first router – for this the source and the first router run
the Spend protocol. Recall that the n micropayments are
part of the chain initialized during the circuit establishment
step. Without loss of generality we also assume that for-
warding a Relay packet3 is worth one micropayment. The
first router then piggybacks n − 1 micropayments, from its
own micropayment chain, to each packet forwarded to the
second router. This process is continued until the last router
receives one micropayment from the preceding router, to for-
ward the packet to the destination.

Routers can aggregate micropayments and report them to
the bank at their leisure. The bank updates router ranks pe-
riodically by calculating the performance of each router, for
instance as the ratio of micropayments earned to micropay-
ments spent. Although each router holds an account, there
is need to worry about overspending or double spending.
Selfish routers which use Tor only to relay their traffic but
not provide service to others people will end up with very
low ranks.

Often the destination host can generate (significant) traf-
fic back to the source. Even though initiated by the des-
tination, the source might be the one that is expected to
pay for it. This can be done by having the source piggy-
backing micropayments to ACK packets traveling back to
the destination. Note that the source can also pay ahead for
traffic initiated by the destination: during the circuit initial-
ization step, the source provides payment for the first packet
expected to be sent by the destination and similarly, ACK
packets will contain micropayments for future packets.

In practice, numerous optimizations can be deployed to
the above protocol. For example, a single payment token
can be included for multiple packets. Also, to accelerate the
protocol, a sliding window scheme can be used to allow the
destination to send several packets at a time. If the source
trusts the destination to correctly acknowledge receipt of
packets, the potential cash loss due to unfair behavior can
be bounded by the size of the sliding window W . The upper
bound on cash loss is W ∗ e ∗ n, where e is the value of each
payment amount and n is the number of routers.

The benefit that the payment scheme brings is clear: the
more traffic a Tor router relays for others, the higher rank
it will get. As a result, its personal traffic will be preferred
in the Tor network. Note that pure Tor clients (that are not
routers) are not given rank and they have the lowest priority
in the Tor network.

4.2 Implementation: ORPay
We implemented ORPay, a proof of concept prototype of

the above mechanisms. ORPay deploys out of band (OOB)
communication for payment primitives and control messag-
ing. The “Bank” is implemented in C (using OpenSSL for
cryptography) as a stand-alone component attached to the
Tor directory server.

One of the main raison d’etre of ORPay was to evalu-
ate the practicality of “payment chain” based micropayment
approaches. We thus ran a number of experiments to eval-

3There are two types of packets in Tor, Control and Relay
packets. Control packets which contain circuit building and
destroying commands are not considered for payment. Relay
packets carry end-to-end data, and they are what the source
needs to pay for.

uate the associated overheads. The controlled environment
consisted of a set of interconnected physical machines (with
1.66GHz Intel Core Duo CPU and 2 GB RAM) running
one directory server and a set of tor routers based on VMs,
each router in turn running Tor with default settings under
Ubuntu Linux. The average observed inter-client bandwidth
was 500-600KB/s, the average latency between physical ma-
chines was 1-2ms and 0.5ms for inter-VMs on the same ma-
chine. ORPay was set up to send one micropayment for
every 20 routed packets.

In a first experiment we evaluated the per-hop latency
overheads introduced by ORPay. These latency overheads
were mainly a result of host-side payment processing as well
as payment propagation network latencies. The payment
processing does not contain any expensive public key op-
erations (the signature cost in InitChain step only happens
once per session and the cost is amortized). The out of band
nature of the design resulted in values of about 0.9ms per 3
relay setups, averaging under 300 microseconds per relay.

Next we aimed to understand the impact of the micropay-
ment mechanism on core throughput. To this end we bench-
marked a number of file transfers of increasing amounts of
data. As payments average around 20 bytes and the stan-
dard Tor frames are 512 bytes, a general worst-case upper
bound of just under 4% on bandwidth overhead can be es-
tablished (for one payment token per frame). The observed
overheads averaged under 2% as expected due to multiple
payload frames per token.

Collected payments can be deposited in the bank during
network idle time. The overhead for the directory server to
process one deposit consists of reading data (a payer signed
commitment CMT and the last payword) from the con-
nection, one signature verification and a number of cryp-
tographic hashes. For a payment chain of length 1,000, the
observed overhead was under 2ms.

5. PLUSPAY: FULL ANONYMITY
As we discussed, by its very nature, the above reputa-

tion/incentive mechanism will not hide payers or payees
identities. By letting each router pay to its successor, and
considering the fact that routers can be simultaneously part
of multiple circuits, it provides the transaction k- unlinkabil-
ity P1.2. This is however no longer true for other internet
services such as those offered by cloud computing or even
P2P file sharing, where there are no intermediate nodes to
hide the sender’s identity.

In this section we introduce a solution (we call it PlusPay)
that provides full anonymity P1.1- P1.4. The PlusPay pro-
tocol does not require the existence of intermediate nodes
and allow payers to make untraceable payments to payees.
It uses a level of indirection: instead of withdrawing micro-
payments from its (authenticated) bank account, the payer
opens an anonymous accounts with the bank. Each anony-
mous account has a public/private key pair which may be
used by the account’s owner to sign micropayments. Plus-
Pay achieves this without allowing the bank to link payers
to their anonymous accounts or associated key pairs.

The use of anonymous accounts provides an additional
anonymity property P1.4. It hides not only the identity of
the payer – while subsequently unlinking it from its pay-
ments – but it also allows the payee (vendor) to preserve
its anonymity when depositing earned payments. While not
considered by previous e-cash or micropayment technologies,
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this property can be essential from the perspective of hidden
(anonymous) services [16].

Note that anonymous accounts may enable illegal activi-
ties such as money laundering. While it is outside the scope
of this paper, we note that additional mechanisms may be
used to allow “trusted” third parties to reveal identities of
anonymous account holders in special cases. The anony-
mous account in PlusPay is mainly intended to prevent pri-
vacy leaks in daily transactions, both for individual users
and service providers.

To prevent a payer from overspending, threshold splitting
is employed to generate shares of the payer’s identity. These
“identity shares” are then directly linked to micropayments:
for a micropayment chain of value m, n > m identity shares
are generated, such that any m + 1 shares are enough to
recover the payer’s identity. In every micropayment, the
payer is forced to reveal a randomly chosen identity share
to the payee. Once the number of revealed shares exceeds
m (in the case of overspending), the bank will be able to
identify him.

5.1 Overview
Overall, this works as follows. A payer withdraws e-cash

from its bank account. Then, by interacting with the bank
through an anonymizer, it opens an anonymous account in
which it deposits the previously acquired (un-traceable) e-
cash. The anonymizer provides unlinkability between the
payer’s identity and its anonymous account. The anony-
mous account is then associated with a public/private key
pair, generated by the bank and known thereafter only by
the payer that opened it. To commit to a micropayment
chain root w0, the payer will sign it using the private key
associated with its anonymous account. Here micropayment
chains are similar to checks drawn from bank-hosted anony-
mous account (Figure 1).

5.2 Solution
More formally, PlusPay, a micropayment system is a set

of protocols, PlusPay = {BKGen, UKGen, Withdraw, OpenAC,

SplitId, InitChain, Spend, Deposit}.The BKGen and UKGen
protocols are inherited from PayWord. We now focus on
the new logic.

Withdraw(U(pkB, skU , m),B(pkU , skB , m)). This is run
between a payer U and the bank B and enables the payer
to withdraw an e-cash bill of value m from its account, and
a bank signed one-time use token, in an unlinkable fashion.
The e-cash will be used to open an anonymous account in
OpenAC and the token will be used later as a proof of an
account with balance m in SplitId.

The protocol works as follows. U engages in a cut and
choose blind signature protocol with B. Specifically, the
payer generates t bills and t tokens of the format (SNi, m)
and tokeni, m, for i = 1..t, where SNi and tokenid are inde-
pendent random numbers (using different formats to be dis-
tinguished). The bank then signs a blinded version of a ran-
domly chosen (SNi, m) bill, and tokeni, m token, while ver-
ifying the “well-formed”-ness of the remaining t− 1 of them.
The verification consists of checking that SNs and tokens
are in the right formats and the value of the second field of
the revealed messages is m. If it fails, B generates ERROR.
Otherwise, the payer obtains a signed anonymous e-cash bill,
EC = {SN, m}skB

, and a token TK = {token, m}skB
with

SN and token unknown to B.
Of concern given the cut-and-choose approach of generat-

ing micropayments is the probability to cheat. Even if the
probability is small, if successful, a cheating payer can end
up with a very large payment. We address this issue by al-
lowing only predefined micropayment chain values (e.g., 1$,
5$, 10$). The bank will not accept e-cash bills of other val-
ues. The upper bound on the chain value can be defined to
be a function of the payer’s probability to cheat. Moreover,
the bank can punish detected cheating attempts for instance
by penalizing the culprit’s account with a function of the
cheated amount. Given the small probability of a successful
attack, such a strategy can be a powerful deterrent.

OpenAC(U(pkB, skU , EC, m), B(skB, m)). This protocol
is run between a payer and the bank through an anonymizer
AChan and allows the payer to deposit e-cash of value m
into a newly generated anonymous account, unlinkable to
the payer. The output for the payer is either an anonymous
account AC with a balance m or ERROR. The bank output
is a transaction record or ERROR.

This is implemented as follows. U first generates a pub-
lic/private key pair (pkAC , skAC) for the account AC. Then
U contacts B through AChan and presents the blindly bank-
signed e-cash EC obtained during the previous (Withdraw)
step and pkAC . B checks the validity of the e-cash (the sig-
nature and whether it has been spent before). If EC is in-
valid, B generates ERROR. Otherwise, B opens an anony-
mous account AC identified by a (random) serial number
SNAC and seeds it with the m-valued currency of EC. It
then signs BalCert(AC) = {pkAC , SNAC , m}skB

a balance
certificate, and sends back the anonymous account informa-
tion AC = {SNAC , m,BalCert} to U through AChan.

We note that this is the only step requiring an anonymizer.
Its associated traffic is negligible. When deployed for micro-
payments in anonymizers, the system can be set up to allow
new payers to use the anonymizer for free to open their ac-
count. This avoids the apparent circularity of new payers
being unable to pay for anonymizer traffic when joining.

SplitId(U(pkB, skU , AC,TK, m), B(skB, m)). The SplitId
protocol allows the payer to obtain the bank’s blind signa-
ture on a set of shares of its identity. Its output for U is a
Threshold Identity Revealing Anonymous Account (TIRAC,
see below) or ERROR. The output for B is a record of the



transaction or ERROR. U uses a (m, n) threshold splitting
mechanism to split Id(U) into n > m shares, such that any
but no less than m + 1 shares can be used to reconstruct
Id(U). The format of the identity shares is

IdSharei = {shi, i, m, {h(SNAC ⊕ RU )}skAC
}

where RU is a random value. First, U needs to present TK
to B to prove that an account with m balance exists. B
verifies the signature on TK and TK has not been used
before. If all checks verify, B records the token to prevent
reuse. Then the payer then builds a Merkle tree on the set
of shares (let r0 be the tree’s root) and engages in a blind
signature protocol with B to (i) retrieve B’s blind signature
on the root of the Merkle tree of the shares and (ii) allow
B to verify the “well-formed”-ness of the shares. The bank’s
output, if an ERROR is not encountered, is its signature
on the last blinded (unrevealed during the cut-and-choose
protocol) Merkle tree root – let it be denoted r0. U ’s output
is then TIRAC = {SNAC , {r0}skB

}.
The purpose of the {h(SNAC ⊕RU )}skAC

value is to link
the identity shares to a valid anonymous account, used later
in the Spend protocol. Since this step is performed here
over an authenticated channel, the bank is not allowed to
see the anonymous account’s serial number (this is ensured
by the encryption of SNAC ). During the Spend protocol
however, U will be able to prove the identity share’s link to
the anonymous account, by revealing to SNAC and RU to
the payee.

Note that the payee has to verify {h(SNAC ⊕ RU )}skAC

just once per chain. For any subsequent identity shares, no
public key cryptography is needed – a simple binary string
match to the previously authenticated {h(SNAC⊕RU )}skAC

value is sufficient.

InitChain(U(skU , BalCert(AC), m, {r0}skB
), V (skV , pkB, m)).

Similar to PayWord, this allows a payer U to initialize a
payment session with a payee V . For this, U generates a
micropayment hash chain and commits to its root. Instead
of the commitment being generated using U ’s private key, it
is generated using the secret key associated with the anony-
mous account AC, CMT = {V, w0, SNAC}skAC

. U then
sends the commitment CMT , the BalCert(AC) certificate
and the root of the Merkle tree, {r0}skB

, to V . V validates
the commitment by checking that (i) the public key pkAC

contained in BalCert can verify the signature used on the
CMT value and (ii) the account number SNAC contained in
CMT is consistent with the one in BalCert. V also verifies
B’s signature on the identity share Merkle tree root. If any
of these checks fails, V returns ERROR. Otherwise, Spend

can be launched.

Spend(U(skU , pkV , T IRAC, µCHN), V (skV , pkB)). This im-
plements the same functionality as the PayWord Spend pro-
tocol. It is run between U and V after InitChain has com-
pleted and k micro-coins have been spent by U to V . It al-
lows U to spend an additional n micro-coins with V . While
sending V a new micropayment the payer U also sends a
provably randomly selected identity share together with the
(Merkle) proof that the share is from the original set of
shares authenticated by the tree root signed by B. The
payer then reveals the SNAC and RU values to allow V to
verify the identity share’s link to the anonymous account.
Let the chosen share be IdSharei = {shi, i, m, {h(SNAC ⊕
RU )}skAC

}. Next V checks the “well-formed”-ness of the
share, specifically that (i) the share and its proof correctly

reconstruct the r0 value, (ii) it has the expected index i =
G(Id(V ), wk, . . .) mod n (this can be done only once per
chain, see note above), (iii) the balance m is consistent in
IdShare and BalCert and (iv) the hash of the xor of SNAC

and RU is indeed signed with the secret key corresponding
to the public key included in the BalCert certificate. If any
of these checks fails, V generates ERROR. Otherwise, it ac-
cepts payment.

Deposit(V (skV , CMT, wk, pkB), B(pkV , skB)). In addition
to proving to B knowledge of the commitment value CMT
and of k micro-coins, the payee needs also present k differ-
ent IdShare values. B verifies that all the identity shares
are associated with the same anonymous account AC. If the
check fails, B generates ERROR. Otherwise, it records the
shares associated with the serial number SNAC . To reduce
storage cost and the time required to detect overspending,
expired micropayments can be garbage collected and payees
will need to cash payments before their expiration date.

The payee can choose to stay anonymous by requesting B
to deposit the micro-coins in its anonymous account and by
initiating this protocol over an anonymous channel. Simi-
larly, a payer can redeem unspent micropayments using its
anonymous account and pretending to be a vendor.

If B detects any overspending with an anonymous account
AC, it will be able to reconstruct the owner’s identity using
the identity shares recorded.

5.3 Improvements

Improvements: Timing of Protocol Calls. Micro-
payment generation consists of calls to Withdraw, OpenAC
and SplitId, in this order. Withdraw and SplitId are per-
formed over an authenticated channel, whereas OpenAC
goes through an anonymous channel. Care must be taken to
ensure the bank cannot link these calls through their timing,
since otherwise the payer’s identity (or its identity shares)
could be linked to its anonymous account. While we be-
lieve that this is arguably an application specific challenge
related to the use of anonymizers in general, nevertheless,
in the following, we propose a solution that addresses this
issue probabilistically.

The bank divides time into epochs, whose start times and
durations are made public. W.l.o.g., let us assume that all
epochs have the same length, Te (used below). Each epoch
is divided into three frames: Withdraw, OpenAC and Spli-
tId. The bank will answer Withdraw, OpenAC or SplitId
protocol calls only during their corresponding frame. To
generate micropayments, a payer will wait for the beginning
of the next epoch – only then will it contact the bank with
the Withdraw, OpenAC and SplitId call, made at random
within the corresponding frames of the current epoch. A
payer cannot engage in a InitChain or Spend protocol dur-
ing this epoch, but instead it will wait for the next epoch.
This approach requires the payers to be roughly time syn-
chronized with the bank, yet it can be easily made tolerant
to clock skews by time gaps between Withdraw, OpenAC
and SplitId frames.

While this solves the timing attack issue probabilistically,
now apparently an actively malicious adversarial bank can
now also try to target specific victims e.g., by only answering
their Withdraw calls and filtering out all other calls. This
would effectively allow it to trace the Withdraw, OpenAC
and SplitId calls made by the victims. While our threat
model does not include such an actively malicious bank.



5.4 Analysis
By construction, the bank can be offline during transac-

tions (P2). Payees can verify the validity of received micro-
payments without querying the bank. Moreover, payments
from the same payment chain can be aggregated (P3). We
evaluate overheads in Section 5.5 and show they are low.
Overspending can be controlled (P4):

Theorem 1. The expectation of overspending is control-
lable by the bank.

Proof (sketch): For an anonymous account with balance m,
m+1 different identity shares (m+1 payments) are enough
to reconstruct the identity of the payer. Let there be a total
of n = f ∗ m identity shares, where f > 1 is a system wide
parameter called the overspending control factor. Note that
every time a payer spends, payees randomly request a share
from the pool of n. Then let x be the expected number of
times a payer can spend from an anonymous account, until
reveal m + 1 different identity shares. This reduces to the
classical Coupon Collector’s Problem.

E[x] = E[1] + E[2] + · · · + E[m + 1]

=
n

n
+

n

n − 1
+ · · · +

n

n − m

≈ f ln
f

f − 1
∗ m

For instance for f = 10, E(x) ≈ 1.05m, meaning that over-
spending can be controlled below 5%.

PlusPay also satisfies P1.1 -P1.4. Let N be the total
number of system users, Tw the expected per-payer interval
between withdrawals, and Te the length of the bank gener-
ated time epochs. Then

Theorem 2. Micropayments generated using PlusPay are
k-unlinkable, with k = N ∗ Te/2Tw.

This basically shows that a payer U cannot be linked
to one of its micropayments or anonymous accounts dur-
ing Withdraw, OpenAC or SplitId.4 We are now proving
that even when the payee is an adversary, the InitChain,
Spend and Deposit protocols can neither be used to provide
such a link, nor to link U to the payee.

Theorem 3. The micropayment transactions of an hon-
est payer of PlusPay are k-unlinkable, where k > N∗Te/2Tw,
even with payee-bank collusion.

The PlusPay solution allows payers to balance an effi-
ciency privacy trade-off. Specifically, a payer may chose to
re-use an anonymous account for multiple payment chains,
at the expense of micropayment k-indistinguishability (P1.3).
This may be often desirable and more efficient when P1.3

is not of concern. If, on the other hand, a payer chooses to
not re-use anonymous accounts, then P1.3 holds:

Theorem 4. Micropayments generated in the PlusPay so-
lution by non - overspending payers are k - indistinguishable,
where k is the minimum between the total number of anony-
mous accounts with available funds and (N ∗ Te/2Tw).

4Due to space limitations, we can not accommodate the
proofs of Theorem 2 - 5. However they will be included
in the future journal version of the paper.
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setup: consisting of Withdraw, OpenAC and SplitId pro-
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nated by the Tor latency. The SplitId’s dependence on
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f = 100).

Moreover, PlusPay also provides payee anonymity. That
is, even when the payer and the bank collaborate, they are
unable to link deposited payments to the payee.

Theorem 5. Payees depositing micropayments with the
bank in PlusPay are N - indistinguishable, where N is the
number of active users in the system (with an active anony-
mous account).

5.5 Performance Evaluation
We have evaluated the performance of PlusPay on off-

the shelf end-user hardware: Intel P4, 3.4 GHz, 2GB RAM,
openssl 0.9.8b [28]. Under light-load multi-user mode, this
setup allows about 261 RSA-1024 signatures and 5423 RSA
verifications per second as well as more than 1.5 million
SHA-1 crypto hashes per second (on 16Byte blocks). We
assumed a network of no more than 6Mbps bandwidth and
1ms latency. Typical Tor latencies were assumed (500ms)
[16]. For illustration purposes, we estimated overheads and
throughputs for the case of a payer opening an anonymous
account and depositing 100 coins (while generating one iden-
tity share per coin).

Payment Setup. For the PlusPay solution, payment
setup consists of three protocol calls, Withdraw, OpenAC
and SplitId. Figure 2(a) shows the costs for each protocol
call, when the overspending control factor (f) increases from
1 to 100. The y-axis is shown in logarithmic scale. For
the cut and choose step of the Withdraw protocol, we have
considered that the payer generates t = 100 messages (2t −
1 RSA blinding operations), out of which the bank signs
only one (one RSA signature). Even though the network
delay of Withdraw consists of sending t + 1 messages and
one challenge/response protocol, the total overhead of the
protocol is around 100ms.

During the OpenAC step, the dominating network latency
is due to Tor. The computation overhead consists of the
bank performing an e-cash verification (one RSA verifica-
tion) and a RSA signature generation. The total cost is
then dominated by Tor (around 500ms). The cost of gener-
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that the bank can process in a second when the number of message duplicates, t, in the cut and choose protocols ranges

from 1 to 100. SplitId/SignMC are the protocols with the highest bank overhead, however, even for t = 10, the bank

can perform 10 SplitId/SignMC calls per second. (b) The cost of micropayment transactions and deposit operations

for PlusPay, as a function of the micropayment chain length. Even for short chains these costs are almost negligible

(500µ s for a transaction and 750µs for a Deposit for a chain of length 50).

ating a new key pair is not factored in as it can be incurred
offline by the client.

The SplitId protocol consists of the payer generating t =
100 identity sets and building a Merkle tree over each set (2
f ∗ m crypto hashes, where m is the payment value). This
is followed by a cut and choose protocol consisting of 2t− 1
RSA encryptions, t − 1 share reconstructions and one RSA
signature. The reconstruction can be done efficiently using
an O(m log3 m) algorithm [22, 2]. The network delay of Spli-
tId is dominated by the cost of sending the t blinded identity
sets. Figure 2(a) shows that, as expected, the overall cost
of SplitId increases linearly with the overspending control
factor f . This increase is reasonable, ranging from less than
100ms for f = 1 to no more than 200ms for f = 100.

Throughputs. Figure 3(a) shows the computation over-
head for the bank during Withdraw, OpenAC and SplitId
protocol calls of PlusPay when the number of message du-
plicates, t, during the cut and choose protocols increases
from 1 to 100 but the value of f is set to 10. The OpenAC
protocol has constant overhead, allowing the bank to pro-
cess around 250 OpenAC calls per second. The overhead of
the Withdraw and SplitId/SignMC protocols is linear in the
value of t. That is, the bank can process between 50 (for
t = 100) and 260 (for t = 1) Withdraw calls per second.
SplitId/SignMC are more compute intensive – the bank can
perform between 10 (for t = 100) and 260 (for t = 1) calls
per second. As a result then, for PlusPay the length of the
SplitId time frame has to be around 5 times the length of the
Withdraw time frame. Note that the OpenAC time frame
can be as small as a fifth of the Withdraw time frame.

Costs. During a micropayment transaction between
a payer and a payee, InitChain and Spend are invoked.
Later, the payee calls Deposit to redeem the micropayments.
InitChain consists of a signature generation and m crypto
hashes performed by the payer and three signature verifica-
tions, performed by the payee. Spend consists roughly of
log (f ∗ m) crypto hashes performed by the payee. Deposit
requires the bank to perform one signature verification and
log (f ∗ m) crypto hashes per micropayment to verify the
correctness of the identity shares.

Figure 3(b) shows the transaction cost ( InitChain plus
Spend) and the Deposit cost per micropayment. While for
short chains, the transaction cost is higher (5ms for 1 pay-
ment chain) than the deposit cost (2ms), this changes for
longer chains. The cost of a Deposit operation is domi-
nated by a signature verification, whereas for a micropay-
ment transaction, signature verification costs are amortized
over the number of spent micropayments. Note that for a
chain of length 50, the transaction cost is close to 500µs and
the deposit cost is 750µs. Thus, even for reasonably short
chains the transaction cost is almost negligible.

6. CONCLUSIONS
We introduced the first set of efficient and correct micro-

payment mechanisms with anonymity. They feature offline
verification, aggregation, statistical overspending prevention
and very low overheads. Throughputs of of thousands of
transactions per second are possible. Especially we imple-
mented ORPay and the experiments show it only added less
than 4% overhead. Micropayments become thus a viable
incentive mechanism for practical deployment in networked
services such as packet routing, anonymizers, and peer to
peer file sharing, enabling fairness, quality of service and
global cost optimization.
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