
Balancing the Shadows

Max Schuchard, Alexander W. Dean, Victor Heorhiadi, Nicholas Hopper, Yongdae Kim
University of Minnesota

Minneapolis, MN
{schuch, adean, victor, hopper, kyd } @ cs.umn.edu

ABSTRACT
In this paper, we examine the ShadowWalker peer-to-peer anonym-
ity scheme. ShadowWalker attempts to provide anonymity via cir-
cuits built using random walks over a secured topology. Shad-
owWalker’s topology is secured through the use of shadows, peers
that certify another node’s routing information. We demonstrate
two flaws in ShadowWalker. First, an attacker can compromise the
underlying topology of ShadowWalker as a result of an insufficient
numbers of shadows. We show that the failure of the underlying
topology directly results in the failure of ShadowWalker to pro-
vide anonymity guarantees. Second, the dependence on untrusted
nodes to certify other nodes allows an attacker to launch a selec-
tive denial of service attack. We show that there is an inherent
tension between protecting against these two attacks: weakening
the first attack strengthens the second attack and vice versa. We
introduce a mechanism that generalizes ShadowWalker’s lookup
defense, and show that this mechanism can be tuned to simultane-
ously provide strong protection against both these attacks. Last, we
implement ShadowWalker and provide performance measurements
from a prototype deployment on PlanetLab.

Categories and Subject Descriptors: C.2.0 COMPUTER COM-
MUNICATION NETWORKS: Security and protection
General Terms: Security
Keywords: anonymity, peer-to-peer, eclipse attack, selective de-
nial of service, ShadowWalker

1. INTRODUCTION
Anonymity systems are a critical tool for those seeking online

privacy. They are used to avoid surveillance, preserve freedom of
speech, and aid censorship resistance. Over the past decade usage
of these systems has become far more widespread: for example,
Tor [5], the most popular and well known low-latency anonymity
system, is estimated to have roughly 100,000 simultaneous users.
This number will likely continue to rise as more and more Inter-
net users become increasingly aware of online privacy issues. It is
easily within the realm of possibility that the number of Tor users
could rise to that of other commonly used peer-to-peer systems,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0096-4/10/10 ...$10.00.

which support millions of simultaneous users. Should this happen,
at the current ratio of clients to relays, nearly all of the bandwidth
in the system would be spent distributing network state. This is a
result of Tor’s requirement that each node must know of all relays.

One possible solution to this lack of scalability is the use of
a distributed peer-to-peer network structure. Most existing peer-
to-peer anonymous communication systems open up new attack
surfaces [1, 4, 11, 20] that do not exist in more centralized de-
signs while remaining vulnerable to many of the same attacks that
plague their centralized counterparts. In response to these attacks,
researchers have attempted to create a fully decentralized system
that is not vulnerable to these attacks.

One of the products of this effort is ShadowWalker [12], a peer-
to-peer anonymous communication system based on random walks
over a secure, structured topology. ShadowWalker secures its topol-
ogy by having each node’s state mirrored by its surrounding nodes,
called shadows. Any response to a lookup is accompanied by dig-
ital signatures from all of a node’s shadows (its neighborhood) at-
testing to the correctness of the response. So long as each neigh-
borhood contains at least one honest node, an adversary should not
be able to maliciously influence query results.

In this paper we outline two potential attacks on ShadowWalker.
First, we show by simulation that if an adversary can acquire a
neighborhood composed entirely of adversarial nodes, then he can
launch an “eclipse” attack, actively corrupting honest nodes’ rout-
ing tables so that, after a very short time, nearly all random walks
on the topology are “captured” by adversarial nodes. We demon-
strate both analytically and via simulation that an attacker can eas-
ily acquire such a neighborhood due to ShadowWalker’s small neigh-
borhood size. We present a simple solution to this attack: dramati-
cally increasing the neighborhood size.

Second, we demonstrate a selective denial of service (DoS) at-
tack on ShadowWalker. In order to be considered a valid hop in a
random walk, a node must provide signatures from all of its shad-
ows attesting to the correctness of its routing table. We show how
adversarial nodes can refuse to provide signatures to legitimate
nodes, preventing them from being valid hops in random walks.
Our solution to the first attack will actually strengthen this attack
as it causes adversarial nodes to shadow several times more nodes
than they normally would have. We demonstrate that a very weak
attacker can control nearly all steps in all random walks over the
network by strategically refusing to sign routing tables. Our solu-
tion to this issue is to reduce the number of digital signatures a node
needs from its shadows in order to be considered valid.

Thus, we show an inherent tension between resistance to these
two attacks: resisting eclipse attacks requires rejecting routing ta-
bles with few signatures, while resisting selective DoS requires ac-
cepting routing tables with few signatures. We examine the trade-

off between these parameters and show that they can be tuned to
simultaneously make both attacks unlikely, at the cost of dramati-
cally increasing the cryptographic and communication overhead.

To evaluate the overhead incurred by our solution, we construct
the first working prototype of ShadowWalker. We discuss several
techniques that are required to translate the protocol into a function-
ing system and demonstrate that a ShadowWalker network using
neighborhood sizes we recommend is functional. We deploy our
implementation across PlanetLab and measure time requirements
for topology maintenance and random walks for circuit construc-
tion.

2. BACKGROUND

2.1 Anonymity Systems
Anonymity systems are designed to create unlinkability between

two communicating parties. They achieve this goal by mixing to-
gether the traffic of a large collection of users, an idea first pro-
posed by Chaum [3]. While an adversary will know that a party
is communicating with someone, he will, hopefully, not be able to
determine who that someone is, beyond a member of a large set.

Modern low-latency systems achieve mixing by forwarding traf-
fic from multiple simultaneous users through several relays. As an
example, consider the operation of Tor [5]. Each Tor user acquires
a list of all relays in Tor once every hour. Using this list, a Tor
client builds a virtual circuit, commonly consisting of three relays.
Traffic proceeds to flow from the user to the first relay – the entry
node – and from there through each other relay in the circuit, until
it reaches the last relay – the exit node. At this point traffic is for-
warded to the actual destination. Return traffic takes the same path
in reverse, entering Tor at the exit node and reaching the user via
the entry node. This circuit-based system works well; however, it is
not without shortcomings. For example, an adversary who controls
the first and last hops in a circuit can link the sender and receiver
via timing analysis.

If we assume that a user selects relays in an unbiased manner,
we can quickly determine what fraction of circuits will be com-
promised in this manner. If an adversary controls a fraction f of
the network, then the chance of the first hop being an adversary
is simply f . Out of those circuits, a fraction f will also have an
adversarial exit node, leading to a fraction f2 of all circuits being
compromised in this manner. Centralized systems like Tor ensure
that relays are selected in an unbiased manner by providing clients
with a full view of the network. This full view is costly, though, in
terms of bandwidth. In an effort to alleviate this cost, researchers
have turned toward peer-to-peer systems as a method of relay dis-
covery.

2.2 Peer-to-Peer Anonymous Communication
Systems

Early peer-to-peer anonymous communication systems focused
on random walks. Examples of these systems include Crowds [15],
MorphMix [16], and Tarzan [6]. In these systems, nodes have
knowledge about some fraction of the network. Nodes build cir-
cuits by conducting a random walk, starting with a node they know,
then walking to a neighbor of that node, and repeating this process
for some distance.

Later peer-to-peer anonymous communication systems utilized
a distributed hash table (DHT) to build circuits. In a DHT, nodes
are assigned an ID and a range of values they are responsible for.
Nodes have knowledge of only a fraction of the total nodes in the
network, stored in their routing tables. When a node attempts to lo-
cate the node responsible for a value, it first asks the node it knows

which is closest to the value. This node, in turn, either asks or re-
turns the closest node it knows about. The lookup proceeds until the
node owning the value is found. This method of locating nodes re-
quires the maintenance of a far smaller amount of state than would
otherwise be needed, in exchange for some number of additional
network round trips.

Applying this idea to anonymity systems appears straightfor-
ward. A simple example is the behavior of Salsa [13]. In Salsa,
relays are assigned an ID and a range of values they own. When
a client wishes to build a circuit, it generates a series of random
numbers. It then looks up the relay that owns the first value in the
series and starts constructing the virtual circuit through that relay.
Afterword, it asks the first relay to find the relay that owns the sec-
ond value and, once found, extends the circuit through this second
relay. It proceeds to extend the circuit in this telescoping manner to
each value in the list, creating a circuit without global knowledge
of the network.

As stated previously, while these peer-to-peer systems do pro-
vide a lower overhead, they also open up new attacks. These at-
tacks are made possible in large part by the implicit trust placed in
the nodes queried while doing a lookup. Any node that is queried
during the lookup is given the opportunity to attempt to tamper with
the results of that lookup. Two simple examples are an attacker
lying about the result of the lookup, instead reporting the closest
colluding node to the value requested; the attacker also may cause
any lookup that will not end with a colluding node to fail by drop-
ping the lookup. By performing these attacks, an adversary can
influence the number of circuits he compromises. Instead of the
case in Section 2.1, where the client is selecting relays with equal
probability, the attacker can inflate the chance that his relays are
selected, increasing the fraction of compromised circuits above the
f2 compromised in more centralized systems.

2.3 ShadowWalker
ShadowWalker [12] is a peer-to-peer anonymous communica-

tion system that retains the DHT used in more recent systems but
returns to the earlier idea of random walks to build circuits. In or-
der to avoid the attacks mentioned in Section 2.2, ShadowWalker
performs these walks over a secure restricted topology. In Shad-
owWalker, neighboring nodes vouch for responses to lookups in an
attempt to prevent adversarial nodes from capturing those lookups.
Vouching nodes, or shadows, are selected in a deterministic man-
ner and will provide digital signatures on routing tables used to
both maintain DHT routing and perform random walks.

2.3.1 Finger Tables and Shadows
At the lowest level, ShadowWalker’s topology is based on a re-

stricted DHT, such as Chord [19] or Koorde [?]. For the remainder
of this work, we focus on ShadowWalker deployed over Chord.
The ID/value space of Chord is typically pictured as a ring which
wraps modulo 2idbits. Nodes are assigned an ID and are respon-
sible for all values they are the successor for; those between their
ID value (inclusive) and the ID value of the next smallest node,
their predecessor (exclusive). Routing tables, called finger tables
in Chord, consist of a number of slots equal to the number of bits
in IDs. A node fills its ith slot by searching for the successor of
its ID plus 2i−1, its finger. Thus, a node is aware of one node
half the distance around the Chord ring, one node a quarter the
distance, one node an eighth, etc. Unlike DHTs with unrestricted
routing tables, such as Kademlia [8] or Pastry [17], there is a “cor-
rect” node for each slot of the finger table, an important property
used by ShadowWalker. Nodes are responsible for building their
finger table when they first join the network, and updating their fin-

ger table at regular intervals, called stabilization intervals. Mittal
and Borisov [12] suggest that stabilization should occur once every
second.

Lookups for the node responsible for a given value proceed as
follows. At each step in the lookup, a node first checks if it is
responsible for the value itself; if so, it returns itself. It next checks
if its successor is responsible for the value; if so, it returns that
node. Otherwise, it consults its finger table and returns the furthest
node from itself that precedes the value. In this way, the lookup
successively steps toward nodes that precede the value by less and
less, eventually reaching the direct predecessor of the value, who is
aware of the direct successor of the value.

On top of this framework, ShadowWalker uses a redundant struc-
tured topology. In ShadowWalker, each node, in addition to its
fingers, has a set of shadows. All nodes in the network have r
shadows, composed of the node’s dr/2e successors and br/2c pre-
decessors. When a node builds or stabilizes its finger table, it must
ask its shadows to verify it. Since the finger table is deterministic,
the shadows are able to reconstruct the finger table directly with
lookups to the correct values. If the shadows agree with the node’s
version of the finger table, they will provide digital signatures at-
testing to this fact. These signatures will be used later by the node
to prove that it is not providing an incorrect result for a lookup. Ad-
ditionally, nodes must discover the shadows of their fingers in order
to accomplish lookups securely. Lookups are split into two differ-
ent categories in ShadowWalker: lookups used to maintain finger
tables, called secure lookups, and lookups used to build circuits,
called circuit construction.

2.3.2 Secure Lookups
In order to ensure that adversaries cannot poison routing tables

of other nodes as they either attempt to build or maintain them,
ShadowWalker insists that every response to a lookup is attested to
by some fraction of shadows (a consensus fraction). When a node
is responding to a query it must also respond with the signatures
from its shadows.

In secure lookups, if there is a discrepancy between the finger
tables, the authors state the nodes should select the “closest” node.
Traditionally this refers to the node closest to the ID being searched
for; this actually increases an attacker’s ability to capture lookups.
We instead interpret closest to be defined as the closest to the query-
ing node, which corresponds to the node closest to theoretical fin-
ger slot (i.e. closest to ID + 2i−1), in an effort to be more pes-
simistic toward attack capability. Nodes are aware of the shadows
they should expect at each hop in the lookup as they are part of the
previous step’s finger table; in the case of the first hop, the node
comes for the requester’s own finger table, which already holds the
shadows of each finger.

2.3.3 Circuit Construction
Circuit construction proceeds in a slightly stricter manner than

secure lookups. In order to build a circuit in ShadowWalker a node
performs a random walk across the network. The two nodes it
reaches at the end of this walk will be the entry and exit nodes
of the circuit. In order to perform this random walk a node first
selects one of its fingers at random and obtains a copy of its finger
table. It then proceeds to select a node at random from that finger
table and, via the previous node, ask it for its finger table. This is
repeated in a telescoping manner as many times as is needed. Mit-
tal and Borisov [12] show that the random walk should be roughly
6 nodes long, since additional nodes beyond 6 provide only limited
increases in security 1.
1This was based on an analysis of de Bruijn graphs, not Chord

At each step in the random walk, nodes present not only their
finger table, but also the finger tables as built by their shadows, and
the signatures on each of those. Unlike secure lookups, disagree-
ment between these finger tables is not tolerated. If a node does
not have an agreeing finger table and corresponding signature from
all of its shadows, the finger table is not accepted and the walk is
aborted. This far stronger requirement is done in an effort to ensure
that relays are chosen uniformly at random, meaning that it would
have roughly the same security properties as Tor.

3. THE ECLIPSE ATTACK

3.1 The Attack
The secure lookup system provided in ShadowWalker relies on

the assumption that adversaries will never obtain a neighborhood
of r + 1 adjacent malicious nodes in the Chord ID space, a state
we term a corrupted neighborhood. If an adversary succeeds in
acquiring such a neighborhood, the malicious node with a full set
of malicious shadows can return incorrect results for queries. This
is made possible by the fact that it can construct any finger table it
desires and still provide signatures supporting this table.

With the ability to lie about lookup results from one node, an
adversary can launch an attack that attempts to poison the routing
tables of other nodes in manner similar to the Eclipse attack pro-
posed by Singh et al. [18]: an attacker provides incorrect responses
to lookups in order to place malicious nodes into routing tables
in place of honest nodes. This attack is viable in ShadowWalker
because each step in the lookup depends on the previous step to
provide the correct shadows for the node currently being queried.
If a lookup passes through a corrupted neighborhood, the malicious
node at its center can capture the lookup, returning another mali-
cious node as the next step. Additionally, since it also reports the
next node’s shadows, this next malicious node will be able to be-
have as though it is at the center of a corrupt neighborhood. While
the next malicious node in the lookup may actually have a set of
shadows that contain legitimate nodes, these legitimate nodes are
never considered since they are not reported by the previous node.
This will ultimately result in the malicious nodes successfully re-
turning a corrupted result that appears valid.

An adversary in this position can attempt to capture lookups for
finger slots of legitimate nodes, increasing the number of finger
table entries he controls. However, to capture node n’s ith finger
table slot, an adversary must capture the lookups of both n and its r
shadows. This complication is overcome by the fact that lookups in
DHTs tend to converge when they get close to their destination [7].
This results in a slower startup time for this attack, but the creation
of subsequent corrupted neighborhoods increases the chance for
both a node and its shadows’ lookups to be captured.

The attacker can use this attack to increase the number of circuits
he compromises. The attacker achieves this in two ways. First,
the attacker will dramatically increase the number of finger table
slots in legitimate nodes that contain a malicious node, increasing
the chance his nodes are selected at random. Second, nodes at the
center of corrupt neighborhoods can return finger tables that are
filled completely with corrupt nodes at the center of corrupt neigh-
borhoods, ensuring that all subsequent nodes in the circuit will be
malicious.

We created a simulator to measure the effectiveness of this at-
tack. The simulator models the behavior of the network from the
instant that an attacker acquires a corrupt neighborhood. Malicious
nodes actively attempt to corrupt as many finger table slots as pos-
sible during the course of the attack. The results of this simulation
can be seen in Figures 1 and 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180

F
ra

ct
io

n
 o

f
ci

rc
u
it

s
ca

p
tu

re
d

Stabilization periods

10% attacker fraction
15% attacker fraction
20% attacker fraction

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180

F
ra

ct
io

n
 o

f
ci

rc
u
it

s
ca

p
tu

re
d

Stabilization periods

10% attacker fraction
15% attacker fraction
20% attacker fraction

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180

F
ra

ct
io

n
 o

f
ci

rc
u
it

s
ca

p
tu

re
d

Stabilization periods

10% attacker fraction
15% attacker fraction
20% attacker fraction

(c)

Figure 1: Circuit capture fractions during an eclipse attacks in a network of 1,600 nodes. In all cases the attack starts at time 0,
where the attacker is assumed to have a compromised neighborhood. In Figure 1(a) nodes have 2 shadows, in Figure 1(b) they have
3, and in Figure 1(c) they have 4

In our simulation, a randomly distributed network of n nodes is
created with attacker fraction f and one compromised neighbor-
hood. Legitimate nodes churn in and out of the network using an
exponential churn model with mean uptime of 30 stabilization in-
tervals. Any time a node rebuilds its finger table, whether when
joining the network or when stabilizing, each finger table entry has
a chance to be captured by the attacker. A finger table entry is cap-
tured if all lookups for the finger are captured by the attacker, after
which point any lookup that passes through that entry is also cap-
tured. Every completed stabilization interval, a series of circuits
constructions is attempted, with the number of circuits captured by
the attacker reported in Figure 1. We also report, in Figure 2, the
fraction of circuits compromised after 60 stabilization intervals as
a function of f .

In all of the eclipse attack simulations, the attacker was able to
compromise far greater than f2 of the circuits constructed. With
2 shadows, an attacker fraction of 0.1 had compromised 83% of
circuits after only ten stabilizations, as seen in Figure 1(a). With the
suggested stabilization interval of one second [12], the attack has
only taken ten seconds from the time a compromised neighborhood
was attained by the attacker. Increasing the number of shadows to
4, shown in Figure 1(c), slows the spread of the attack, but it is still
highly successful. An attacker fraction of 0.1 has compromised
38% of circuits after 60 stabilizations, and compromises 62% of
circuits after 100 stabilizations. Simulations run on larger networks
had similar results, as expected since the attack is not dependent on
network size.

Of course, in order to launch this attack, an attacker first needs
to acquire a corrupted neighborhood. Although an attacker could
achieve this by launching a Sybil attack or finding a flaw in ID
assignment, we do not consider these cases. Instead, we consider
the chance an attacker could acquire one such neighborhood by
simply joining a collection of malicious nodes and waiting until
they achieve one via nodes churning in and out of the network.
The chance that an attacker has to achieve such a neighborhood is
directly related to the number of shadows each node has. Mittal
and Borisov [12] suggest that a network should either use 2 or 3
shadows; we also consider 4 shadows in our analysis. We generated
a simulator to find out how long an attacker would have to wait in
networks that use ShadowWalker’s shadow sizes. The results can
be seen in Figure 3 and Figure 4.

In our simulation, a randomly distributed network was constructed
with n nodes and an attacker fraction f . Legitimate nodes churned
in and out of the network (under an exponential churn model with a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n
 o

f
ci

rc
u
it

s
ca

p
tu

re
d

Attacker node fraction

2 shadows
3 shadows
4 shadows

Figure 2: The fraction of circuits captured under an eclipse at-
tack that has been running for 60 stabilization intervals for var-
ious attacker sizes. The network size was fixed at 1,600 nodes.

mean uptime of 1.0), and the time taken for a compromised neigh-
borhood to develop was recorded.

In the case of r = 2, seen in Figures 3(a) and 4(a), the simulated
network nearly always starts with at least one compromised neigh-
borhood. Increasing the number of shadows increases the difficulty
of attaining a compromised neighborhood, as seen in Figures 3(c)
and 4(c). However, even with 4 shadows, a 1,600 node network
took a median of less than 3 churn intervals to become compro-
mised with attacker fraction 0.15.

3.2 The Solution
We note that, without an effective mechanism for secure ID as-

signment, no defense against the eclipse attack can work: once
an adversary achieves a corrupt neighborhood he will be able to
launch a successful attack. Given such a mechanism, an adversary
still has the chance to achieve a corrupt neighborhood via nodes
randomly churning, as shown in Figure 5 and Figure 6. To approx-
imate the difficulty of generating an attacker-compromised neigh-
borhood, one may consider the probability of such a neighborhood
existing in a randomly distributed network of n nodes. For an at-
tacker that controls fraction f of the nodes in the network, the prob-
ability that all nodes in one neighborhood are attackers is fr+1,
where r is the number of shadows per node. Therefore, the prob-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Time until neighborhood compromise

10% attackers
15% attackers
20% attackers

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Time until neighborhood compromise

10% attackers
15% attackers
20% attackers

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Time until neighborhood compromise

10% attackers
15% attackers
20% attackers

(c)

Figure 3: The time (measured with a unit of one mean node uptime) it took an attacker of various strengths to acquire a corrupt
neighborhood passively for different neighborhood sizes. The time required is directly tied to node uptime, as node churn is what
creates this network state. Network size was fixed at 1,600 nodes, neighborhood sizes are 2 shadows for Figure 3(a), 3 shadows for
Figure 3(b), and 4 shadows for Figure 3(c).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Time until neighborhood compromise

10% attackers
15% attackers
20% attackers

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Time until neighborhood compromise

10% attackers
15% attackers
20% attackers

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Time until neighborhood compromise

10% attackers
15% attackers
20% attackers

(c)

Figure 4: The same attack as shown in Figure 3, but launched against a larger network, in this case 15,000 nodes. Unlike the effect
of the eclipse attack, acquiring the position needed to launch an eclipse attack is dependent on network size. Neighborhood sizes are
2 shadows for Figure 4(a), 3 shadows for Figure 4(b), and 4 shadows for Figure 4(c).

ability that at least one compromised neighborhood exists within a
random network state is (1− (1− fr+1)n).

An obvious way to reduce this chance is to increase r, the num-
ber of shadows. As seen in Figure 6, with 20 shadows, the prob-
ability of a compromised neighborhood within the network only
exceeds 10−10 when the attacker fraction exceeds 0.2, and neigh-
borhood sizes of 40 or 60 shadows do not exceed a probability of
10−10 even with attacker fraction 0.4.

4. DENIAL OF SHADOWS ATTACK

4.1 The Attack
The second attack exploits the number of signatures required for

a node to participate in circuit construction. The result of a secure
lookup is considered valid if a node provides at least one signature.
However, during the random walk for circuit construction, nodes
must present a full set of signatures. An attacker who wishes to
launch attacks on the availability of relays in ShadowWalker need
only refuse to provide a node with a matching signature in order to
make it non-viable for circuits. ShadowWalker attempts to address
this issue by making the shadow relationship symmetric, i.e. if
node A is a shadow for node B, then node B is a shadow for node
A. In this way, if a node wishes to prevent another node from taking
part in circuits, the removed node can reciprocate and remove the
attacking node as well.

This defense does not provide any actual protection against this

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ro

b
ab

il
it

y
 o

f
co

rr
u
p
t

n
ei

g
h
b
o
rh

o
o
d

Attacker node fraction

2 shadows
3 shadows
4 shadows

20 shadows

Figure 5: The probability of a 1,600 node network containing
a corrupt neighborhood for various neighborhood sizes. Note
that the y-axis is in logarithmic scale.

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ro

b
ab

il
it

y
 o

f
co

rr
u
p
t

n
ei

g
h
b
o
rh

o
o
d

Attacker node fraction

2 shadows
3 shadows
4 shadows

20 shadows

Figure 6: The probability of a 15,000 node network containing
a corrupt neighborhood for various neighborhood sizes. Note
that the y-axis is in logarithmic scale.

attack for two reasons. First, the attacker benefits from a large force
multiplier granted by the number of nodes that each attacking node
will shadow. Each node will shadow at least 2 nodes and will have
the ability to remove all of these nodes from circuit participation.
The fact that this is not a simple 1 : 1 trade means that an attacker
who controls a small fraction of nodes will still be able to affect a
large portion of the network. The second issue with this defense is
that, while the attacking nodes are removed from circuit consider-
ation, they still can participate in routing. This is made possible by
the fact that secure lookups do not require a full set of shadows. An
attacking node needs to simply ensure that it provides, and conse-
quently receives, a signature from at least one node, and it will still
be able to participate in the DHT portion of ShadowWalker.

At the most basic level an attacker can destroy relay availability
as a whole. In this case, the attacker simply joins some number
of malicious nodes to the network and refuses to provide correct
signatures to all but one shadow. These attacking nodes will have
sufficient signatures to continue functioning as part of the DHT,
but will remove, roughly speaking, r − 1 nodes, each, from circuit
consideration.

We implemented a simulator to demonstrate this simple attack.
In our simulation, a random network state was generated with the
specified attacker fraction and number of nodes. All attackers de-
nied signatures to nodes in their neighborhood, rendering a number
of nodes (including those attackers) nonviable with respect to cir-
cuit construction. 100,000 circuit constructions were attempted,
and the fraction that failed was recorded.

In this simulation, circuits were constructed as described in Sec-
tion 2.3.3, taking the last two nodes in a six node random walk as
the entry and exit points of the circuit. For a circuit to be built
successfully, all six nodes on its random walk must be viable to
participate in circuit construction. The probability that a random
node is viable is (1−f)r+1 with attacker fraction f and r shadows
per node. A node is only viable if it is not an attacker, and has no
attackers in its neighborhood. Therefore, the probability that the
entire circuit is viable is ((1− f)r+1)6 = (1− f)6(r+1), and it is
easy to see why a small attacker fraction is capable of disrupting a
large fraction of circuit constructions.

As seen in Figure 7, with only 2 shadows per node, an attacker
who controls only 10% of the nodes in the network is able to cause
78% of circuits to fail during construction. Increasing the number

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

F
ra

c
ti

o
n
 o

f
fa

il
e
d
 c

ir
c
u
it

s

Attacker node fraction

(1-(1-f)^2)
2 shadows
3 shadows
4 shadows

Figure 7: Results of a simulated attack where malicious nodes
refuse to provide correct signatures in an effort to cause circuit
construction to fail. In this simulation the networks being at-
tacked is a 1,600 node network. We have provided the baseline
for the number of circuits an attacker could cause to fail if he
could not influence other nodes for reference.

of shadows to 4 allows the same attacker fraction of 10% to cause
89% of circuit constructions to fail. Further increasing the number
of shadows to the level recommended in Section 3.2 only improves
the effectiveness of the attack, as seen in Figure 8, where all circuits
are unusable when an attacker controls a mere 5% of the network.

Although this destructive attack is illustrative, there is a far more
powerful attack an adversary could mount. An attacker can choose
to have some of his nodes deny shadows while the rest behave nor-
mally, dramatically increasing the number of circuits he controls.
This attack was introduced by Borisov et al. [1].

For a given attacker fraction f , the attacker can choose to have
a subfraction fd of his nodes refuse to sign their neighbors’ finger
tables; the remaining (f−fd) fraction of attacker nodes will behave
normally. The probability of a legitimate node being viable is the
same as the probability that the node has no dishonest attackers
in its neighborhood, or (1 − fd)r , and the expected fraction of
viable legitimate nodes is then (1− f)× (1− fd)r . The expected
effective attacker fraction is the fraction of viable attacker nodes
divided by the fraction of total viable nodes, or (f − fd)/((f −
fd) + (1 − f) × (1 − fd)r). By taking a partial derivative with
respect to fd, the optimal value of fd can be easily calculated to
be max(0, f − (1 − f)/r), which implies that this attack is only
expected to be successful when f > 1/(r + 1).

As mentioned by Mittal and Borisov, for small ShadowWalker
neighborhood sizes of 2, 3, and 4, this strategy is largely subopti-
mal. The exception is the case of 3 shadows, where the odd num-
bers of shadows allows nodes to violate the reciprocal shadow re-
lationship. With an odd number of shadows, an attacker can freely
deny a signature to its one nonreciprocating node, which is then
incapable of affecting the attacker’s complement of signed finger
tables. This added vulnerability allows for the enhanced attack to
remain effective at small neighborhood sizes for r = 3, as seen in
Figure 9. For r = 2 and r = 4 the attack is ineffective until larger
fractions of the network are compromised.

Our changes in Section 3.2 make this attack highly optimal. The
fraction of circuits an attacker can compromise under our elevated
neighborhood sizes can be seen in Figure 10. In the case of 2 to
4 shadows, the best an attacker could hope for is compromising

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25

F
ra

c
ti

o
n
 o

f
fa

il
e
d
 c

ir
c
u
it

s

Attacker node fraction

(1-(1-f)^2)
20 shadows
40 shadows
60 shadows

Figure 8: The same attack as Figure 7 but using neighborhood
sizes recommended in Section 3.2. The increase in size reduces
the requirements for an attacker to compromise circuits.

51% of the circuits when he controls 40% of the network. After
increasing the neighborhood size to 20, an attacker needs less than
15% of the network in order to compromise the same 51%. Even
worse, if 40 or 60 shadows are used, an attacker with that same
15% of the network will compromise nearly all of the circuits. In
fact, with 60 shadows, less than 6% of the network needs to be
malicious in order for the attacker to compromise more than half of
all circuits.

The key issue allowing the attack to occur is the requirement of
100% consensus between shadows for circuit construction. Our so-
lution is to require a smaller consensus fraction of agreeing nodes.
This weakens the selective DoS attack, as it requires the attacker
to control a large fraction of the network in order to prevent nodes
from functioning. Under a reduced consensus where c members of
the (r + 1)-node neighborhood (the node and its r shadows) are
required to agree, denial is optimal when f > (r +1− c)/c. How-
ever, the reduced consensus allows each attacker (r +1− c) "free"
denials of shadows, in that the attacker will remain a viable node.
Thus, attackers may elect to eliminate some number of legitimate
nodes without reprisal, but the overall effect of the attack is greatly
weakened.

4.2 The Solution
We re-ran our simulations using decreased consensus fractions.

The results can be seen in Figure 11. In the case of a 50% consensus
fraction, an attacker sees very little success using selective DoS.
Using higher consensus fractions will still allow an attacker to gain
some benefit by selectively denying signatures, though the situation
is no worse than base ShadowWalker.

At first glance, it would appear as though we have re-introduced
our first failure mode using this fix. It is true that by reducing the
consensus fraction needed, an adversary stands a greater chance of
acquiring a corrupted neighborhood; however, we can demonstrate
that the chance is still low, assuming large neighborhood sizes are
used. The chance an attacker has to acquire such a neighborhood
after taking reduced consensus fractions into account can be seen
in Figure 12.

As should be expected, the higher the consensus fraction, the
harder it is for an attacker to obtain a compromised neighborhood.
The probability PNC of neighborhood compromise, with attacker
fraction f , r shadows and a required node consensus of c, is given

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n
 o

f
ci

rc
u
it

s
ca

p
tu

re
d

Attacker node fraction

f^2
2 shadows
3 shadows
4 shadows

Figure 9: Results of a strategic denial of signature attack in
which the attacker attempts to increase the fraction of circuits
he controls by reducing the number of honest nodes that can
participate in circuits. The attack was run against a network
of 1,600 nodes. The baseline of f2 is provided as a point of
reference.

by the cumulative binomial distribution: a neighborhood must have
c or more successes out of r + 1 trials, with a probability f of
success. The probability that a randomly distributed network of
n nodes contains at least one compromised neighborhood is (1 −
(1− PNC)n). By choosing an appropriate consensus fraction and
neighborhood size, the probability of a compromised neighborhood
can be reduced such that the network is resistant to a desired at-
tacker fraction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n
 o

f
ci

rc
u
it

s
ca

p
tu

re
d

Attacker node fraction

f^2
20 shadows
40 shadows
60 shadows

Figure 10: Results of a selective DoS attack launched against
networks using expanded neighborhood sizes. The baseline of
f2 is included as a reference.

For example, consider the requirement that the network is re-
sistant to an attacker fraction of 0.25. One could quickly estab-
lish that 60 shadows with a 75% consensus fraction would provide
a network that has a less than 10−10 chance of having a corrupt
neighborhood, while only providing an attacker roughly 2% more
circuits via selective DoS. If a network resistant to an attacker frac-
tion of 0.2 is needed then it can be quickly seen that 60 shadows is
more than required. A network with 40 shadows and 75% consen-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n
 o

f
ci

rc
u
it

s
ca

p
tu

re
d

Attacker node fraction

f^2
50% concensus
67% concensus
75% concensus

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n
 o

f
ci

rc
u
it

s
ca

p
tu

re
d

Attacker node fraction

f^2
50% concensus
67% concensus
75% concensus

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

ct
io

n
 o

f
ci

rc
u
it

s
ca

p
tu

re
d

Attacker node fraction

f^2
50% concensus
67% concensus
75% concensus

(c)

Figure 11: Results of the selective denial of signatures when applied to large neighborhood size networks that use fractional con-
sensus. The network size in this case is 1,600 nodes. Neighborhood sizes are: 20 in Figure 11(a), 40 in Figure 11(b), and 60 in
Figure 11(c).

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ro

b
a
b
ili

ty
 o

f
c
o
rr

u
p
t
n
e
ig

h
b
o
rh

o
o
d

Attacker node fraction

50% Concensus
67% Concensus
75% Concensus

(a)

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ro

b
a
b
ili

ty
 o

f
c
o
rr

u
p
t
n
e
ig

h
b
o
rh

o
o
d

Attacker node fraction

50% Concensus
67% Concensus
75% Concensus

(b)

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ro

b
a
b
ili

ty
 o

f
c
o
rr

u
p
t
n
e
ig

h
b
o
rh

o
o
d

Attacker node fraction

50% Concensus
67% Concensus
75% Concensus

(c)

Figure 12: Probability of a corrupt neighborhood existing after relaxing consensus requirements in a 15,000 node network. In
Figure 12(a) 20 shadows are used, in Figure 12(b) 40 shadows, and in Figure 12(c) 60 shadows.

sus provides a less than 10−10 chance of a corrupt neighborhood
and effectively prevents the selective DoS attack.

5. IMPLEMENTATION
In an effort to ensure that ShadowWalker could still feasibly run

with between 20 and 60 shadows, we implemented ShadowWalker
and tested it on PlanetLab. During the course of the implementa-
tion and deployment, several interesting lessons were learned about
ShadowWalker.

5.1 Deployment Lessons
It became clear while running our implementation on PlanetLab

that small inconsistencies in network state could present large is-
sues. At very high consensus requirements (90% - 100%), a hand-
ful of honest but unstable nodes caused other honest nodes to lack
sufficient signatures. In some cases, the network recovered; in
other cases, the network was partitioned. When the consensus frac-
tions recommended in Section 4.2 were used, this problem virtu-
ally disappeared. The lower consensus requirements allowed Shad-
owWalker to be more tolerant of malfunctioning nodes, leading to
increased network robustness.

Extremely short-lived nodes in large enough numbers still present
issues to ShadowWalker, even with reduced consensus fractions.
This is a direct result of the network not being able to stabilize
fast enough to keep up with churn. In order to minimize this issue
we recommend that the full ShadowWalker protocol only be run
on relays, which tend to be longer lived when compared to clients.
Clients can still perform lookups to build their finger table as they

would normally, but do not announce themselves as valid nodes to
the network. They will not appear on any node’s finger table, will
not be responsible for any IDs, and, consequently will not need
shadows to verify their finger table. This dramatically reduces the
overhead required to maintain the network.

5.2 PlanetLab Deployment
We deployed our functioning prototype over PlanetLab in or-

der to test the performance scaling of different neighborhood sizes.
Given the load and temperament of the PlanetLab testbed, it also
provided an interesting opportunity to test the robustness of our
prototype. We deployed ShadowWalker across 100 relatively well-
functioning nodes in PlanetLab. Nodes participated in all Shad-
owWalker behavior: bootstrapping; stabilizing; requesting, and pro-
viding signatures; and building circuits. We measured various per-
formance characteristics of the deployed nodes. The length of time
it took for a node to request a finger table, receive it, and verify the
signatures is show in Figure 13. As neighborhood size increased,
so too did the time required to fetch a table, a direct result of the in-
creased table size and number of cryptographic operations needed.
In general, 80% or more of tables were fetched and validated within
2 seconds of requesting the table.

Closely related to finger table fetch times is the amount of time
it took a node to perform the random walk used to build a circuit.
This can be seen in Figure 14: a random walk takes roughly 6 times
the amount of time required for a single finger table request. This
makes sense, as the random walk is merely 6 finger table requests
in succession. The median time required ranged from slightly more

than 2 seconds for 20 shadows to roughly 6 seconds for 60 shad-
ows. This compares favorably with the original author’s simulated
median circuit construction time of 3.8 seconds.

Last, we measured the amount of time nodes took to perform a
stabilization; this can be seen in Figure 15. During a stabilization,
a node performs lookups for shadows, fingers, and the shadows of
fingers. This graph shows the time required for a node to perform
these lookups. These lookups can either be for itself or for one of
its shadows. A neighborhood size of 20 nodes is noticeably faster
than other sizes. On the other hand, 40 and 60 nodes are roughly
the same; in some places, the larger neighborhood size is actually
faster than the smaller size. This is a direct result of the fact that sta-
bilization tends to be governed by the slowest nodes in the lookup,
hence the larger finger table size and cryptographic load are not
as noticeable. A stabilization period should be roughly the same
length as the largest amount of time a network is willing to allow a
node to spend doing stabilization lookups. From the results of Fig-
ure 15, we quickly see that Mittal and Borisov’s stabilization period
of 1 second is not feasible. Instead we recommend a stabilization
period of between 30 and 90 seconds, depending on the network
latency of nodes comprising the network.

6. RELATED WORK
Closely related works have performed a variety of attacks on

these systems. For example, Mittal and Borisov [11] studied re-
dundant DHT lookup mechanisms in AP3 [10] and Salsa [13], and
showed that these systems offer a tradeoff between resistance to
passive and active attacks based on the level of redundancy.

Tran et al. [20] focused on lookup capture and selective DoS at-
tacks against DHT-based anonymous communication systems. Their
conclusion was that DHTs are not a very suitable choice for anonym-
ity networks, as there is a mismatch between security requirements
for DHT routing and anonymity networks.

The essential basics for our attacks have appeared in prior lit-
erature. For example, selective DOS attacks have been described
by Borisov et al. [1]. The Eclipse attack was discussed by Singh et
al. [18], and the idea of route capture is ubiquitous among anonymity
works since at least 2002 [16]. Although our work is based on these
papers, the implementations of the attacks themselves are unique to
ShadowWalker. This is a result of ShadowWalker’s novel topology.

A body of work similar to ShadowWalker exists studying peer-
to-peer anonymous communication systems. Several schemes have
been proposed [21, 10, 14, 9, 16, 15, 6, 13, 22] that relied on
distributed hash tables or random walks to provide scalability. Most
of these works have been shown vulnerable to the attacks of [1, 11,
20].

7. CONCLUSION
In this work, we have investigated how to improve ShadowWalker,

a DHT-based anonymity system. We have exposed two weaknesses
in ShadowWalker and shown how to correct them. First, we looked
at what happens when an adversary violates a key assumption of
ShadowWalker: the existence of at least one honest node in each
neighborhood. We have shown that an attacker who has fully com-
promised a neighborhood can capture a majority of circuits con-
structed in the network. We established that the underlying issue
is the ease with which an attacker can acquire such a neighbor-
hood in the original design of ShadowWalker, a direct result of the
neighborhood size. We fixed this issue by dramatically increasing
neighborhood size, minimizing the chance of an attacker violating
this assumption. Second, we examined an attack where an adver-
sary refuses to provide signatures to other nodes, making them un-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Time to fetch fingertable (sec)

20 Shadows
40 Shadows
60 Shadows

Figure 13: Measured time required to fetch and validate a fin-
ger table for various neighborhood sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F

Time to build circuit (sec)

20 Shadows
40 Shadows
60 Shadows

Figure 14: CDF of time required to build a circuit for various
large neighborhood sizes as measured during our PlanetLab
deployment.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

C
D

F

Time to stabilize (sec)

20 Shadows
40 Shadows
60 Shadows

Figure 15: Observed time needed to build a finger table during
stabilization for various neighborhood sizes.

usable for circuit construction. We simulated two attacks, one in
which an adversary disrupts the entire network and another where
the attacker is strategic and uses signature denial to capture addi-
tional circuits. We resolved this issue by reducing the number of
signatures required during circuit construction. We also ensured
that this fix does not facilitate an attacker compromising neighbor-
hoods. Last, we examined the challenges of implementing this al-
tered version of ShadowWalker, demonstrating via PlanetLab ex-
periments that our neighborhood sizes are realistic.
Acknowledgments This work was supported by the NSF under
grants 0917154 and 0546162. We thank Prateek Mittal and Nikita
Borisov for helpful discussions on ShadowWalker.

8. REFERENCES
[1] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa

Tabriz. Denial of service or denial of security? In CCS ’07:
Proceedings of the 14th ACM conference on Computer and
communications security, pages 92–102, New York, NY,
USA, 2007. ACM.

[2] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony
Rowstron, and Dan S. Wallach. Secure routing for structured
peer-to-peer overlay networks. In OSDI ’02: Proceedings of
the 5th symposium on Operating systems design and
implementation, pages 299–314, New York, NY, USA, 2002.
ACM.

[3] David L. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Commun. ACM,
24(2):84–90, 1981.

[4] George Danezis and Paul Syverson. Bridging and
fingerprinting: Epistemic attacks on route selection. In PETS
’08: Proceedings of the 8th international symposium on
Privacy Enhancing Technologies, pages 151–166, Berlin,
Heidelberg, 2008. Springer-Verlag.

[5] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:
the second-generation onion router. In SSYM’04:
Proceedings of the 13th conference on USENIX Security
Symposium, pages 21–21, Berkeley, CA, USA, 2004.
USENIX Association.

[6] Michael J. Freedman and Robert Morris. Tarzan: a
peer-to-peer anonymizing network layer. In CCS ’02:
Proceedings of the 9th ACM conference on Computer and
communications security, pages 193–206, New York, NY,
USA, 2002. ACM.

[7] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of dht routing geometry
on resilience and proximity. In SIGCOMM ’03: Proceedings
of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications,
pages 381–394, New York, NY, USA, 2003. ACM.

[8] Petar Maymounkov and David Mazières. Kademlia: A
peer-to-peer information system based on the xor metric. In
IPTPS ’01: Revised Papers from the First International
Workshop on Peer-to-Peer Systems, pages 53–65, London,
UK, 2002. Springer-Verlag.

[9] Jon McLachlan, Andrew Tran, Nicholas Hopper, and
Yongdae Kim. Scalable onion routing with torsk. In CCS
’09: Proceedings of the 16th ACM conference on Computer
and communications security, pages 590–599, New York,
NY, USA, 2009. ACM.

[10] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis,
Peter Druschel, and Dan S. Wallach. Ap3: cooperative,
decentralized anonymous communication. In EW 11:

Proceedings of the 11th workshop on ACM SIGOPS
European workshop, page 30, New York, NY, USA, 2004.
ACM.

[11] Prateek Mittal and Nikita Borisov. Information leaks in
structured peer-to-peer anonymous communication systems.
In CCS ’08: Proceedings of the 15th ACM conference on
Computer and communications security, pages 267–278,
New York, NY, USA, 2008. ACM.

[12] Prateek Mittal and Nikita Borisov. Shadowwalker:
peer-to-peer anonymous communication using redundant
structured topologies. In CCS ’09: Proceedings of the 16th
ACM conference on Computer and communications security,
pages 161–172, New York, NY, USA, 2009. ACM.

[13] Arjun Nambiar and Matthew Wright. Salsa: a structured
approach to large-scale anonymity. In CCS ’06: Proceedings
of the 13th ACM conference on Computer and
communications security, pages 17–26, New York, NY,
USA, 2006. ACM.

[14] K.P.N. Puttaswamy, A. Sala, C. Wilson, and B.Y. Zhao.
Protecting anonymity in dynamic peer-to-peer networks. In
IEEE International Conference on Network Protocols
(ICNP)(Oct. 2008), pages 104–113, 2008.

[15] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity
for web transactions. Technical report, 1997.

[16] Marc Rennhard and Bernhard Plattner. Introducing
morphmix: peer-to-peer based anonymous internet usage
with collusion detection. In WPES ’02: Proceedings of the
2002 ACM workshop on Privacy in the Electronic Society,
pages 91–102, New York, NY, USA, 2002. ACM.

[17] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location, and routing for large-scale
peer-to-peer systems. In Middleware ’01: Proceedings of the
IFIP/ACM International Conference on Distributed Systems
Platforms Heidelberg, pages 329–350, London, UK, 2001.
Springer-Verlag.

[18] Atul Singh, Miguel Castro, Peter Druschel, and Antony
Rowstron. Defending against eclipse attacks on overlay
networks. In EW 11: Proceedings of the 11th workshop on
ACM SIGOPS European workshop, page 21, New York, NY,
USA, 2004. ACM.

[19] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In
SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for
computer communications, pages 149–160, New York, NY,
USA, 2001. ACM.

[20] Andrew Tran, Nicholas Hopper, and Yongdae Kim. Hashing
it out in public: common failure modes of dht-based
anonymity schemes. In WPES ’09: Proceedings of the 8th
ACM workshop on Privacy in the electronic society, pages
71–80, New York, NY, USA, 2009. ACM.

[21] Yingwu Zhu and Yiming Hu. Tap: A novel tunneling
approach for anonymity in structured p2p systems. In ICPP
’04: Proceedings of the 2004 International Conference on
Parallel Processing, pages 21–28, Washington, DC, USA,
2004. IEEE Computer Society.

[22] Li Zhuang, Feng Zhou, Ben Y. Zhao, and Antony Rowstron.
Cashmere: resilient anonymous routing. In NSDI’05:
Proceedings of the 2nd conference on Symposium on
Networked Systems Design & Implementation, pages
301–314, Berkeley, CA, USA, 2005. USENIX Association.

