
FAUST: Efficient, TTP-Free Abuse Prevention by
Anonymous Whitelisting

Peter Lofgren
Stanford University

peter@lofgren.us

Nicholas Hopper
University of Minnesota

hopper@cs.umn.edu

ABSTRACT
We introduce Faust, a solution to the “anonymous blacklist-
ing problem:” allow an anonymous user to prove that she is
authorized to access an online service such that if the user
misbehaves, she retains her anonymity but will be unable to
authenticate in future sessions. Faust uses no trusted third
parties and is one to two orders of magnitude more efficient
than previous schemes without trusted third parties. The
key idea behind Faust is to eliminate the explicit blacklist
used in all previous approaches, and rely instead on an im-
plicit whitelist, based on blinded authentication tokens.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Authentication; E.3 [Data Encryption]: Public key cryp-
tosystems

General Terms
Algorithms, Security

Keywords
Anonymous Authentication, Anonymous Blacklisting, Pri-
vacy-Enhancing Revocation

1. INTRODUCTION
Anonymity networks like Tor [7], UltraSurf [6] and JonDo

[8] allow users to access online services while concealing
the parties to any particular communication, by relaying
this information through one or more intermediaries. These
networks help to circumvent online censorship and protect
freedom of speech, but represent a “mixed blessing” for the
providers of online services. In particular, anonymous access
can expand the range of users that contribute to an online
service, but it can also allow misbehaving users to abuse
the service in a way that makes it difficult to hold them ac-
countable. As a result, several service providers – including

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’11, October 17, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1002-4/11/10 ...$10.00.

Wikipedia, Slashdot, CraigsList, and several IRC channels
– have chosen to block contributions from known anonymity
providers, despite the implied loss of contributions.

To address this problem, Johnson et al. [14] (inspired
by [13]) proposed the notion of an anonymous blacklisting
scheme, which allows service providers (SPs) to maintain
a “blacklist” such that non-abusive users can access the ser-
vice anonymously; while users on the blacklist cannot access
the service, but remain anonymous. Several such schemes
have appeared in the literature, dealing with blacklist man-
agement in one of two ways. In “Nymble schemes” [14, 24,
11, 15, 16, 9], a set of trusted third parties (TTPs) manage
the blacklist, allowing efficient authentication and blacklist-
ing but making both the SP and the user dependent on the
TTPs for privacy and blacklistability. In contrast, TTP-free
schemes [21, 4, 3, 22] provide privacy and blacklistability
by construction but require the user and SP to perform ex-
pensive zero-knowledge proofs to show that a user is not
blacklisted; the computational complexity (per user) of these
schemes scales poorly with the number of users.

Our Contribution. In this paper, we introduce Faust, a
TTP-Free scheme that eliminates the blacklist and replaces
it with an implicit “whitelist:” each user receives a “token”
that proves her last action was acceptable; when she con-
nects to the SP again, she reveals this token and sends a
blinded token that she can privately retrieve after a period
of time deemed sufficient to detect abuse. If her action is
deemed unacceptable, no special action is required, and if
it is not, the blinded token is signed and becomes available
to the user. Since the token serves as evidence that she
has not been blacklisted, no additional verification regard-
ing the blacklist is necessary; and since tokens are unlinkable
to each other or the user, privacy is preserved without need
of a trusted third party. Faust thus provides efficient, TTP-
free abuse prevention with per-user authentication costs that
scale independently of the number of users or misusers of the
SP.

2. RELATED WORK
Blind Signatures and Unlinkable Serial Transactions.
Faust is heavily influenced by Unlinkable Serial Transac-
tions (USTs) [19], which in turn use Chaum’s blind signa-
ture scheme [5]. In this scheme, the signer has public key
N , an RSA modulus, and secret key d = 3−1 mod φ(N).1

We utilize a cryptographic hash function H : M → Z
∗

N ,

1We note that any exponent e coprime to φ(N) could be
used in place of 3, but since in our case it results in more

modeled as a random oracle. When a user wishes to ob-
tain a blinded signature on the message x ∈ M, she picks
r ∈R Z

∗

N , and hands β = H(x)r3 mod N to the signer, who

returns ζ = β1/3 mod N = H(x)1/3r mod N . Finally, the

user computes σ = ζ/r = H(x)1/3 mod N . It is easy to see
that signing transcripts (β, ζ) are information-theoretically

unlinkable to the signatures (x, H(x)1/3 mod N); Bellare et
al. [2] prove that creating n+1 valid signatures from n sign-
ing queries reduces to solving the one-more RSA inversion
problem.

USTs utilize blind signatures to enforce anonymous, serial
access to a subscription service. For example, imagine an on-
line movie streaming service for which users pay a subscrip-
tion fee, and suppose that each user wants to keep private
which movies she watched. In the UST scheme. users pay a
subscription fee and receive a signed token. Then each time
the users wants to download a movie he spends his token
and immediately receives a new blinded token. Each movie
he watches is unlinkable to the other movies he watched
because the tokens are all statistically independent of each
other. Faust combines this idea with a method to privately
and asynchronously retrieve the next token.

Nymble, BLAC, PEREA. Henry and Goldberg [10] pro-
vide an excellent overview of the TTP-based approaches to
anonymous blacklisting [14, 24, 11, 15, 16, 9]; the most ef-
ficient of these have essentially no computational cost for
the user and require only a handful of symmetric-key prim-
itive operations from the SP, but leave the user and the SP
vulnerable to collusion among the trusted parties. We note
that most of these schemes explicitly rate-limit users to one
authentication token per “linkability window,” a period sug-
gested to be 5 minutes.

BLAC [21] completely eliminates the dependence on TTPs
as follows: each user receives an anonymous credential (a
blinded signature on the value gx in an appropriate group).
When the user authenticates, he picks a random base h,
and sends the SP the pair (h, hx), along with a proof that
he knows a signature on gx. If the user misbehaves, the
value (h, hx) will be added to the blacklist; so to complete
the authentication the user also proves that for each (b, c)
on the blacklist, bx 6= c. This means that in BLAC, each
authentication requires computation and bandwidth linear
in the number of blacklisted users. Two similar schemes [4,
3] appeared independently in the same year.

To reduce the computational and communication com-
plexity of these TTP-free schemes, PEREA [22] modifies
the blacklisting requirement: In PEREA, the user produces
a one-time random token for each authentication and proves
that none of her previous K tokens was blacklisted. Thus,
the “window”during which she can be effectively blacklisted
for a given action is limited. Our approach has similar
blacklisting semantics, but because we eliminate the explicit
blacklist, there is no dependence on a “window size” K in
Faust, whereas authentication cost in PEREA has a linear
dependence on K.

3. FAUST
We present Faust, a solution to the anonymous creden-

tial problem with blacklisting. It is efficient and does not

efficient verification with no known disadvantages, we focus
on the case e = 3

use third parties, but it does change the blacklisting seman-
tics slightly, requiring that the SP judge within a fixed time
whether a particular action was acceptable or not.

Faust is based on digital tokens. Each user Alice re-
ceives a token (or K tokens) during registration. Every time
she wants to interact with the SP, she connects through an
anonymizing network, spends a token, and completes an ac-
tion like posting content to a page. To allow the SP to send
her a new token in the future, she also provides a blinded
token. If her action is not flagged as inappropriate within a
time period of ∆ seconds, say an hour, the service provider
will sign her token. When Alice sees her post was approved,
she retrieves the blinded token and un-blinds it to restore
her editing power. Only Alice knows the unblinding factor,
so only she can unblind the token.

Blacklisting in Faust has different timing constraints than
blacklisting in Nymble or BLAC. In Faust, once the SP signs
a blinded token for Alice, it can never blacklist her for that
action, whereas in Nymble or BLAC the service provider
can blacklist a user for an action long after it occurred. On
the other hand, in BLAC and Nymble a user committing
vandalism can keep committing vandalism until the first in-
stance is detected. To limit misbehavior, both systems rate-
limit users to one action every time period, say every five
minutes. If this period is short, then users can misbehave
several times before they are noticed, while if this period is
long then even legitimate users are slowed. In Faust, the
SP always has time to judge a user’s current action before
the user receives a new token, so the user cannot misbehave
twice with the same token.

3.1 Protocol

User Registration. To begin using Faust, each user needs
to receive a token. Since having a valid, unused token (x,

H(x)1/3 mod N) “whitelists” a user, it is important to limit
the number of tokens any user can receive. As discussed
by Henry and Goldberg [10], this could be done based on
several scarce resources. Here we outline two approaches.

IP address. To limit misuse based on IP addresses, the client
registers by connecting directly (not anonymously) to either
the SP or a third party Token Manager (TM, trusted by
the SP) and requesting a token. The client sends a blinded
token; the TM checks that no token has been previously
issued to the requesting IP address, and (if not) signs the
token and returns it to the client, who unblinds it. If a third
party is used for registration, the user then sends the token
along with another blinded token (using the SP’s public key)
to the SP to obtain a token signed under the SP’s public key.

Since IP-addresses may be reassigned, the TM should pe-
riodically clear its list of IP addresses, breaking time into
windows of say, one week. To prevent users from saving
these IP based tokens over time, the SP can choose a new
public key for each window. This will effectively “forgive”
users who misbehaved during the previous window, as in
Nymble. We note that the use of IP addresses as a scarce
resource, present in the literature on anonymous blacklisting
since Nym [13], has known disadvantages due to the dynam-
icity of IP addresses. However, as Johnson et al. note [14],
many SPs currently employ IP-based blacklisting to success-
fully block the worst abusers, so using IP addresses in anony-
mous blacklisting schemes would give SPs the same level of

protection against anonymous users as they enjoy against
non-anonymous misusers.

Currency. Users who cannot directly connect to the SP
(without use of an anonymity network) could be accommo-
dated using an electronic payment mechanism (such as EFT
or PayPal). In this case, the user connects anonymously
to the SP, and submits payment information along with a
blinded token. The SP processes the payment and signs
the token. Notice that the payment mechanism need not be
anonymous, because the SP will be information-theoretically
unable to link the unblinded token with the payment.

Authentication. When a user Alice would like to authen-
ticate to the SP, she does the following:

1. She connects to the SP through an anonymity network.

2. Alice downloads the SP’s current public key N . She
prepares a blinded token for signing by choosing a ran-
dom message x ∈R M and a blinding factor r ∈R Z

∗

N

and then computing a blinded value β = yr3 mod N .

3. Alice uploads β, a previously obtained token (x′, α′ =

H(x′)1/3), and the content of her post.

4. The SP verifies that her token is valid by ensuring that
α′3 = H(x′) and verifies that it has never been spent,
and then stores β in a database along with her content.
There is a public, unique id number i associated with
each post.

Token Retrieval. After ∆ seconds have passed, where ∆
is a public parameter which gives the SP a chance to detect
abuse, the SP checks whether an action was acceptable or
not. When a post with id i and blinded value β is declared
acceptable by the SP, it signs the blinded value to get α =
β1/3 and adds the pair (i, α) to a list A of signatures for
accepted posts.

Notice that if Alice waits at least ∆ seconds, and then
requests the token associated with post i∗ in order to make
her next post with id j∗, there will be a traffic analysis attack
in which the SP can infer that post i∗ and j∗ are likely linked
because of the proximity between the request for token i∗

and the appearance of post j∗. Thus, some scheme is needed
that obscures which tokens have been requested.

In the most straightforward scheme, after Alice has waited
∆ seconds for one of her posts i∗ to be judged, she connects
to the SP through an anonymity network and downloads
the list of accepted posts A = {(i, αi)}. If i∗ is in the list
A, Alice unblinds the signature α = αi∗ by computing σ =
α/r = H(x)1/3 mod N and stores it for future use.

Unfortunately, the length of the list A of signatures for
accepted posts grows in proportion to the total number of
posts made, so downloading A during the token retrieval
protocol would become expensive. One option to address
this would be to use an efficient Private Information Re-
trieval [20, 17] scheme, possibly offloaded to a third party;
however, this would still incur significant costs.

Faust employs several mechanisms to reduce the cost of
privately retrieving tokens. First, time is partitioned into
periods of length ℓ ≥ ∆; each user retrieves her token from
the list A of blinded tokens associated with the period in
which she last authenticated. The period length ℓ is chosen

so that each Faustian user of the SP is likely to access the
SP at least once within each period.

Second, the user does not retrieve the entire list of tokens
A from the period. Instead, she requests an expected frac-
tion 1/M of the of the entries of A. In this variation, during
the token retrieval protocol for post i∗, the user sends i∗

(mod M) to the server. The server “filters” the list A to get
A′ = {(i, α) ∈ A : i ≡ i∗ (mod M)} and returns A′ from
which the user can extract (i∗, αi∗). (Note that the server
can easily store the list A in M buckets so that no extra
computation is required)

Finally, after retrieving her token, the user chooses a ran-
dom delay τ uniformly from the interval [0, T], (where T is
a public parameter of the SP) and waits at least τ seconds
before using the token. The parameters T and M are chosen
so that with high probability, every i ∈ {0, . . . , M} will be
requested at least once within T seconds. (For example, if
the arrival rate of Faust users to the SP is λ, we can choose
T, M to satisfy T > 2M/λ.) Since the unblinded tokens are
unlinkable to the blinded tokens, this mixes the user’s token
with all tokens from the previous period. An impatient or
security-conscious user can send the special request M + 1,
downloading all tokens from the period, and have the token
available for immediate use while ensuring his privacy.

In general, the parameters T , M , and ℓ can be adjusted to
control the number of times any token is retrieved, at the ex-
pense of a longer wait between user actions, and dependent
only on the arrival rate of Faustian users to the SP.

4. EVALUATION

4.1 Security
We briefly sketch how our construction achieves the secu-

rity goals identified in [24] — Blacklistability, Rate-limiting,
Non-frame-ability, and Anonymity — assuming the one-
more RSA inversion problem [2] is computationally intract-
able.

Blacklistability. An honest Token Manager will only issue
1 token per user. Thus for a coalition of c users to authenti-
cate after all have been blacklisted, they would have to forge
a token, violating the assumed intractability of the one-more
RSA inversion problem.

Non-Frameability. When a user Alice chooses a value
y = H(x), she only ever transmits r3y which is statistically
independent of y. If another user Bob downloads her blinded
token ry1/3 mod N , all he has is a pair (z, z3) where z =

ry1/3 ∈R Z
×

N . He could produce such a pair on his own,
and it is no help to him in forging any token, including
Alice’s token. Thus if the SP publishes a signature on Alice’s
blinded token, only Alice can use it to create a token, and
no other user can spend her token without simply guessing
it.

Anonymity. When a user Alice connects to the SP to post
content, she only identifies herself by submitting a token σ.
This token is only used once and statistically independent of
all her previous interactions. Thus the SP has no informa-
tion with which to identify Alice or link her posts together.

4.2 Efficiency
Faust is much more efficient than previous TTP-free so-

lutions. There are no interactive proofs. The only compu-
tation for each authentication is for the SP to sign a token,

Blacklisting Time (∆) 140 minutes
Token list period (ℓ) 16 hours
Client arrival rate (λ) 6.3 / minute
Authentications per period (ℓ × λ) 6000
List reduction factor (M) 60
Token retrieval bandwidth 25 KiB
Maximum mixing interval (T) 20 minutes

Table 1: Suggested parameters for Wikipedia de-
ployment, if all anonymous edits require Faust. The
resulting deployment would require 25KiB of band-
width (on average) per authentication, the same
as the average request served by Wikipedia; and
the expected time between authentications would
be ∆ + T/2 = 150 minutes.

the user to blind and unblind a token, and the SP to ver-
ify a token. Each of these steps can be done with a single
modular exponentiation (requiring 3.3ms at 2048 bits on a
2.67GHz Intel Xeon W3520) in Chaum’s scheme. The total
bandwidth required by both parties to an authentication is
the length of one x ∈ M, and 3 + c values in Z

∗

N , where c is
the constant number of times each blinded token is down-
loaded. (We expect a typical value of c to be on the order
of 10-100, but the best value will depend on the SP.)

In contrast, PEREA requires at least (K + 1)D + 6K + 3
modular exponentiations by the client (where D is the aver-
age number of updates to the blacklist between two authen-
tications by the client) and 14K

3
+3 modular exponentiations

by the server [22]. The bandwidth required per authentica-
tion is D + 14K

3
+ 3 elements of Z

∗

N . Thus at the same
security level, Faust is roughly an order of magnitude faster
than PEREA with K = 1.

4.3 Wikipedia example
Faust has several timing parameters that rely on specific

properties of the service it protects. Here we give an example
of concrete settings based on measurements from Wikipedia.
These settings are summarized in Table 1.

Blacklisting time ∆. To investigate the proper value of
∆ – the time in which an abuse must be noticed – we col-
lected data on Wikipedia reversions. We developed a script
which scans the revision history of an article from Wikipedia
for the keywords “revert” or “rv” – which users often use
when reverting vandalism – and notes the time elapsed be-
tween editing and reversion. We then used Wikipedia’s“Spe-
cial:Random” page to find random pages until we had found
1000 reverts. The resulting cumulative distribution is shown
in Figure 1.

The median reversion time in this data set is 6 minutes,
and the 75th percentile is 140 minutes. It is likely that the
worst incidents of vandalism are noticed quickly, so the re-
verts which occurred after an hour may not merit blacklist-
ing. We also note that a large study of reverts on Wikipedia
[18] found that 89% of vandalism instances were repaired
within 100 views. In December 2010, each of the 1000 most
popular pages were viewed at least 5 times per minute.2

2See “Wikipedia article traffic statistics”, http://stats.
grok.se/en/top

Figure 1: Plot of the number of minutes before a re-
vert versus the percentage of reverts occurring be-
fore that time for random pages on Wikipedia.

Thus, if users can be directed to articles with pending Faust
tokens, ∆ values as low as 30 minutes seem feasible.

Arrival Rate λ and Period length ℓ. We collected the
complete list of 3666 Wikipedia edits for a 30-minute period
on July 15, 2011. This list contains 813 edits that were
made by users with no login; among these users, 188 had a
previous edit session: a chain of edits e1, e2, . . . , ek such that
the time between each ei and ei+1 is less than 5 minutes.
We use these pseudonymous users as our model for Faustian
Wikipedians. The arrival rate of of these users was λ =
188/30 ≈ 6.3 per minute. We then retrieved the editing
history of each of these users (up to 500 edits) and computed
the time between editing sessions. The median time between
the 10628 edits by these users was 14.4 hours, suggesting a
period of ℓ = 16 hours. At an arrival rate of 6.3 per minute,
we expect roughly 6000 tokens on each period’s token list.
Downloading the list would consume 1.5 MiB at 2048 bits
per token.

Client wait T for reduction M . The average request
served by Wikipedia results in approximately 25 KiB of
data;3 thus to reduce the size of the token retrieval message
to that of an average page view, it is sufficient to take M =
60. With M = 60, this gives a wait time T = 2×60/6.3 ≈ 20
minutes.

5. VARIATIONS
Multiple Tokens. An obvious limitation of Faust as de-
scribed thus far is the fact that a user can only use the
service once every ∆+T/2 seconds, on average. If this time
is close to 150 minutes as computed in the previous section,
this represents a serious usability constraint. A natural ap-
proach to resolve this issue is to give each user some number
K > 1 of tokens, similar to PEREA. This decreases the aver-
age time between uses by a factor of K, and allows “bursts”
of up to K uses in short succession. Because all tokens are
unlinkable, there is no change in the privacy provided by the
system, and the cost per authentication remains the same.

Once a user has multiple tokens, the semantics of black-
listing become similar to the “d-strikes-out”policy of [23, 1]:
a user who misbehaves less than K times can still use the
service; once the user is caught misbehaving K times he be-
comes unable to access the service. Unlike the BLAC/PEREA

3
http://en.wikipedia.org/wiki/Wikipedia:Statistics shows

48K requests/s and 9.5Gbps for July 2011.

d-strikes out policy, however, a Faust user that misbehaves
fewer than K times will incur a penalty, in the form of an
increased mean time between authentications.

Naughtiness. Recently, Au et al. [1] have introduced the
notion of “naughtiness” in PEREA: each misbehavior by the
user is assigned a severity, and the user is allowed to au-
thenticate as long as the severity is below some threshold η.
We note that a similar type of policy can be supported by
multi-token Faust: let ζ be the maximum severity assigned
to an action. Then each user receives η + ζ − 1 tokens on
registration. Each time the user authenticates, she submits
ζ valid tokens along with ζ blinded tokens. If the SP deter-
mines within time ∆ that the user misbehaved with severity
s, then the SP signs and returns only ζ − s of the blinded
tokens. As long as the total severity of a user’s misbehav-
ior is less than η, she can continue to use the service (at a
reduced rate), and once her total severity exceeds η she will
no longer have the ζ valid tokens necessary to authenticate.
We note however, that this solution increases the cost of
authentication by a factor of ζ.

Forgiving tokens. One feature of BLAC and PEREA is
the ability of the SP to forgive a user and remove her from
the blacklist. This aligns with current Wikipedia IP blocking
policy which usually blocks IP addresses for a limited length
of time. Limited time blocks are also possible in single-token
Faust: the service provider can simply delay signing the new
token until the block expires.

Recovering tokens. In the basic system, users must store
the tokens they receive and the blinding factors for pending
tokens on some medium, and if that information is lost the
user must either wait until the end of the current token
window (if using IP-based token limiting) or pay for a new
token (if using currency-based token limiting). However, if
the user can remember or write down a single high-entropy
password generated by the Faust software, then it is possible
for the user to generate blinding factors pseudo-randomly, so
the user can recover all of her tokens from that password. In
this modification, a cryptographic pseudo-random function
F is used, and users generate their blinding factors using
their passwords.

When a user Alice with password sk is ready to post an
edit, she asks the SP for the index i of the next post and then
computes her blinding factor and message (r, x) = Fsk(i)
which she then uses as in the standard protocol. Later if
her edit was approved, she can retrieve that token (or re-
retrieve it) even if she is on a different computer. She can
find one of her posts, download i and the blinded signature,
compute the blinding factor from sk and i, and then unblind
the token.

Acknowledgments
We thank Roger Dingledine, Ian Goldberg, Ryan Henry,
Yongdae Kim and Zi Lin for helpful discussions and com-
ments about the anonymous blacklisting problem in gen-
eral, as well as the FAUST protocol in particular. This work
was partially supported by a University of Minnesota Under-
graduate Research Opportunities Program (UROP) grant to
Peter Lofgren, and the National Science Foundation under
grant 0546162.

6. REFERENCES
[1] M. H. Au, P. P. Tsang, and A. Kapadia. PEREA:

Practical TTP-free revocation of repeatedly
misbehaving anonymous users. Technical Report
TR688, Indiana University, 2011.

[2] M. Bellare, C. Namprempre, D. Pointcheval, and
M. Semanko. The One-more-RSA-inversion problems
and the security of Chaum’s blind signature scheme.
J. Cryptology, 16(3):185–215, 2003.

[3] S. Brands, L. Demuynck, and B. D. Decker. A
practical system for globally revoking the unlinkable
pseudonyms of unknown users. In J. Pieprzyk,
H. Ghodosi, and E. Dawson, editors, ACISP, volume
4586 of Lecture Notes in Computer Science, pages
400–415. Springer, 2007.

[4] E. Brickell and J. Li. Enhanced Privacy ID: a Direct
Anonymous Attestation Scheme with Enhanced
Revocation Capabilities. In WPES ’07: Proceedings of
the 2007 ACM workshop on Privacy in electronic
society, pages 21–30, New York, NY, USA, 2007.
ACM.

[5] D. Chaum. Security without identification:
transaction systems to make Big Brother obsolete.
Commun. ACM, 28(10):1030–1044, 1985.

[6] U. I. Corp. Ultrasurf: Privacy. security. freedom.
http://www.ultrareach.com/, July 2011.

[7] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
the second-generation onion router. In SSYM’04:
Proceedings of the 13th conference on USENIX
Security Symposium, pages 21–21, Berkeley, CA, USA,
2004. USENIX Association.

[8] J. GmbH. JonDoNym: Private and secure web surfing.
http://anonymous-proxy-servers.net/, September
2010.

[9] R. Henry and I. Goldberg. Extending Nymble-like
systems. In Proc. 32nd IEEE Symposium on Security
& Privacy, 2011.

[10] R. Henry and I. Goldberg. Formalizing anonymous
blacklisting systems. In Proc. 32nd IEEE Symposium
on Security & Privacy, 2011.

[11] R. Henry, K. Henry, and I. Goldberg. Making a
nymbler Nymble using VERBS. Technical report,
University of Waterloo Technical Report CACR
2010-05, 2010. Extends [12].

[12] R. Henry, K. Henry, and I. Goldberg. Making a
nymbler Nymble using VERBS. In PETS: Proceedings
of the 10th Privacy Enhancing Technologies
Symposium. Springer, 2010.

[13] J. Holt and K. Seamons. Nym: Practical
pseudonymity for anonymous networks. BYU Internet
Security Research Lab Technical Report, 4, 2006.

[14] P. C. Johnson, A. Kapadia, P. P. Tsang, and S. W.
Smith. Nymble: Anonymous IP-address blocking. In
Proceedings of The Seventh International Symposium
on Privacy Enhancing Technologies (PET), Ottawa,
Canada, volume 4776 of LNCS, pages 113–133.
Springer-Verlag, June 2007.

[15] Z. Lin and N. Hopper. Jack: Scalable
accumulator-based Nymble system. In WPES2010:
Proceedings of the 9th ACM Workshop on Privacy in
the Electronic Society. ACM, 2010.

[16] P. Lofgren and N. Hopper. BNymble (a short paper):
More anonymous blacklisting at almost no cost. In
Fifteenth International Conference on Financial
Cryptography and Data Security. Springer, 2011.

[17] F. Olumofin and I. Goldberg. Revisiting the
computational practicality of Private Information
Retrieval. In Fifteenth International Conference on
Financial Cryptography and Data Security. Springer,
2011.

[18] R. Priedhorsky, J. Chen, S. Lam, K. Panciera,
L. Terveen, and J. Riedl. Creating, destroying, and
restoring value in Wikipedia. In Proceedings of the
2007 international ACM conference on Supporting
group work, pages 259–268. ACM, 2007.

[19] S. Stubblebine, P. Syverson, and D. Goldschlag.
Unlinkable serial transactions: protocols and
applications. ACM Transactions on Information and
System Security (TISSEC), 2(4):354–389, 1999.

[20] J. T. Trostle and A. Parrish. Efficient computationally
private information retrieval from anonymity or
trapdoor groups. In M. Burmester, G. Tsudik, S. S.
Magliveras, and I. Ilic, editors, ISC10: Proceedings of
the Information Security Conference, volume 6531 of

Lecture Notes in Computer Science, pages 114–128.
Springer, 2010.

[21] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith.
Blacklistable Anonymous Credentials: blocking
misbehaving users without TTPs. In CCS ’07:
Proceedings of the 14th ACM conference on Computer
and communications security, pages 72–81, New York,
NY, USA, 2007. ACM.

[22] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith.
PEREA: Towards practical TTP-free revocation in
anonymous authentication. In CCS ’08: Proceedings of
the 14th ACM conference on Computer and
communications security, pages 333–344. ACM, 2008.

[23] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith.
BLAC: Revoking repeatedly misbehaving anonymous
users without relying on TTPs. ACM Trans. Inf. Syst.
Secur., 13:39:1–39:33, December 2010.

[24] P. P. Tsang, A. Kapadia, C. Cornelius, , and S. W.
Smith. Nymble: Blocking Misbehaving Users in
Anonymizing Networks. IEEE Transactions on
Dependable and Secure Computing (TDSC), Sept.
2009.

